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Molecular dynamics simulations of two-dimensional soft Yukawa fluids are performed to analyze the effect that

the range of interaction has on coexisting densities and line tension. The attractive one-component fluid and

equimolar mixtures containing positive and negative particles are studied at different temperatures to locate the

region where the vapor-solid and vapor-liquid phases are stable. When the range of interaction decreases, the

critical temperature of the attractive one-component systems decreases. However, for the charged mixtures it

increases, and this opposite behaviour is understood in terms of the repulsive interactions which are dominant

for these systems. The stable phase diagram of two-dimensional fluids is defined for smaller values of the decay

parameter λ than that of fluids in three dimensions. The two-dimensional attractive one-component fluid has

stable liquid-vapor phase diagram for values of λ< 3, in contrast to the three-dimensional case, where stability

has been observed even for values of λ < 15. The same trend is observed in equimolar mixtures of particles

carrying opposite charges.
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1. Introduction

The location of stable phases in systems with molecular interactions has been a subject of great inter-

est in many applications such as simple liquids, electrolyte solutions, colloidal suspension and water. It is

well known that fluids with only repulsive interactions have a phase diagram that shows fluid-solid tran-

sition [1]. Attractive forces are needed to develop a vapor-liquid phase separation [2]. Several methods,

among them, molecular simulations, theory of liquids and experiments are used to obtain information

about the phase diagram of atomic and molecular fluids. Although it is possible nowadays to obtain the

phase boundaries using atomistic simulations of molecules including internal degrees of freedom [3, 4],

from theoretical and simulation points of view, it is more convenient to use simple potential models such

as square well (SW), Lennard-Jones (LJ), Yukawa and Coulomb interactions. The effect that parameters

of the potential has on the phase diagram in general, and in particular, on the critical properties can be

systematically analyzed by computer simulations. The SW, LJ and attractive hard-core Yukawa (AHCY)

potentials have a short-ranged repulsion and the attraction is long or variable-ranged. For these models

it has been established in three-dimensional (3D) systems that the critical temperature decreases as the

attraction decreases [5–9]. For very small ranges of attraction, when the vapor-liquid or liquid-solid phase

diagrams for the AHCY model become metastable, it has been found that the critical point is below the

triple point [8].
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The phase diagram and interfacial properties of ionic fluids, where the interaction has attraction and

repulsion, has also been studied in 3D for the restricted primitive model (an electroneutral equimolar

mixture of particles having the same size and carrying opposite charges) [10, 11] and for ionic fluids with

asymmetry in size and charge [12–14]. The effect of range of interaction on the phase diagram of ionic

fluids has been analyzed using the Yukawa potential. Mier-y-Terán et al. [15] used the mean spherical

approximation theory to calculate the critical properties of mixtures containing positive and negative

particles at different range of interaction. They predicted that as the range of interaction decreases the

critical temperature increases, it reaches amaximum and then decreases. That finding is counterintuitive

in the sense that less attractive potentials increase the critical temperature. The surface tension for mix-

tures of charged particles using the Yukawa model have also been reported using molecular dynamics

[16]. Fortini et al. [17] performed computer simulations to locate the regions where the vapor-liquid and

liquid-solid were stable. Their conclusions were that stable liquid-vapor phase diagrams were found for

values of the screening parameter λ < 4, in disagreement with the results of Caballero et al. [18] where

the phase diagram was stable for λ < 10. The results of Caballero et al. were obtained for a slightly dif-

ferent potential, but according to Fortini et al., the difference in the results were not related with the

potential. Hynninen and Panagiotopoulos [19] found that vapor-liquid phase transition of highly charged

colloids is metastable with respect to the vapor-solid phase diagram because at high temperatures the

interaction becomes purely repulsive.

