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Applying a unified approach, we study the integer quantum Hall effect (IQHE) and fractional quantum Hall ef-
fect (FQHE) in the Hofstadter model with short range interactions between fermions. An effective field, that
takes into account the interaction between fermions, is determined by both amplitude and phase. Its amplitude
is proportional to the interaction strength, the phase corresponds to the minimum energy. In fact, the problem
is reduced to the Harper equation with two different scales: the first is a magnetic scale with the cell size cor-
responding to a unit quantum magnetic flux, the second scale determines the inhomogeneity of the effective
field, forms the steady fine structure of the Hofstadter spectrum and leads to the realization of fractional quan-
tum Hall states. In a sample of finite size with open boundary conditions, the fine structure of the Hofstadter
spectrum consists of the Dirac branches of the fermion excitations and includes the fine structure of the edge
chiral modes. The Chern numbers of the topological Hofstadter bands are conserved during the formation of
their fine structure. The edge modes are formed into the Hofstadter bands. They connect the nearest-neighbor
subbands and determine the conductance for the fractional filling.
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1. Introduction

The Harper–Hofstadter model [1, 2] plays a key role in the modern understanding and description
of topological states on a 2D lattice. It allows us to describe the nontrivial behavior of fermions in an
external magnetic field with their arbitrary dispersion at different filling, to determine the structure of
topological bands, and to calculate the Chern numbers in a wide range of magnetic fluxes. For rational
magnetic fluxes penetrating into a magnetic cell with size 𝑞 (𝑞 is defined in units of the lattice spacing),
the Hofstadter model has an exact solution [3, 4]. In experimental realizable magnetic fields, which
corresponds to semi-classical limit with a magnetic scale 𝑞 ≃ 103–104, the spectrum of quasiparticle
excitations is well described in the framework of the Landau levels near the edge spectrum [5–7], and
the Dirac levels in graphene [8–10]. Irrational magnetic fluxes can be realized only in the samples of
small sizes when the size of a sample 𝐿 is less than a magnetic scale 𝑞 [7]. In this case, the 𝑞 value is the
maximum scale in the model.

IQHE is explained in the framework of the Hofstadter model [5–8, 10–12], while the same cannot
be said about FQHE. Unfortunately, the Hofstadter model is incapable of explaining FQHE, because
it does not take into account the interaction between quantum particles. FQHE is not sensitive to spin
degrees of freedom, so the repulsion between fermions should be taken into account first. A theory that
could explain all the diversity of the FQHE is still lacking, and the nature of the FQHE remains an open
question in condensed matter physics. Let us pay tribute to the ideas [13, 14], from which it becomes
clear that the effect itself is not trivial.

The purpose of this work is not to explain the numerous experimental data on the measurement
fractional Hall conductance, but to understand the nature of the FQHE. The material of the paper is
presented in the following format: original part as an example, well-known results as a counterexample.
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2. Model Hamiltonian and method

We study FQHE in the framework of the Hofstadter model defined for interacting electrons on a
square lattice with the Hamiltonian H = H0 + Hint

H0 = −
∑︁
𝜎=↑,↓

∑︁
𝑛,𝑚

[
𝑎
†
𝑛,𝑚;𝜎𝑎𝑛+1,𝑚;𝜎 + e2iπ𝑛𝜙𝑎†𝑛,𝑚;𝜎𝑎𝑛,𝑚+1;𝜎 + 𝐻.𝑐.

