Condensed Matter Physics, 2010, vol. 13, No. 2, p. 23606:1-6
DOI:10.5488/CMP.13.23606

Title: Sound attenuation and anharmonic damping in solids with correlated disorder
Author(s):
  W. Schirmacher (Physik-Department E13, Technische Universität München, James-Franck-Strasse 1, D-85747 Garching, Germany; Fachbereich Physik, Universität Mainz, Germany) ,
  C. Tomaras (Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, D-80333 München, Germany) ,
  B. Schmid (Fachbereich Physik, Universität Mainz, Germany) ,
  G. Baldi (ESRF Grenoble) ,
  G. Viliani (Dipt. di Fisica, Universit\'a di Trento, Italy) ,
  G. Ruocco (Dipt. di Fisica, Universit Ža di Roma, Italy; IPCF-CNR, Sezione di Roma, c/o Sapienza Universita' di Roma, Italy) ,
  T. Scopigno (Dipt. di Fisica, Universit Ža di Roma, Italy; IPCF-CNR, Sezione di Roma, c/o Sapienza Universita' di Roma, Italy)

We study via self-consistent Born approximation a model for sound waves in a disordered environment, in which the local fluctuations of the shear modulus G are spatially correlated with a certain correlation length ξ. The theory predicts an enhancement of the density of states over Debye's ω2 law (boson peak) whose intensity increases for increasing correlation length, and whose frequency position is shifted downwards as 1/ξ. Moreover, the predicted disorder-induced sound attenuation coefficient Γ(k) obeys a universal scaling law ξ Γ(k) = f(kξ) for a given variance of G. Finally, the inclusion of the lowest-order contribution to the anharmonic sound damping into the theory allows us to reconcile apparently contradictory recent experimental data in amorphous SiO2.

Key words: sound attenuation, vibrational properties of disordered solids, boson peak, anharmonic interactions
PACS: 63.50.-x, 43.20.+g, 65.60.+a


Full text [pdf, ps] << List of papers