Apart from the work in 3D, it is also interesting to understand the phase behavior of ionic particles

in two-dimensions. Experimental results on quasi two-dimensional (2D) colloidal suspensions show in-

teresting properties [20, 21]. The phase diagrams of 2D systems obtained by computer simulations are

scarce. The vapor-liquid and fluid-solid phase diagrams of the LJ fluid in two dimensions were obtained

by Barker et al. [22] in 1981 using a liquid-state perturbation theory and Monte Carlo simulations. They

found that the phase diagramwas qualitatively similar to the 3D system. Santra et al. [23] in 2008 studied

the nucleation rate of a liquid phase. They used the LJ model and Monte Carlo simulations to validate the

predictions of the classical nucleation theory. They calculated for the first time the line tension of the 2D

LJ fluid. Later on, Santra and Bagchi [24] obtained the vapor-liquid phase diagram and line tension of the

LJ model at different temperatures. The critical temperature from simulations for the 3D LJ is around 2.5

times greater than its value in 2D. The restricted primitive model of ions in two dimensions was studied

byWeis et al. [25] usingMonte Carlo simulations and integral equations theory. For this system the critical

temperature in the 3Dmodel is around 1.3 times its value in 2D. Analyzing the stability of phase diagrams

in 2Dmight be useful to understand the phase separation in 3D and to investigate new phenomena which

are not found in 3D.

The main goal of this work is to analyze the effect that the range of interaction has on coexisting den-

sities and line tension of 2D fluids that interact with the soft Yukawamodel. To our best knowledge, there

have neither been reported any phase diagrams nor surface tension for these fluids. The one-component

systems with attractive interactions and the two-component mixture of positive and negative particles

are studied at different ranges of interaction.

This work is organized as follows: The potential model and definition of the calculated properties are

presented in section 2. Results are discussed in section 3 and finally Concluding remarks and References

are given.

2. Potential model and calculated properties

The soft Yukawa potential is used to simulate the two-dimensional fluids of pure attractive spheres

and equimolar mixtures of particles carrying the opposite charge,

U (r )=

[

(σ

r

)225

+
qαqβe−λ(r /σ−1)

r /σ

]

fmin (2.1)

where λ−1 is a measure of the range of interaction in dimensionless units and qα is the charge of particle

α in themixture case. The particles are all the same sizeσ. For the attractive one-component fluid qαqβ =

−1. The factor fmin = 1.075 is included to have a potential which is zero at r = σ and close to −1 at the
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minimum for the attractive pairs. The short-ranged soft model, instead of the hard sphere model, has

been used earlier to study interfacial properties of the restricted primitive model [11, 26] and ions with

asymmetry in size and charge [27]. The results for the soft model were found to be in good agreement

with those where the short range repulsion is given by the hard sphere potential. The advantage of the

soft model is that it is straightforward to use molecular dynamics of continuous models.

Reduced units are used in this work for the two-dimensional systems: distance r ∗ = r /σ, energy u∗ =

u/ǫ (where ǫ = U (rmin)), temperature T ∗ = kT /ǫ, density ρ∗ = ρσ2, time ∆t∗ = ∆t(ǫ/mσ2)1/2, pressure

p∗ = pσ2/ǫ and line tension γ∗ = γσ/ǫ. The density profile, ρ(x), was obtained as,

ρ(x) =
〈N (x, x +∆x)〉

∆A
(2.2)

where 〈N (x, x +∆x)〉 is the average number of particles with position between x and x +∆x and ∆A is

the area of a slab.

The line tension of a planar interface, using the mechanical definition of the atomic pressure, [29] is

γ= 0.5Lx

[

〈Pxx 〉−〈Py y〉
]

, (2.3)

where Lx is the length of the simulation cell in the longest direction and Pαα (α = x, y) are diagonal

components of the pressure tensor. The factor 0.5 outside the squared brackets takes into account the

two symmetrical interfaces in the simulation.