]
−𝜇

∑︁
𝜎=↑,↓

∑︁
𝑗

𝑛 𝑗;𝜎 − 𝐻
∑︁
𝑗

(
𝑛 𝑗;↑ − 𝑛 𝑗;↓

)
, (2.1)

Hint = 𝑈
∑︁
𝑗

𝑛 𝑗;↑𝑛 𝑗;↓, (2.2)

where 𝑎†𝑛,𝑚;𝜎 and 𝑎𝑛,𝑚;𝜎 are the fermion operators located at a site 𝑗 = {𝑛, 𝑚} with spin 𝜎 =↑, ↓,
𝑛 𝑗;𝜎 = 𝑎

†
𝑗;𝜎𝑎 𝑗;𝜎 denotes the density operator, 𝜇 is a chemical potential. The Hamiltonian H0 describes

the hoppings of fermions between the nearest-neighbor lattice sites. A magnetic flux through the unit cell
𝜙 = 𝐻/Φ0 is determined in the quantum flux unit Φ0 = ℎ/𝑒. Here, 𝐻 is a magnetic field and a lattice
constant is equal to unit. Hint term is determined by the on-site Hubbard interaction𝑈.

The interaction term (2.2) can be conveniently redefined in the momentum representation Hint =

𝑉𝑈
∑

K 𝑛K;↑𝑛−K;↓, where 𝑛K;𝜎 = 1
𝑉

∑
𝑗 exp(iK j)𝑛 𝑗;𝜎 , the volume is equal to𝑉 = 𝐿× 𝐿. Using the mean

field approach, we rewrite this term as follows Hint = 𝑉 (𝜆K;↑𝑛-K;↓ + 𝜆-K;↓𝑛K;↑) with an effective field
𝜆K;𝜎 = 𝑈⟨𝑛K;𝜎⟩, which is determined by a fixed value of the wave vector K. In this case, the value of K is a
free parameter of the mean-field approximation that minimizes the energy of the electron liquid, in contrast
to 𝑞 the value of which is determined by an external magnetic field. In the experiments, the magnetic
fields correspond to the semi-classical limit with a magnetic scale 𝑞 ∼ 103–104, which corresponds to
small values 𝐾 ∼ 10−3–10−4. The density of fermions for the states near the low energy edge of the
spectrum is small ∼ 1/𝑞. In the small K-limit, the expression for 𝜆K;𝜎 is simplified 𝜆K;𝜎 = 𝜆𝜎 + 0(𝐾2),
where 𝜆𝜎 = 𝑈𝜌𝜎 , 𝜌𝜎 is the density of electrons with spin 𝜎. The Zeeman energy shifts the energies
of electron bands with different spins, removes the spin degeneracy, and does not change the topological
state of the electron liquid. This makes it possible to explicitly disregard the dependence of the electron
energy on the spin and to consider the problem for spinless fermions. The model is reduced to a spinless
fermion liquid with the interaction term

Hint =
𝜆

2

∑︁
𝑗

[exp(iK j) + exp(−iK j)] 𝑛 𝑗 = 𝜆
∑︁
𝑗

cos(K j)𝑛 𝑗 ,

with 𝜆 = 𝑈𝜌, 𝑛 𝑗 and 𝜌 are the density operator of spinless fermions and their filling.
We study the 2D system in a hollow cylindrical geometry with open boundary conditions (a cylinder

axis along the 𝑥-direction and the boundaries along the 𝑦-direction). The Hamiltonian H0 describes the
chains of spinless fermions oriented along the 𝑦-axis (𝑛 is a coordinate of the chain in the 𝑥-direction)
connected by single-particle tunneling with the tunneling constant equal to unit. The wave function
of free fermions in the 𝑦-chains, which is determined by the wave vector 𝑘𝑦 are localized in the 𝑥-
direction [15, 16] (for each 𝑘𝑦 value). The amplitudes of the wave function with different values 𝑘𝑦
overlap in the 𝑥-direction, the eigenstates of the Hamiltonian H0 are the Bloch form. All states with
different 𝑛 are bounded via a magnetic flux. The on-site Hubbard interaction does not break the time
reversal symmetry and chirality of the spectrum of the fermion liquid. Therefore, the effective Hamiltonian
also should not break these symmetries for rational fluxes. These conditions are fulfilled in the case when
K = (𝐾, 0), where 𝐾 and 𝑞 form the states with rational periods. Making the ansatz for the wave function
𝜓(𝑛, 𝑚) = exp(i𝑘𝑦𝑚)𝑔𝑛 (which determines the state with the energy 𝜖), we obtain the Harper equation
for the model Hamiltonian (2.1), (2.2)

