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Molecular dynamics simulations of two-dimensional soft Yukawa fluids are performed to analyze the effect that
the range of interaction has on coexisting densities and line tension. The attractive one-component fluid and
equimolar mixtures containing positive and negative particles are studied at different temperatures to locate the
region where the vapor-solid and vapor-liquid phases are stable. When the range of interaction decreases, the
critical temperature of the attractive one-component systems decreases. However, for the charged mixtures it
increases, and this opposite behaviour is understood in terms of the repulsive interactions which are dominant
for these systems. The stable phase diagram of two-dimensional fluids is defined for smaller values of the decay
parameter A than that of fluids in three dimensions. The two-dimensional attractive one-component fluid has
stable liquid-vapor phase diagram for values of A < 3, in contrast to the three-dimensional case, where stability
has been observed even for values of A < 15. The same trend is observed in equimolar mixtures of particles
carrying opposite charges.
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1. Introduction

The location of stable phases in systems with molecular interactions has been a subject of great inter-
est in many applications such as simple liquids, electrolyte solutions, colloidal suspension and water. It is
well known that fluids with only repulsive interactions have a phase diagram that shows fluid-solid tran-
sition [1]. Attractive forces are needed to develop a vapor-liquid phase separation [2]. Several methods,
among them, molecular simulations, theory of liquids and experiments are used to obtain information
about the phase diagram of atomic and molecular fluids. Although it is possible nowadays to obtain the
phase boundaries using atomistic simulations of molecules including internal degrees of freedom [3, 4],
from theoretical and simulation points of view, it is more convenient to use simple potential models such
as square well (SW), Lennard-Jones (L]), Yukawa and Coulomb interactions. The effect that parameters
of the potential has on the phase diagram in general, and in particular, on the critical properties can be
systematically analyzed by computer simulations. The SW, L] and attractive hard-core Yukawa (AHCY)
potentials have a short-ranged repulsion and the attraction is long or variable-ranged. For these models
it has been established in three-dimensional (3D) systems that the critical temperature decreases as the
attraction decreases [5-9]. For very small ranges of attraction, when the vapor-liquid or liquid-solid phase
diagrams for the AHCY model become metastable, it has been found that the critical point is below the
triple point [8].
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The phase diagram and interfacial properties of ionic fluids, where the interaction has attraction and
repulsion, has also been studied in 3D for the restricted primitive model (an electroneutral equimolar
mixture of particles having the same size and carrying opposite charges) [10,[11] and for ionic fluids with
asymmetry in size and charge [12-14]. The effect of range of interaction on the phase diagram of ionic
fluids has been analyzed using the Yukawa potential. Mier-y-Teran et al. [15] used the mean spherical
approximation theory to calculate the critical properties of mixtures containing positive and negative
particles at different range of interaction. They predicted that as the range of interaction decreases the
critical temperature increases, it reaches a maximum and then decreases. That finding is counterintuitive
in the sense that less attractive potentials increase the critical temperature. The surface tension for mix-
tures of charged particles using the Yukawa model have also been reported using molecular dynamics
[16]. Fortini et al. [17] performed computer simulations to locate the regions where the vapor-liquid and
liquid-solid were stable. Their conclusions were that stable liquid-vapor phase diagrams were found for
values of the screening parameter A < 4, in disagreement with the results of Caballero et al. [18] where
the phase diagram was stable for A < 10. The results of Caballero et al. were obtained for a slightly dif-
ferent potential, but according to Fortini et al., the difference in the results were not related with the
potential. Hynninen and Panagiotopoulos [19] found that vapor-liquid phase transition of highly charged
colloids is metastable with respect to the vapor-solid phase diagram because at high temperatures the
interaction becomes purely repulsive.

