Condensed Matter Physics, 2009, vol. 12, No. 4, pp. 707-716
DOI:10.5488/CMP.12.4.707
Title:
Gauge field theory approach to spin transport in a 2D electron gas
Author(s):
 
|
B. Berche
(Statistical Physics Group, P2M Department, Institut Jean Lamour, UMR CNRS 7198, BP 70239, F-54506 Vandœuvre les Nancy Cedex, France; Centro de Fìsica, Instituto Venezolano de Investigaciones Cientìficas, Apartado 21827, Caracas 1020A, Venezuela)
,
|
 
|
N. Bolìvar
(Departamento de Fìsica, Universidad Central de Venezuela, Caracas, Venezuela)
,
|
 
|
A. López
(Centro de Fìsica, Instituto Venezolano de Investigaciones Cientìficas, Apartado 21827, Caracas 1020A, Venezuela),
|
 
|
E. Medina
(Statistical Physics Group, P2M Department, Institut Jean Lamour, UMR CNRS 7198, BP 70239, F-54506 Vandœuvre les Nancy Cedex, France; Centro de Fìsica, Instituto Venezolano de Investigaciones Cientìficas, Apartado 21827, Caracas 1020A, Venezuela)
|
We discuss the Pauli Hamiltonian including the spin-orbit interaction within an U(1)×SU(2) gauge theory interpretation, where the gauge symmetry appears to be broken. This interpretation offers new insight into the problem of spin currents in the condensed matter environment, and can be extended to Rashba and Dresselhaus spin-orbit interactions. We present a few outcomes of the present formulation: i) it automatically leads to zero spin conductivity, in contrast to predictions of Gauge symmetric treatments, ii) a topological quantization condition leading to voltage quantization follows, and iii) spin interferometers can be conceived in which, starting from an arbitrary incoming unpolarized spinor, it is always possible to construct a perfect spin filtering condition.
Key words:
spin-orbit interaction, Gauge field theory, spin transport, spin Hall effect
PACS:
75.25.+z, 85.75.-d, 03.65.Vf
|