𝜖𝑔𝑛 = −𝑔𝑛+1 − 𝑔𝑛−1 − 2 cos(𝑘𝑦 + 2π𝑛𝜙)𝑔𝑛 + 𝜆 cos(𝐾𝑛)𝑔𝑛. (2.3)

This equation is the key in studying FQHE.
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The problem is reduced to the (1 + 1)D quantum system, where the states of fermions are determined
by two phases: the first is a magnetic phase 𝜙, the second is the phase 𝐾 , which is connected with
interaction. The 𝐾 value corresponds to the minimum energy of the system. It minimizes the energy of
electron liquid upon interaction (2.2). At𝑇 = 0 K, the model is a three parameter model. We shall analyze
the phase state of the interacting spinless fermions for arbitrary rational fluxes 𝜙 = 𝑝/𝑞 (𝑝 and 𝑞 are
coprime integers), 𝑈 and 𝜌. In the Hofstadter model of noninteracting fermions, the states of fermions
with different 𝜙 are topologically similar in the following sense: the Chern numbers, the Hall conductance
are determined by the magnetic flux, filling or the number of the filled isolated Hofstadter bands (HBs)
that correspond to this filling, while they do not depend on the structure of the bands [5–7] (their widths,
the values of the gaps between them).

The effect of the interaction on the behavior of fermion liquid is reduced to the appearance of an
inhomogeneous 𝜆-field, which is determined by the magnitude 𝜆 and phase 𝐾 . We shall use the following
parametrization 𝐾 = 2π𝑟/𝑠, where 𝑟 and 𝑠 are relatively prime integers. Such trivial solutions 𝐾 = 0
(𝑠 → ∞) and 𝐾 = 2π (𝑟 = 𝑠 = 1) correspond to the maximum energy. According to (2.3), the energy 𝜖
is shifted to the maximum value +𝜆. In the 𝐾 → 0 (or 𝑠 → ∞) limit, the solution for 𝐾 corresponds
to irrational fluxes that are realized at 𝑠 > 𝐿 [7]. We consider the steady state of the system for rational
fluxes, namely for integer 𝑠/𝑞 = 𝛼, when 𝑞 ⩽ 𝑠, or integer 𝛼−1, when 𝑞 > 𝑠. The minimum energy
corresponds to nontrivial solution for 𝐾 at a given magnetic flux 𝜙. The fine structure of the Hofstadter
spectrum is realized at 𝛼 > 1, when the interaction scale is maximum 𝑠 > 𝑞. In the case 𝛼 < 1, the
spectrum is renormalized, its structure remains the same, i.e., only the Landau levels.

3. Example of explanation of FQHE

3.1. Splitting of low energy Hofstadter bands, a fine structure of the spectrum in the
semi-classical limit

First of all we provide numerical analysis of the quasi-particle excitations near the edge of the spectrum
considering rational fluxes 𝜙 and 𝐾 in the semi-classical limit with 𝑝 = 1 and 𝑟 = 1 for different 𝑞 ≫ 1,
𝑠 ≫ 1 and filling 𝜌 ≪ 1. Magnetic fields, at which measurements are carried out, correspond to large
𝑞 ∼ 103–104, so there is no point in considering the case of 𝑞 ∼ 1. As a reasonable compromise with
numerical calculations (large, but not very large 𝑞), we consider the splitting (due to the interaction) of
low energy fermion bands at 𝑞 = 102. For states near the edge spectrum, the value of 𝜆 corresponds to a
weak interaction limit, because the filling 𝜌 ∼ 1/𝑞 or 𝜌 ∼ 1/𝑠.