Apart from the work in 3D, it is also interesting to understand the phase behavior of ionic particles
in two-dimensions. Experimental results on quasi two-dimensional (2D) colloidal suspensions show in-
teresting properties [20, 21]. The phase diagrams of 2D systems obtained by computer simulations are
scarce. The vapor-liquid and fluid-solid phase diagrams of the L] fluid in two dimensions were obtained
by Barker et al. [22] in 1981 using a liquid-state perturbation theory and Monte Carlo simulations. They
found that the phase diagram was qualitatively similar to the 3D system. Santra et al. [23] in 2008 studied
the nucleation rate of a liquid phase. They used the L] model and Monte Carlo simulations to validate the
predictions of the classical nucleation theory. They calculated for the first time the line tension of the 2D
L] fluid. Later on, Santra and Bagchi [24] obtained the vapor-liquid phase diagram and line tension of the
L] model at different temperatures. The critical temperature from simulations for the 3D L] is around 2.5
times greater than its value in 2D. The restricted primitive model of ions in two dimensions was studied
by Weis et al. [25] using Monte Carlo simulations and integral equations theory. For this system the critical
temperature in the 3D model is around 1.3 times its value in 2D. Analyzing the stability of phase diagrams
in 2D might be useful to understand the phase separation in 3D and to investigate new phenomena which
are not found in 3D.

The main goal of this work is to analyze the effect that the range of interaction has on coexisting den-
sities and line tension of 2D fluids that interact with the soft Yukawa model. To our best knowledge, there
have neither been reported any phase diagrams nor surface tension for these fluids. The one-component
systems with attractive interactions and the two-component mixture of positive and negative particles
are studied at different ranges of interaction.

This work is organized as follows: The potential model and definition of the calculated properties are
presented in section 2. Results are discussed in section 3 and finally Concluding remarks and References
are given.

2. Potential model and calculated properties

The soft Yukawa potential is used to simulate the two-dimensional fluids of pure attractive spheres
and equimolar mixtures of particles carrying the opposite charge,
(0_)225 . qaqﬁe—l(rla—l)

vn=1{ rlo

Jmin 2.1

where 17! is a measure of the range of interaction in dimensionless units and g is the charge of particle
a in the mixture case. The particles are all the same size 0. For the attractive one-component fluid gq g =
—1. The factor fmin = 1.075 is included to have a potential which is zero at r = ¢ and close to —1 at the
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minimum for the attractive pairs. The short-ranged soft model, instead of the hard sphere model, has
been used earlier to study interfacial properties of the restricted primitive model [11,[26] and ions with
asymmetry in size and charge [27]. The results for the soft model were found to be in good agreement
with those where the short range repulsion is given by the hard sphere potential. The advantage of the
soft model is that it is straightforward to use molecular dynamics of continuous models.

Reduced units are used in this work for the two-dimensional systems: distance r* = r/o, energy u* =
u/e (where € = U(rmin)), temperature T* = kT/e, density p* = po?, time At* = At(e/ mo?)'/?, pressure
p*= pO’Z/(:‘ and line tension y* = yo/e. The density profile, p(x), was obtained as,

(N(x,x+Ax))

p(x) = AA (2.2)
where (N(x,x+ Ax)) is the average number of particles with position between x and x+ Ax and AA is
the area of a slab.

The line tension of a planar interface, using the mechanical definition of the atomic pressure, [29] is

Y= 0.5Ly [<Pxx> - <Pyy>] , (2.3)

where L, is the length of the simulation cell in the longest direction and P,y (a = x,y) are diagonal
components of the pressure tensor. The factor 0.5 outside the squared brackets takes into account the
two symmetrical interfaces in the simulation.

The component Py, of the pressure tensor was calculated as,

PxxA:ZmiU)Zci"’ZZFij'rij’ 2.4)
i i j>i
where v,; and m; are the velocity in the x direction and the mass of particle i, respectively, A is the area
of the system and r;; = r; —r; with r; being the position of particle i. A similar expression for P, was
used. The force between particles i and particle j is,
Ou(rij) rj

0= (2.5)

ar,-j r,'j

3. Results

Extensive molecular dynamics simulations, with a parallel program, were performed on particles
interacting with the soft Yukawa potential at different ranges of interaction A~!. All the simulations to
study inhomogeneous systems were carried out in non-squared simulation cells, keeping the total density
and temperature (NAT) constant.

