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Monte Carlo simulations of the short-time dynamic behaviour are reported
for three-dimensional Ising model and XY-model with long-range spatially
correlated disorder at criticality, in the case corresponding to linear defects.
The static and dynamic critical exponents are computed with the use of
the corrections to scaling. The obtained values of the exponents are in a
good agreement with results of the field-theoretic description of the critical
behaviour of this model in the two-loop approximation and with our results
of Monte Carlo simulations of three-dimensional Ising model in equilibrium
state.
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1. Introduction

For the recent years, much effort has been devoted to investigation of the critical
behaviour of solids containing quenched defects. In most papers considerations have
been restricted to the case of point defects with small concentrations so that the de-
fects and corresponding random fields have been assumed to be Gaussian distributed
and δ-correlated.

For the first time, in the work of Weinrib and Halperin (WH) [1], we have been
offered a model of the critical behaviour of a disordered system in which the correla-
tion function of the random local transition temperature g(x−y) =� Tc(x)Tc(y) �
− � Tc(x) �2 falls off with distance as a power law ∼ |x − y|−a. They showed that
for a > d long-range correlations are irrelevant and the usual short-range Harris cri-
terion [2] 2−dνo = αo > 0 of the effect of δ-correlated point defects is realized, where
d is the spatial dimension, and νo and αo are the correlation-length and the specific-
heat exponents of the pure system. For a < d the extended criterion 2−aνo > 0 of the
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effect of disorder on the critical behaviour was established. As a result, a wider class
of disordered systems, not only the three-dimensional Ising model with δ-correlated
point defects, can be characterized by a new type of critical behaviour. So, for a < d
a new long-range (LR) disorder stable fixed point (FP) of the renormalization group
recursion relations for systems with a number of components of the order param-
eter m > 2 was discovered. The critical exponents were calculated in the one-loop
approximation using a double expansion in ε = 4 − d � 1 and δ = 4 − a � 1. The
correlation-length exponent was evaluated in this linear approximation as ν = 2/a
and it was argued that this scaling relation is exact and also holds in higher order
approximation. In the case m = 1 the accidental degeneracy of the recursion relati-
ons in the one-loop approximation did not permit to find LR disorder stable FP, but
a change in critical behaviour of the model from short-range (SR) to LR correlation
type was predicted for δ > δc = 2(6ε/53)1/2. Korzhenevskii et al. [3] proved the
existence of the LR disorder stable FP for the one-component WH model and also
found characteristics of this type of critical behaviour. Also they have considered
a very interesting model of the critical behaviour of crystals with LR correlations
caused by point defects with degenerate internal degrees of freedom [3,4].

Ballesteros and Parisi [5] have studied by Monte Carlo means the critical be-
haviour in equilibrium of the 3D site diluted Ising model with LR spatially correlated
disorder, in the a = 2 case corresponding to linear defects. They have computed the
critical exponents of these systems with the use of the finite-size scaling techniques
and found that a ν value is compatible with the analitical predictions ν = 2/a.

However, numerous investigations of pure and disordered systems performed with
the use of the field-theoretic approach show that the predictions made in the one-
loop approximation, especially based on the ε-expansion, can differ strongly from the
real critical behaviour [6–9]. Therefore, the results for WH model with LR correlated
defects received based on the ε, δ-expansion [1,3,4,10–12] was questioned in our paper
[13], where a renormalization analysis of scaling functions was carried out directly
for the 3D systems in the two-loop approximation with the values of a in the range
2 6 a 6 3, and the FPs corresponding to stability of various types of critical
behaviour were identified. The static and dynamic critical exponents in the two-loop
approximation were calculated with the use of the Pade-Borel summation technique.
The results obtained in [13] essentially differ from the results evaluated by a double
ε, δ-expansion. The comparison of calculated the exponent ν values and ratio 2/a
showed the violation of the relation ν = 2/a, supposed in [1] as exact.

The models with LR-correlated quenched defects have both theoretical interest
due to the possibility of predicting new types of critical behaviour in disordered
systems and experimental interest due to the possibility of realizing LR-correlated
defects in the orientational glasses [14], polymers [15], and disordered solids contain-
ing fractal-like defects [3] or dislocations near the sample surface [16].