We show that the FQHE is determined by the fine structure of the spectrum, which is formed due
to the on-site repulsion in an external magnetic field. We consider the formation of a fine structure
of low energy HBs, which correspond to filling less than 1/𝑞 for the first (the lowest) HB and when
filling 1/𝑞 ⩽ 𝜌 ⩽ 2/𝑞 for the second band, where 𝑞 = 102 is fixed for numerical calculations. A rather
obvious consequence follows from numerical calculations: in a weak coupling at 𝜌𝑈 < 1, that is valid in
semi-classical limit for an arbitrary bare value of 𝑈, the fine structure of the spectrum does not depend
on the value of 𝜆. This allows us to consider the evolution of the fermion spectrum for a fixed value of
𝑈 = 1 or 𝜆 = 𝜌 and different 𝑠. We fix 𝑞 = 102, 𝑈 = 1 and calculate the spectrum for various 𝛼 = 𝑠/𝑞,
which corresponds to rational fluxes, when 𝛼 or 𝛼−1 is an integer.

It is really nice that the spectrum has a fairly simple topologically stable structure. The number of HBs
in the spectrum is equal to 𝑞, at 𝛼 > 1, 𝛼 subbands form a fine structure of each HB. The values of the gaps
between low energy HBs Δ 𝑗 , 𝑗+1(𝛼) ( 𝑗 numerates the band) depend on 𝑞 and 𝜆 and insignificantly depend
on 𝛼. At 𝑞 = 102 and 𝑈 = 1, Δ1,2(𝛼) ≃ 0.1038, Δ2,3(𝛼) ≃ 0.082 for 2 ⩽ 𝛼 ⩽ 7, and Δ1,2 = 0.1237,
Δ2,3 = 0.1217 at 𝑈 = 0 in the Hofstadter model, for comparison (details of the calculation are presented
in Appendix A) 𝛼-narrow subbands form a fine structure of the 𝑗-HB, the bandwidth of 𝑖-subband in
𝑗-HB is denoted as 𝜖 𝑗 ,𝑖 (𝛼). According to numerical calculations provided in Appendix A 𝜖 𝑗 ,𝑖 (𝛼) < 0.02
for 𝑗 = 1, 2 and 1 ⩽ 𝛼 ⩽ 7, their values increase with an increase of the HB number and decrease with
an increase of 𝛼.

Extremely small quasigaps 𝛿𝜀 𝑗;𝑖,𝑖+1(𝛼) separate subbands 𝑖 and 𝑖 +1 in the fine structure of the 𝑗-HB.
Their values are calculated for two HBs ∼ 10−10–10−13 (the calculated values of 𝛿𝜀 𝑗;𝑖,𝑖+1(𝛼) are given

23703-3



I. N. Karnaukhov

a) b)

c) d)

e) f)

Figure 1. (Colour online) The energy density as a function of 𝛼 calculated at 𝑞 = 102,𝑈 = 1, 𝜆 =

𝑈 (𝜌𝑟 + 𝜈/𝑞) (𝜌𝑟 is the fermion density corresponding to 𝑟-filled HB, 𝜈 is the fractional filling of the 𝑟 +1
HB) for: a) 1

2 -filling for the first (blue line) and second (brown line) HB (the points 𝛼 ⩾ 2 characterize
the unstable fine structure of HB); b) 1

4 -filling for the first HB [ 2
4 - or 1

2 -filling is shown in a)], steady
fractional state with 𝛼 ⩾ 4 and filling 1

4 is also realized in the second HB; c) 1
3 -filling for the first (blue

lines) and second (brown lines) HB, steady fractional state for 𝜈 = 1
3 unsteady state for 𝜈 = 2

3 ; 1
7 - filling

for the first (blue lines) d), second (brown lines) e) and third (green lines) f) HB, the steady states are
shown at 𝜈 = 1