3.1. One-component systems

Results for the one-component systems where particles interact with the attractive soft Yukawa po-
tential were obtained for values of the reciprocal range of interaction A =1, 1.8, 3, 4 and 6. The value of
A = 1.8 was chosen to make a direct comparison with the 2D LJ fluid. It was shown in the previous work
[30] that in 3D the hard core Yukawa model with A = 1.8 gave equivalent results with the L] potential.

Initially a number of 400 particles were placed in the middle of the simulation cell at a reduced density
of 0.4 and the velocities randomly distributed. The dimensions of the simulation cell were L, = 600 and
Ly = 150. The equations of motion were solved using the velocity Verlet algorithm with a reduced time
step of At* = 0.0005. The temperature was kept constant with a global thermostat using a Nosé-Hoover
chains of 4 thermostats [28] with parameter of 0.01.The cut-off distance was 60 for all the simulations of
pure fluids. The systems evolved to reach the equilibrium state where a liquid slab was surrounded by
vapor [26]. The systems in all cases were followed by 80 blocks of 108 time steps.

The density profiles for A = 1.8 are shown in figure[Il Two symmetrical interfaces are observed with
alarge amount of particles in the liquid and vapor regions which allows one to obtain the corresponding
coexisting densities. Similar density profiles are found for A = 1.0, 3.0 and 6.0 not shown.
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Figure 1. (Color online) Density profiles for attrac- Figure 2. (Color online) Density profiles for attrac-
tive soft Yukawa one-component systems with A = tive soft Yukawa one-component systems with A =
1.8 at different reduced temperatures. 4 at different reduced temperatures.

The density profiles for A = 4 are shown in figure [2] There was not observed a vapor-liquid phase
separation but vapor-solid equilibrium in a very narrow range of temperatures, from 0.30 to 0.315. Large
density fluctuations were found at a reduced temperature of 0.32 but a well defined vapor-liquid interface
was not stabilized. Homogeneous fluids were found for reduced temperatures above 0.35. The longest
size of the simulation cell was increased in order to check if the phase separation from vapor-solid to
vapor-liquid was not related to finite size effects. The two-dimensional attractive soft Yukawa model
seems to have a stable vapor-liquid equilibrium for values of A around 3, this is contrary to the 3D case
where the same phase equilibrium is stable for values of A less than 15 [31].
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Figure 3. (Color online) Liquid-vapor phase dia- Figure 4. (Color online) Line tension for attractive
gram for attractive one-component systems with one- component systems with A = 1.0 and 1.8 are
the inverse of the interaction range A = 1.0, 1.8, shown with filled circles. The results for the 2D
3.0,4.0 and 6.0. Lennard-Jones model [24] are shown with open
circles.

The phase diagram of the attractive soft Yukawa potential is shown in figure [3for different values of
A. As expected, the critical temperature decreases as the range of interaction decreases. At low tempera-
tures the vapor-solid equilibrium is observed for values of A = 1.8 and 4. The vapor-liquid transition was
not found for A = 4, it is metastable with respect to the vapor-solid equilibrium. The critical density and
temperature for A = 1 and 1 = 1.8 were estimated by fitting the coexisting densities to a rectilinear diam-
eter law with a critical exponent of 1/8 according to a two-dimensional Ising model system [32,/33] and
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experimental results for methane [34]. The final results were (0.36,0.72) and (0.38,0.50), respectively. The
critical temperature using the coexisting densities for A = 1.0 might be around 7* = 0.8 but the estimated
value using the critical exponent of 1/8 is much smaller. The 2D soft Yukawa with A = 1.8 and L] models
give nearly the same results as shown in figure[3

The line tension of the attractive soft Yukawa model is shown in figure[las a function of temperature,
its decay almost following a linear function. The critical temperature can be obtained when line tension
is zero, the estimated values for A = 1.0 and A = 1.8 are 0.53 and 0.83, respectively. The result for A =1
is quite different from the value obtained using the coexisting densities and critical exponent of 1/8.
The results for the two-dimensional L] model, also shown in the figure, are in good agreement with the
attractive soft Yukawa model with 1 =1.8.