The component Pxx of the pressure tensor was calculated as,

Pxx A =
∑

i

mi v2
xi +

∑

i

∑

j>i

Fi j ·ri j , (2.4)

where vxi and mi are the velocity in the x direction and the mass of particle i , respectively, A is the area

of the system and ri j = ri − r j with ri being the position of particle i . A similar expression for Py y was

used. The force between particles i and particle j is,

Fi j =−
∂u(ri j )

∂ri j

ri j

ri j
. (2.5)

3. Results

Extensive molecular dynamics simulations, with a parallel program, were performed on particles

interacting with the soft Yukawa potential at different ranges of interaction λ−1. All the simulations to

study inhomogeneous systems were carried out in non-squared simulation cells, keeping the total density

and temperature (NAT) constant.

3.1. One-component systems

Results for the one-component systems where particles interact with the attractive soft Yukawa po-

tential were obtained for values of the reciprocal range of interaction λ= 1, 1.8, 3, 4 and 6. The value of

λ= 1.8 was chosen to make a direct comparison with the 2D LJ fluid. It was shown in the previous work

[30] that in 3D the hard core Yukawa model with λ= 1.8 gave equivalent results with the LJ potential.

Initially a number of 400 particleswere placed in themiddle of the simulation cell at a reduced density

of 0.4 and the velocities randomly distributed. The dimensions of the simulation cell were Lx = 60σ and

Ly = 15σ. The equations of motion were solved using the velocity Verlet algorithm with a reduced time

step of ∆t∗ = 0.0005. The temperature was kept constant with a global thermostat using a Nosé-Hoover

chains of 4 thermostats [28] with parameter of 0.01.The cut-off distance was 6σ for all the simulations of

pure fluids. The systems evolved to reach the equilibrium state where a liquid slab was surrounded by

vapor [26]. The systems in all cases were followed by 80 blocks of 106 time steps.

The density profiles for λ= 1.8 are shown in figure 1. Two symmetrical interfaces are observed with

a large amount of particles in the liquid and vapor regions which allows one to obtain the corresponding

coexisting densities. Similar density profiles are found for λ= 1.0, 3.0 and 6.0 not shown.
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Figure 1. (Color online) Density profiles for attrac-

tive soft Yukawa one-component systems with λ=

1.8 at different reduced temperatures.

Figure 2. (Color online) Density profiles for attrac-

tive soft Yukawa one-component systems with λ=

4 at different reduced temperatures.

The density profiles for λ = 4 are shown in figure 2. There was not observed a vapor-liquid phase

separation but vapor-solid equilibrium in a very narrow range of temperatures, from 0.30 to 0.315. Large

densityfluctuations were found at a reduced temperature of 0.32 but awell defined vapor-liquid interface

was not stabilized. Homogeneous fluids were found for reduced temperatures above 0.35. The longest

size of the simulation cell was increased in order to check if the phase separation from vapor-solid to

vapor-liquid was not related to finite size effects. The two-dimensional attractive soft Yukawa model

seems to have a stable vapor-liquid equilibrium for values of λ around 3, this is contrary to the 3D case

where the same phase equilibrium is stable for values of λ less than 15 [31].

Figure 3. (Color online) Liquid-vapor phase dia-

gram for attractive one-component systems with

the inverse of the interaction range λ = 1.0, 1.8,

3.0, 4.0 and 6.0.

Figure 4. (Color online) Line tension for attractive

one- component systems with λ = 1.0 and 1.8 are

shown with filled circles. The results for the 2D

Lennard-Jones model [24] are shown with open

circles.