7 ,
2
7 ,

3
7 .
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in Appendix A). A fine structure of the spectrum forms from the Dirac subbands.
A structure of the spectrum which includes two low energy HB has the following form for 𝛼 = 3 as

an example:

𝜖1,1(3) = 0.0017 =⇒ 𝛿𝜀1;1,2(3) ∼ 5 · 10−12 =⇒ 𝜖1,2(3) = 0.0067 =⇒ 𝛿𝜀1;2,3(3) ∼ 9 · 10−11

=⇒ 𝜖1,3(3) = 0.0050 =⇒ Δ1,2(3) = 0.1038 =⇒ 𝜖2,1(3) = 0.0066 =⇒ 𝛿𝜀2;1,2(3) ∼ 9 · 10−13

=⇒ 𝜖2,2(3) = 0.0166 =⇒ 𝛿𝜀1;2,3(3) ∼ 9 · 10−11 =⇒ 𝜖2,3(3) = 0.0100 =⇒ Δ2,3(3) = 0.0820.

Positive values of 𝛿𝜀 𝑗;𝑖,𝑖+1(𝛼) correspond to the quasigaps or zero density states at fraction fillings, since
their values are extremely small ∼ 10−10–10−13. In semiclassical limit, the fine structure of the low
energy HB does not change at different 𝑞. According to numerical calculations, at a given 𝛼 each HB
is split by quasigaps into 𝛼 subbands, the fine structure of each HB is formed. Thus, the spectrum is
determined by two types of gaps, the gaps Δ 𝑗 , 𝑗+1 which determine the insulator states of the system with
an entire filling 𝜌 𝑗 = 𝑗/𝑞 (where 𝑗 is integer) and 𝛿𝜖 𝑗;𝑖,𝑖+1 with a fractional filling in each HB 𝜈 = 𝑖/𝛼
(here, 𝑖 = 1, . . . , 𝛼 − 1). Moreover, Δ 𝑗 , 𝑗+1 ≫ 𝛿𝜖 𝑗 ,𝑖; 𝑗 ,𝑖+1. Thus, the structure of the spectrum is preserved
in a fairly wide range of values 𝜆, as noted above. Most likely, the quasigaps in the spectrum determine
the points of tangency of the subbands, and therefore they are defined as quasigaps and the spectrum of
HB includes only Dirac subbands.

3.2. Fractional filled steady state

In this subsection we consider a stability of the fine structure of the Hofstadter spectrum. Let us fix
the chemical potential which corresponds to the fractional filling of each HB (for 𝛼 = 2, 𝜈 = 1

2 ) and
numerically calculate the energy of electron liquid for different rational fluxes, which corresponds to
integer 𝛼 and 𝛼−1. A steady state corresponds to the minimum energy for a given filling. The energy
density as a function of 𝛼 is shown in figure 1 a). A steady state is realized at 𝛼 = 1

20 for the first HB
and 𝛼 = 1

25 for the second. As a result, the fine structure of the Hofstadter spectrum is unstable at 𝛼 = 2
or 1

2 -fractional filling. It follows from numerical analysis of stability of fine structures at different 𝛼 that
the fine structure of HB is stable when HB is filled 𝜈 < 1

2 . The point 𝜈 = 1
2 is similar to the point of the

phase transition. Therefore, in this point the behavior of the electron liquid is rather critical. In figure 1
we also presented the calculations of energy density for 𝜈 = 1

4 ,
3
4 for the first HB b), 𝜈 = 1

3 ,
2
3 for the

first and second HB c), 𝜈 = 1
7 ,

2
7 ,

3
7 for the first d) second e) and third f) HB. For steady fractional Hall

states, the minimum energy is reached at 𝛼𝑐 = 3 for 𝜈 = 1
3 , 𝛼𝑐 = 4 for 𝜈 = 1

4 , 𝛼𝑐 = 7 for 𝜈 = 1
7 ,

2
7 ,

3
7 . For

rational fluxes, the energy density does not depend on the value of 𝛼 at 𝛼 > 𝛼𝑐. The Hubbard interaction
shifts HB (decreasing the energy compared to the homogeneous state) and increases the bandwidths of
subbands (increasing the energy). The summarized energy occurs as a result of the competition of these
terms, that are determined by𝑈.