The phase diagram and line tension of 2D and 3D attractive soft Yukawa fluids are completely dif-
ferent. The vapor-liquid phase diagram in 3D is stable for values of A < 15, i.e., for very short ranges
of interaction, whereas in the 2D case the stability is found for A < 3. Clearly, the strength of the global
attraction needed in 2D to produce the separation is quite different from that in 3D.

3.2. Mixture of particles carrying opposite charges

Molecular dynamics simulations on equimolar binary mixtures of equal-size particles carrying op-
posite charges are carried out to analyze the effect that the range of interaction has on phase stability
and line tension. The systems contained 1000 particles in a non-squared simulation cell of L, = 1500
and L, = 380 dimensions. The potential was truncated at 150 and the reduced time step was 0.0005. The
simulation protocol to obtain the coexisting densities and line tension was the same as that used for the
attractive soft Yukawa model described above. The systems were followed for at least 100 blocks of 10°
time steps. The average properties were obtained from the last 40 blocks.

0 50 100 150 200

Figure 5. (Color online) Density profiles for the soft Yukawa mixture of charged particles with A = 2.0.
The temperatures are given in the figure.

The phase diagram for the same system but in 3D has been calculated [17] and it was found that the
vapor-liquid equilibrium was stable for values of A < 4. In order to find the region where the vapor-liquid
transition occurred, several simulations were performed in this work using A = 2. The difference in criti-
cal temperature for the restricted primitive model in 2D and 3D was less than 25 % (see the Introduction).
We expected to find the same trend in the binary mixtures using the soft Yukawa model. However, we did
not find any evidence of vapor-liquid phase separation using the direct simulation of interfaces. A vapor-
solid equilibrium was observed for reduced temperatures as low as 0.106. The amount of vapor increases
when the reduced temperature rises to 0.112 but the solid phase still remains stable. At T* = 0.116 the
particles behave as a homogenous fluid, see figure[5l As in the 3D mixture of charged particles with oppo-
site sign interacting with the hard core Yukawa model, the critical temperature increases as the range of
interaction decreases [15,[17], i.e., the system increases its liquid density as A increases. In fact, for values
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of A > 4, the vapor-liquid phase diagram is meta-stable with respect to the vapor-solid equilibrium. In the
same way, the possibility of finding a vapor-liquid phase transition in 2D charged mixtures would be in
the direction of increasing the range of interaction.

Therefore, MD simulations were performed using A = 1.0. In this case, a vapor-liquid phase separa-
tion was found in a very narrow range of reduced temperatures, from 0.078 to 0.08. The liquid contains
alternated particles with opposite charges and large voids are observed, see figure@for 7* = 0.79. In the
vapor phase, the particles contain a large cluster and some particles form linear chains and rings.
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Figure 6. (Color online) Snapshot for the soft Yukawa mixture of charged particles with A =1.0 and T* =
0.079.

The density profiles are shown in figure[Z/land have large fluctuations. However, the liquid and vapor
can be estimated when simulations are run for several millions of configurations. The analysis of the
radial distribution function for the region with higher density shows a behavior of a liquid.

X*

Figure 7. (Color online) Density profiles at different temperatures for the soft Yukawa mixture of charged
particles with A =1.0.

The line tension for binary mixtures was also calculated and the results are shown in figure [8 As
found in simple fluids, the line tension decays with temperature.