The phase diagram of the attractive soft Yukawa potential is shown in figure 3 for different values of

λ. As expected, the critical temperature decreases as the range of interaction decreases. At low tempera-

tures the vapor-solid equilibrium is observed for values of λ= 1.8 and 4. The vapor-liquid transition was

not found for λ= 4, it is metastable with respect to the vapor-solid equilibrium. The critical density and

temperature for λ= 1 and λ= 1.8 were estimated by fitting the coexisting densities to a rectilinear diam-

eter law with a critical exponent of 1/8 according to a two-dimensional Ising model system [32, 33] and
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experimental results for methane [34]. The final results were (0.36,0.72) and (0.38,0.50), respectively. The

critical temperature using the coexisting densities for λ= 1.0 might be around T ∗ = 0.8 but the estimated

value using the critical exponent of 1/8 is much smaller. The 2D soft Yukawa with λ= 1.8 and LJ models

give nearly the same results as shown in figure 3.

The line tension of the attractive soft Yukawamodel is shown in figure 4 as a function of temperature,

its decay almost following a linear function. The critical temperature can be obtained when line tension

is zero, the estimated values for λ = 1.0 and λ = 1.8 are 0.53 and 0.83, respectively. The result for λ = 1

is quite different from the value obtained using the coexisting densities and critical exponent of 1/8.

The results for the two-dimensional LJ model, also shown in the figure, are in good agreement with the

attractive soft Yukawa model with λ= 1.8.

The phase diagram and line tension of 2D and 3D attractive soft Yukawa fluids are completely dif-

ferent. The vapor-liquid phase diagram in 3D is stable for values of λ < 15, i.e., for very short ranges

of interaction, whereas in the 2D case the stability is found for λ < 3. Clearly, the strength of the global

attraction needed in 2D to produce the separation is quite different from that in 3D.

3.2. Mixture of particles carrying opposite charges

Molecular dynamics simulations on equimolar binary mixtures of equal-size particles carrying op-

posite charges are carried out to analyze the effect that the range of interaction has on phase stability

and line tension. The systems contained 1000 particles in a non-squared simulation cell of Lx = 150σ

and Ly = 38σ dimensions. The potential was truncated at 15σ and the reduced time step was 0.0005. The

simulation protocol to obtain the coexisting densities and line tension was the same as that used for the

attractive soft Yukawa model described above. The systems were followed for at least 100 blocks of 106

time steps. The average properties were obtained from the last 40 blocks.

Figure 5. (Color online) Density profiles for the soft Yukawa mixture of charged particles with λ = 2.0.

The temperatures are given in the figure.

The phase diagram for the same system but in 3D has been calculated [17] and it was found that the

vapor-liquid equilibriumwas stable for values of λ< 4. In order to find the region where the vapor-liquid

transition occurred, several simulations were performed in this work using λ= 2. The difference in criti-

cal temperature for the restricted primitive model in 2D and 3Dwas less than 25 % (see the Introduction).

We expected to find the same trend in the binarymixtures using the soft Yukawamodel. However, we did

not find any evidence of vapor-liquid phase separation using the direct simulation of interfaces. A vapor-

solid equilibriumwas observed for reduced temperatures as low as 0.106. The amount of vapor increases

when the reduced temperature rises to 0.112 but the solid phase still remains stable. At T ∗ = 0.116 the

particles behave as a homogenous fluid, see figure 5. As in the 3D mixture of charged particles with oppo-

site sign interacting with the hard core Yukawa model, the critical temperature increases as the range of

interaction decreases [15, 17], i.e., the system increases its liquid density as λ increases. In fact, for values
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of λ> 4, the vapor-liquid phase diagram is meta-stable with respect to the vapor-solid equilibrium. In the

same way, the possibility of finding a vapor-liquid phase transition in 2D charged mixtures would be in

the direction of increasing the range of interaction.

Therefore, MD simulations were performed using λ = 1.0. In this case, a vapor-liquid phase separa-

tion was found in a very narrow range of reduced temperatures, from 0.078 to 0.08. The liquid contains

alternated particles with opposite charges and large voids are observed, see figure 6 for T ∗ = 0.79. In the

vapor phase, the particles contain a large cluster and some particles form linear chains and rings.

Figure 6. (Color online) Snapshot for the soft Yukawa mixture of charged particles with λ= 1.0 and T∗ =

0.079.