3.3. The Dirac spectrum.
Edge modes, fractional Hall conductance

It is convenient to consider the behavior of the edge modes when calculating quasiparticle excitations
for the stripe geometry with open boundary conditions: the boundaries, parallel to the 𝑦-axis, are the
edges of the hollow cylinder. Let us analyse the behavior of the fermion spectrum in the case of a strong
anisotropic hopping integral in equation (2.3)

𝜖𝑔𝑛 = −𝑡𝑔𝑛+1 − 𝑡𝑔𝑛−1 − 2 cos(𝑘𝑦 + 2π𝑛𝜙)𝑔𝑛 + 𝜆 cos(𝐾𝑛)𝑔𝑛, (3.1)

where the hopping integral for fermions between chains 𝑡 ≪ 1.
The behavior of the topological properties of the system is universal in the sense that they do not

depend on the parameters of the Hamiltonian over a wide range of their variation. This makes it possible to
analyze the spectrum of the quasi-particle excitations in a weak limit with respect to 𝑡. The Bloch fermion
states in the chains are described by the excitation energies 𝜅(𝑘𝑦, 𝑛) = −2 cos(𝑘𝑦 + 2π 𝑛

𝑞
) + 𝜌𝑈 cos(2π/𝑠)
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at 𝑡 = 0. At 𝑡 ≠ 0, the fermions tunnel between the chains. In the case when the energies of fermions in the
chains 𝑛1 and 𝑛2 coincide, the interaction between fermions is maximum and is determined by a distance
between the chains ∼ 𝑡 |𝑛1−𝑛2 | in the weak 𝑡-limit. For 𝑈 = 0, the fermion spectrum is gapped in these
resonance points, while in the semi-classical limit it is described by the Landau levels. The tunneling of
fermions in the gaps is determined as the tunneling between Majorana fermions with different chirality
𝜒𝑛 and 𝜈𝑛, located at the different chains [5, 6]. At the same time, the tunneling between the Majorana
fermions located at different edges is forbidden, and these chiral modes are free and localized at different
edges. The number of these chiral modes defines the Hall conductance in IQHE [5, 6].

The Hubbard interaction breaks a condition of the resonance for the given energies between all
chains. The fermion energies in the chains are the same for only three chains. As a result, the gaps into
HBs are not formed. Chiral modes are localized at the edges; these modes are defined by the conditions
𝜅(𝑘𝑦, 𝑛1) = 𝜅(𝑘𝑦, 𝑛2), where 𝑛1 and 𝑛2 are the chains on different edges and 𝑛2 = 𝐿−𝑛1 +1: for example,
𝑛1 = 1 and 𝑛2 = 𝐿; 𝑛1 = 2 and 𝑛2 = 𝐿 − 1. For 𝑈 > 0, the energy corresponding to the conditions
𝜅(𝑘𝑦, 1) = 𝜅(𝑘𝑦, 2) = 𝜅(𝑘𝑦, 𝐿) is maximum, so the energies of the modes localized at the edges 1 and
𝐿, split off from the upper edge of HB. The conditions 𝜅(𝑘𝑦, 𝑛1) = 𝜅(𝑘𝑦, 𝑛2) for 𝑛1 > 1 are realized
for the corresponding energies inside HB. In other words, the edge mode moves inside the sample with
a decreasing energy inside HB. The energies at which the chiral Majorana fermions are formed and
localized at the edges with 𝑛1 > 1 and 𝑛2 < 𝐿 correspond to the states inside HB. The above is illustrated
by numerical calculations of the fermionic spectrum.