To shed light on the reason of discrepancy between the results Monte Carlo
simulation of the 3D Ising model with LR-correlated disorder [5], in the a = 2 case
and the results our renormalization group description of this model [13], we have
computed by the short-time dynamics method [17,18] the static and dynamic critical
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exponents for the same site-diluted 3D Ising model with the linear defects of random
orientation in a sample.

We have considered the following Ising model Hamiltonian defined in a cubic
lattice of linear size L with periodic boundary conditions:

H = −J
∑

〈i,j〉

pipjSiSj , (1)

where the sum is extended to the nearest neighbours, Si = ±1 are the usual Z2

spin variables, and the pi are quenched random variables (pi = 1, when the site i is
occupied by spin, and pi = 0, when the site is empty), with LR spatial correlation.
An actual pi set will be called a sample from now on. We have studied the next
way to introduce the correlation between the pi variables for WH model with a = 2,
corresponding to linear defects. We start with a filled cubic lattice and remove lines
of spins until we get the fixed spin concentration p in the sample. We remove lines
along the coordinate axes only to preserve the lattice symmetries and equalize the
probability of removal for all the lattice points. This model was referred in [5] as the
model with non-Gaussian distribution noise. In contrast to [5] we put a condition
of linear defects disjointness on their distribution in a sample, whereas in [5] the
possibility of linear defects intersection is not discarded. The condition of linear
defects disjointness corresponds to WH model since the intersection of linear defects
being taken into consideration results in additional vertixes of interaction which are
absent in the effective Hamiltonian of WH model.

In this paper we have investigated the systems with the spin concentration p =
0.8. We have considered the cubic lattices with linear sizes L from 16 to 128. The
Metropolis algorithm has been used in simulations.

A lot of results have been recently obtained concerning the critical dynamical
behaviour of statistical models [17,18]. This kind of investigation was motivated
by analitical and numerical results contained in the papers of Janssen et al [19]
and Huse [20]. In this paper we consider only the dynamics of model A in the
classification of Hohenberg and Halperin [21]. The Metropolis Monte Carlo scheme
of simulation with the dynamics of a single-spin flips reflects the dynamics of model
A and enables us to compare the obtained dynamic critical exponent z with the
results of our renormalization group description of critical dynamics of this model
[13] having LR-disorder. In general, to determine the dynamic exponent z and the
static exponents, a dynamic process that starts from a completely ordered state
with the spins oriented in the same direction is more favorable, since fluctuations
are much smaller. For a large enough lattice in the critical range, the dynamic scaling
form of the magnetization is written as

M(t, τ) = t−β/νzF (t1/νzτ), (2)

where t is the dynamic evolution time, τ = (T − Tc)/Tc is the reduced temperature,
and β, ν are the well-known static critical exponents. If τ = 0, the magnetization
decays by a power law

M(t) ∼ t−β/νz. (3)
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If τ 6= 0, the power law behaviour is modified by the scaling function F (t1/νzτ).
From this fact, the critical temperature Tc and the critical exponent β/νz can be
determined. In figure 1 the magnetization M(t) for samples with linear size L =
128 at T = 3.919, 3.925, 3.930, 3.935 and 3.940 is plotted in double-log scale. The
resulting curves in figure 1 have been obtained by averaging over 3000 samples with
different linear defect configurations. We have determined the critical temperature
Tc = 3.930(2) from the best fitting of these curves by power law.

Figure 1. Time evolution of the magnetization M(t) for L = 128 and for different
values of the temperature T .

The critical temperature determined in [5] for the same system with spin con-
centration p = 0.8 in the non-Gaussian case is Tc = 3.8891(2). This difference of the
critical temperature values shows that different principles of distribution of linear
defects are the reason of discrepancy between the results obtained in [5] by Monte
Carlo simulation of the 3D Ising model with LR-correlated disorder, and results in
renormalization group description of this model [13].