4. Concluding remarks

The main conclusion found in this work is that the stability of vapor-liquid phase diagram in 2D fluids
requires longer ranges of interactions than in 3D systems in both the one-component soft Yukawa model
and the binary mixture of soft spheres carrying charges with the opposite sign. The range of interaction
for these models increases when the inverse screening parameter A decreases. The metastable vapor-
liquid transition, with respect to the vapor-solid equilibrium, for the one component model in 2D is found
for values of A > 4 while in the 3D case it is found for A > 15, i.e., for very short ranges of interaction. For
the binary mixture in 2D, metastability occurs for A > 1 in contrast to A > 4 observed in the 3D case. A
possible explanation might be given using the classical nucleation theory [35] arguments. The formation
of aliquid phase in that theory requires that particles in a metastable vapor phase should nucleate up to a
critical size. The number of particles in a nucleus of 2D fluids for the same range of interaction is smaller
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Figure 8. Line tension as a function of temperature for soft Yukawa mixture of charged particles with
A=1.0.

than in 3D because in 3D the particles are in a sphere while in 2D they are in a circle. The particles in 2D
have to interact longer distances than in 3D for the nucleus to reach the critical size.

On the other hand, the vapor-liquid phase diagram and line tension for the one-component attractive
soft Yukawa model are in good agreement with those obtained using the L] in 2D.
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da3oBa piBHOBara i Mbk¢asHi BNacTUBOCTi 4BOBUMIPHUX
lOkaBa-nauHiB

I'.A. MeHgec-ManbgoHaad®, M. FoHcanec-Menbuop?, X. AnexaHape?

—-

dakynbTeT Pi3nKo-maTeMaTUUHNX Hayk, ABTOHOMHWIA yHiBepcuTeT Myebna, 72570, Myebna, Mekcnka
2 IHCTUTYT di3nkn, ABTOHOMHMIA yHiBepcuTeT Myebna, 72570, Myebna, Mekcurka

w

XiMiuHWI akynbTeT, ABTOHOMHUIA yHiBepcuTeT MeTpononitaHa-Ictananana, 09340, PesepanbHuin okpyr
Mexiko, Mekcuka

Ans Toro, W06 npoaHanisyBaTty, AK BNAMBAE 061acTb B3aEMOZiT Ha CMiBICHYOOYI TYCTUHW i NiHIAHWIA HaTsT,
34iICHEHO CUMYNALLT METOAOM MONEKYASPHOI AVHAMIKM ABOBUMIPHUX M'AK1X FOKaBa-nauHiB. MpuTaranbHui
OAHOKOMMOHEHTHUIA NAVH Ta eKBIMOAAPHI CyMilLli, L0 MiCTATb NO3UTUBHI | HEraTWBHI YaCTUHKW, AOCNIAXYBa-
NNCA NPY Pi3HUX TemnepaTypax TakuM YMHOM, 06 BU3HAUMTK 06nacTb, B AKili € CTiikumMy ¢pasun napa-Teepae
TiNo i napa-piavHa. 3i 3MeHLIeHHAM 061aCTi B3aEMOAii 3MEHLLYETbCA KPUTUYHA TeMnepaTypa NpuUTaraabHNX
O/JHOKOMMOHEHTHUX cucTeMm. [poTe Ansa 3apagKeHNX CyMillield BOHa 3pOCTaE, i LA BiAMIHHICTb Y NoBegiHLi no-
ACHIOETBCSA HAsABHICTIO BiALUTOBXYBa/JIbHOI B3aEMOZIi, fika AOMIHYE B Lix cuctemax. liarpama criikoi ¢asm aso-
BUMIPHMX NAUHIB € OTPMMaHa ANA MEHLUMX 3Ha4YeHb napameTpa 3aTyXxaHHs A, HiX Y BUMAAKY TPUBUMIPHMX
NAVHIB. JBOBMMIpHUIA NPUTAranbHWA OAHOKOMIMOHEHTHWUIA NAVH MaEe CTiliky $pa3oBy giarpamy pignmHa-napa ans
3HauyeHb A < 3, WO BiAPI3HAETLCS Bif TPMBUMIPHOrO BUMAAKY, ANst AKOTO CTiliKiCTb CrOCTepiraeTbCs HaBiTb AN
3HauveHb A < 15. Taka X TeHAEHLiA CNoCTepiraETbCs B eKBIMONAPHMX CyMillax NPOTUAEXHO 3apsAKeHUX Ya-
CTUHOK.

KnrouoBi cnoBa: ¢asosa giarpama, tOkaBa-navHu, MiXxeasHi BA1acTBocTi
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