The density profiles are shown in figure 7 and have large fluctuations. However, the liquid and vapor

can be estimated when simulations are run for several millions of configurations. The analysis of the

radial distribution function for the region with higher density shows a behavior of a liquid.

Figure 7. (Color online) Density profiles at different temperatures for the soft Yukawamixture of charged

particles with λ= 1.0.

The line tension for binary mixtures was also calculated and the results are shown in figure 8. As

found in simple fluids, the line tension decays with temperature.

4. Concluding remarks

Themain conclusion found in this work is that the stability of vapor-liquid phase diagram in 2D fluids

requires longer ranges of interactions than in 3D systems in both the one-component soft Yukawa model

and the binary mixture of soft spheres carrying charges with the opposite sign. The range of interaction

for these models increases when the inverse screening parameter λ decreases. The metastable vapor-

liquid transition, with respect to the vapor-solid equilibrium, for the one component model in 2D is found

for values of λ> 4 while in the 3D case it is found for λ> 15, i.e., for very short ranges of interaction. For

the binary mixture in 2D, metastability occurs for λ > 1 in contrast to λ > 4 observed in the 3D case. A

possible explanation might be given using the classical nucleation theory [35] arguments. The formation

of a liquid phase in that theory requires that particles in ametastable vapor phase should nucleate up to a

critical size. The number of particles in a nucleus of 2D fluids for the same range of interaction is smaller
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Figure 8. Line tension as a function of temperature for soft Yukawa mixture of charged particles with

λ= 1.0.

than in 3D because in 3D the particles are in a sphere while in 2D they are in a circle. The particles in 2D

have to interact longer distances than in 3D for the nucleus to reach the critical size.

On the other hand, the vapor-liquid phase diagram and line tension for the one-component attractive

soft Yukawa model are in good agreement with those obtained using the LJ in 2D.
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Фазова рiвновага i мiжфазнi властивостi двовимiрних

Юкава-плинiв

Ґ.А. Мендес-Мальдонадо1, М. Ґонсалес-Мельчор2, Х. Алехандре3

1 Факультет фiзико-математичних наук, Автономний унiверситет Пуебла, 72570, Пуебла, Мексика

2 Iнститут фiзики, Автономний унiверситет Пуебла, 72570, Пуебла, Мексика

3 Хiмiчний факультет, Автономний унiверситет Метрополiтана-Iстапалапа, 09340, Федеральний округ

Мехiко, Мексика

Для того, щоб проаналiзувати, як впливає область взаємодiї на спiвiснуюючi густини i лiнiйний натяг,

здiйснено симуляцiї методом молекулярної динамiки двовимiрних м’яких Юкава-плинiв. Притягальний

однокомпонентний плин та еквiмолярнi сумiшi, що мiстять позитивнi i негативнi частинки, дослiджува-

лися при рiзних температурах таким чином, щоб визначити область, в якiй є стiйкими фази пара-тверде

тiло i пара-рiдина. Зi зменшенням областi взаємодiї зменшується критична температура притягальних

однокомпонентних систем. Проте для заряджених сумiшей вона зростає, i ця вiдмiннiсть у поведiнцi по-

яснюється наявнiстю вiдштовхувальної взаємодiї, яка домiнує в цих системах. Дiаграма стiйкої фази дво-

вимiрних плинiв є отримана для менших значень параметра затухання λ, нiж у випадку тривимiрних

плинiв. Двовимiрний притягальний однокомпонентний плин має стiйку фазову дiаграму рiдина-пара для

значень λ< 3, що вiдрiзняється вiд тривимiрного випадку, для якого стiйкiсть спостерiгається навiть для

значень λ < 15. Така ж тенденцiя спостерiгається в еквiмолярних сумiшах протилежно заряджених ча-

стинок.

Ключовi слова: фазова дiаграма, Юкава-плини, мiжфазнi властивостi
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