In order to check-up the critical temperature value independently, we have carried
out in equilibrium the calculation of Binder cumulant U4, defined as

U4 =
1

2

(

3 −
[〈M4〉]

[〈M2〉]2

)

, (4)

and the correlation length

ξ =
1

2 sin (π/L)

√

χ

F
− 1 , (5)

χ =
1

Nspin

[

〈M2〉
]

, (6)

F =
1

Nspin

[〈Φ〉], (7)
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Φ =
1
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3
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∣

∣

∣

∣

∣

2


 , (8)

where the angle brackets stand for statistical averaging and the square brackets are
for averaging over the different impurity configurations. The cumulant U4(L, T ) has
a scaling form

U4(L, T ) = u
(

L1/ν(T − Tc)
)

. (9)

The scaling dependence of the cumulant makes it possible to determine the critical
temperature Tc from the coordinate of the points of intersections of the curves
specifying the temperature dependence U4(L, T ) for different L. In figure 2a the
computed curves of U4(L, T ) are presented for lattices with sizes L from 16 to 128. As
a result it was determined that the critical temperature is Tc = 3.9275(5). In this case
for simulations we have used the Wolff single-cluster algorithm with elementary MCS
step as 5 cluster flips. We discard 10000 MCS for equilibration and then measure after
every MCS with the averaging over 100000 MCS. The results have been averaged
over 15000 different samples for lattices with sizes L = 16, 32 and over 10000 samples
for lattices with sizes L = 64, 128.

(a) (b)

Figure 2. Binder cumulant U4(T,L) (a) and ratio ξ/L (b) as a function of T for
lattices with different sizes L.

In figure 2b the computed curves of temperature dependence of ratio ξ/L are
presented for lattices with the same sizes, the coordinate of the points of intersections
of which also gives the critical temperature Tc = 3.9281(1).

Also, we have determined the temperature of intersection of the curves specifying
the temperature dependence cumulants U4(L, T ) for L = 16 and L = 32 with the
use of linear defects distribution in samples as in [5] with the possibility of their
intersection. Computation gives Tc(L) = 3.8884(6) in this case which corresponds
to the results in [5] but differs from Tc(L) = 3.9185(5) obtained with the use of
condition of linear defects disjointness for lattices with the same sizes.
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Figure 3. Time evolution of logarithmic derivative of the magnetization
∂τ ln M(t, τ) |τ=0 for L = 128 at the critical temperature Tc = 3.9281.

Figure 4. Time evolution of the cumulant U2(t) for L = 128 at the critical
temperature Tc = 3.9281.

Turning back to short-time dynamics method, we note that the exponent 1/νz
can be determined if we differentiate lnM(t, τ) with respect to τ

∂τ lnM(t, τ) |τ=0∼ t1/νz . (10)

In order to estimate the dynamic exponent z independently, a second order cumulant
U2 = [〈M2〉] / [〈M〉]2 − 1 can be introduced, and finite size scaling analysis shows

U2(t, L) ∼ td/z , (11)
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where d is a system dimension. In figure 3 and in figure 4 the logarithmic deriva-
tive of the magnetization ∂τ ln M(t, τ) |τ=0 with respect to τ and the cumulant
U2(t) for samples with linear size L = 128 at Tc = 3.9281 are plotted in log-log
scale. The ∂τ ln M(t, τ) |τ=0 have been obtained from a quadratic interpolation be-
tween the three curves of time evolution of the magnetization for the temperatures
T = 3.9250, 3.9281, 3.9310 and taken at the critical temperature Tc = 3.9281. The
resulting curves have been obtained by averaging over 3000 samples.

Figure 5. Dependence of the mean square errors σ of the fits for the magnetization
(a), logarifmic derivative of the magnetization (b), and the cumulant (c) as a
function of the exponents β/νz, 1/νz, and d/z for ω = 0.8.

We have analysed the time dependence of the cumulant U2(t) and clarified that
in the time interval [50,150] the U2(t) is best fitted by power law with the dynamic
exponent z ' 2.02, corresponding to the pure Ising model [22], and the linear defects
are developed for t > 400 MCS only. We have taken into account these dynamic
crossover effects for the analysis of the time dependence of magnetization and its
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derivative. Also, we have considered the corrections to the scaling in order to obtain
accurate values of the critical exponents. We have applied the following expression
for the observables X(t):

X(t) ∼ t∆(1 + Axt
−ω/z), (12)

where ω is a well-known exponent of corrections to scaling. This expression re-
flects the scaling transformation in the critical range of time-dependent corrections
to scaling in the form of t−ω/z to the usual form of corrections to scaling των in
equilibrium state for time t comparable with the order parameter relaxation time
tr ∼ ξzΩ(kξ) [21]. Field-theoretic estimate of the ω value gives ω ' 0.80 in the
two-loop approximation [15]. Monte Carlo study of Ballesteros and Parisi [5] shows
that ω ' 1.0.

Table 1. Values of the exponents β/νz, 1/νz, d/z, and minimal values of the
mean square errors σ in fits for different values of the exponent ω.

ω β/νz σ 1/νz σ d/z σ
0.7 0.2112 0.0100 0.556 0.0053 1.183 0.0100
0.8 0.2096 0.0088 0.559 0.0049 1.205 0.0100
0.9 0.2101 0.0093 0.553 0.0070 1.213 0.0099
1.0 0.2090 0.0095 0.558 0.0072 1.227 0.0098

To analyse our sumulation date we have used the linear approximation of the
(Xt−∆) on t−ω/z with the changing values of the exponent ∆ and the exponent ω from
the interval [0.7,1.0]. Then, we have investigated the dependence of the mean square
errors σ of this fitting procedure for the function Xt−∆(t−ω/z) on the changing ∆ and
ω. In figure 5 we plot the σ for the magnetization (figure 5a), logarifmic derivative
of the magnetization (figure 5b), and the cumulant (figure 5c) as a function of the
exponents β/νz, 1/νz, and d/z for ω = 0.8. Minimum of σ determines the exponents
z, ν, and β for every ω. In table 1 we present the computed values of the exponents
β/νz, 1/νz, and d/z, and minimal values of the mean square errors σ in these
fits for the values of the exponent ω = 0.7, 0.8, 0.9, 1.0. We see that the values of
β/νz, 1/νz, and d/z are weakly dependent on the change of the exponent ω in the
interval [0.7,1.0], but the ω = 0.8 is preferable because it gives the best fit for the
magnetization and the logarifmic derivative of the magnetization dates. Finally, for
the ω = 0.8 we find the following values of the exponents

z = 2.489 ± 0.021,
ν = 0.719 ± 0.022,
β = 0.375 ± 0.045.

(13)

It is interesting to compare these values of exponents with those obtained in [13]
with the use of the field-theoretic approach

z = 2.495,
ν = 0.716,
β = 0.350,

(14)
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which demonstrate a very good agreement with each other, but show an essential
difference from Monte Carlo results of Ballesteros and Parisi [5] with ν = 1.009(13)
and β = 0.526(15).

Also, we have carried out the Monte Carlo study of the effect of LR-correlated
quenched defects on the critical behaviour of 3D XY-model characterized by the
two-component order parameter. As is well-known, renormalization group analysis
predicts the possibility of new type of critical behaviour for this model different
from critical behaviour of pure XY-like systems or systems with δ-correlated de-
fects. We considered the same site-diluted cubic lattices with the linear defects of
random orientation in the samples with the spin concentration p = 0, 8. The critical
temperature Tc = 1.875(1) was determined by the calculation of Binder cumulant
U4(L, T ) for lattices with sizes L from 16 to 64. For simulations we have used the
Wolff single-cluster algorithm. Then, we have computed for this critical tempera-
ture the static and dynamic critical exponents by the short-time dynamics method
through finite size scaling analysis of time evolution of the magnetization M(t, L),
the logarithmic derivative of the magnetization ∂τ ln M(t, τ) |τ=0, and the second or-
der cumulant U2(t, L). As a result of this analysis we obtained the following values
of critical exponents

z = 2.364 ± 0.007,
ν = 0.778 ± 0.026,
β = 0.400 ± 0.030.

(15)

The comparison of these values of exponents with those obtained in [13] with the
use of the field-theoretic approach z = 2.365, ν = 0.760, and β = 0.366 shows their
good agreement within the limits of statistical errors of simulation and numerical
approximations.

The obtained results confirm the strong effect of LR-correlated quenched defects
on both the critical behaviour of 3D Ising model and the systems characterized by
the many-component order parameter.

The short-time dynamics method applied in this work has been so far approved
of regarding the investigation of the critical behaviour of pure systems only. With the
aim to verify the method and the results obtained we also carried out the study of
the critical behaviour of 3D Ising model with the linear defects of random orientation
by traditional Monte Carlo simulation methods in equilibrium state. For simulations
we have used the Wolf single-cluster algorithm. We have computed for the critical
temperature Tc = 3.9281(1) the values of different thermodynamic and correlation
functions in equilibrium state such as the magnetization, susceptibility, correlation
length, heat capacity, and Binder cumulant U4 for lattices with sizes L from 16 to
128 and the same spin concentration p = 0, 80. The use of well-known scaling critical
dependences for these thermodynamic and correlation functions

C(L) ∼ Lα/ν(1 + aL−ω), (16)

M(L) ∼ L−β/ν(1 + bL−ω), (17)

χ(L) ∼ Lγ/ν(1 + cL−ω), (18)

221



V.V.Prudnikov et al.

(a) (b)

(d)

(c) (d)

Figure 6. Dependence of the mean square errors σ of the fits for heat capacity
(a), magnetization (b), susceptibility (c), and thermal derivative of cumulant (d)
as a function of the exponents α/ν, β/ν, γ/ν, and ν for different values of ω.

dU

dT
(L) ∼ L1/ν(1 + dL−ω) (19)

makes it possible to determine the critical exponents α, ν, β, γ, and ω by means
of statistical data processing of simulation results. To analyse sumulation data we
have used the linear approximation of the (XL−∆) on L−ω and then investigated
the dependence of the mean square errors σ of this fitting procedure for the function
XL−∆(L−ω) on the changing exponent ∆ and ω values. In figure 6 we plot the σ for
heat capacity (figure 6a), magnetization (figure 6b), susceptibility (figure 6c), and
temperature derivative of cumulant (figure 6d) as a function of the exponents α/ν,
β/ν, γ/ν, and ν for different values of ω. Minimum of σ determines the values of
exponents. In table 2 we present the obtained values of the exponents α/ν, β/ν, γ/ν,
ν, and ω, which give minimal values of σ in these fits. Then we determine the aver-
age value of ω = 0.76(5) with the use of which there were computed the final values
of exponents. In table 3 there are presented the values of the exponents obtained in
this work by simulation methods and from [13] with the use of the field-theoretic

222



Monte Carlo studies of systems with LR correlated disoder

approach and scaling relations for critical exponents. The comparison of these val-
ues shows their good agreement within the limits of statistical errors of simulation
and numerical approximations and good agreement with the values of the static
critical exponents computed by the short-time dynamics method. Consequently, the
results of the Monte Carlo investigations allow us to recognize that the short-time
dynamics method is reliable for the study of the critical behaviour of the systems
with quenched disorder and is the alternative to traditional Monte Carlo methods.
We are planning to continue the Monte Carlo study of critical behaviour of the
model with LR-disorder for different values of spin concentration p and investigate
the universality of critical behaviour of diluted systems with LR-disorder focusing
on the problem of disorder independence of asymptotic characteristics.

Table 2. Values of the exponents α/ν, β/ν, γ/ν, and ν with values of the exponent
ω, giving the best fit in approximation procedure

α/ν β/ν γ/ν ν
−0.096(3) 0.457(2) 2.032(1) 0.710(10)

ω 0.90 0.65 0.70 0.80

Table 3. Values of the critical exponents obtained in present work for average
value of exponent ω = 0, 76 and corresponding exponents from [13]

α β γ ν
present −0.078(30) 0.362(20) 1.441(15) 0.710(10)

[13] −0.1048 0.3504 1.4453 0.7155
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Монте Карло дослідження систем з далекосяжно

скорельованим безладом

В.В.Прудніков, П.В.Прудніков, С.В.Дорофєєв,
В.Ю.Колєсніков

Кафедра теоретичної фізики,
Омський державний університет,
55a, Пр. Миру, 644077, Омськ, Росія

Отримано 5 жовтня 2004 р., в остаточному вигляді –
10 грудня 2004 р.

Приводяться Монте Карло симуляції коротко-часової динамічної

поведінки для тривимірної моделі Ізинга та XY-моделі з прос-
торовим далекосяжно скорельованим безладом в критичній області,
що відповідає лінійним дефектам. Обчислено статичні та динамічні

показники з поправками до скейлінгу. Отримані значення показників

добре узгоджуються з результатами теоретико-польового опису

критичної поведінки цієї моделі в двопетлевому наближені та з

нашими результатами Монте Карло симуляцій тривимірної моделі

Ізинга в рівноважному стані.

Ключові слова: Монте Карло симуляції, критичні явища, критична

динаміка, невпорядковані системи, далекосяжний скорельований

безлад

PACS: 75.50.Lk, 05.50.+q, 68.35.Rh, 75.40.Cx

224