Let us focus on the calculation of two low energy HB at 𝛼 = 3 and three HB at 𝛼 = 7. We fix the
Fermi energies which correspond to fractional filling 𝜈 = 1

3 in the second HB and 𝜈 = 3
7 in the third HB.

In the case 𝛼 = 3, each HB splits into three subbands forming its fine structure. The quasigaps between
their subbands are extremely small [see in figure 2 a)]. HB form the edge modes in the forbidden region
of the spectrum between them. These modes split from the upper and lower HB and are localized at the
boundaries. The edge modes coexist with the fine structure of each HB, except the first, in which they
are not formed. In contrast to IQHE, these modes also connect the nearest-neighbor subbands in the fine
structure of each HB (except the first one). Extremely small quasigaps do not kill the topology of HB
(the number of the edge modes is conserved at a filling of HB). The Hall conductance is determined by
the same edge modes with different fraction filling 1 + 1

3 for 𝛼 = 3 and 2 + 3
7 for 𝛼 = 7. Note that in

the semi-classical limit the Dirac spectrum of the fermion excitations is realized for arbitrary fractional
filling.

a) b)

Figure 2. (Colour online) A fine structure of the two a) and three b) lower energy HBs (as illustration
of the Dirac spectrum) calculated at 𝑞 = 100, 𝑈 = 1, 𝜈 = 1

3 a) and 𝜈 = 3
7 b) for sample in the form

of a hollow cylinder with open boundary conditions along the 𝑦-direction, 𝑘𝑦 is the wave vector, red
dashed lines denote the Fermi energies. The dotted lines mark the dispersion of edge modes, the inserts
illustrate them, where the amplitude of the wave function is calculated as a function of the 𝑥-coordinate
at 𝑘𝑦/2π = 0.48, 0.52 a) (1 and 6 · 103 are the boundaries).
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4. Conclusions

The Hofstadter model with short-range repulsion is considered within the mean-field approach, which
allows one to study FQHE. We described IQHE and FQHE using the same approach and it is shown that:

• short-range repulsion forms a steady fine structure of the Hofstadter spectrum when the filling of
HB is less than a half;

• at fractional filling of HB a fine structure of HB is formed from the Dirac subbands;

• these quasigaps do not destroy the HB topology, only the HB determines the number of the edge
modes (the Chern number of the HB is conserved);

• chiral edge modes located at the boundaries connect the nearest-neighbor subbands and determine
the Hall conductance with fractional filling;

• chiral edge modes are not formed in the first HB. Therefore, fractional Hall conductance is not
realized for the filling of the lowest (first) HB.

A fine structure of the Landau levels (HBs) splits into the Dirac fermion spectra. For the half-
filled Landau level, the Dirac composite fermions were proposed in [17] and were studied in [18]
in the framework of low-energy effective field theory. Numerical calculations were carried out in the
semi-classical limit, which corresponds to the experimental conditions. The results obtained cannot be
explained within the framework of the model and within the approach to its solution proposed in [19].

A. Example

Numerical calculations of the low energy structure of the spectrum are presented in this section,
results of calculations were obtained at fixed 𝑞 = 102 and 𝑈 = 1. In the semi-classical limit, the
Hofstadter spectrum is reduced to the Landau levels, which are separated by the gaps Δ 𝑗 , 𝑗+1(𝛼), where
𝑗 numerates HB and 𝛼 determines the splitting of the band. Below we provide a set of the calculated
values of Δ 𝑗 , 𝑗+1(𝛼):

Δ1,2(1) = 0.1043, Δ2,3(1) = 0.0842;
Δ1,2(2) = 0.1039, Δ2,3(2) = 0.0824;
Δ1,2(3) = 0.1038, Δ2,3(3) = 0.0820;
Δ1,2(4) = 0.1037, Δ2,3(4) = 0.0819;
Δ1,2(5) = 0.1037, Δ2,3(5) = 0.0818;
Δ1,2(6) = 0.1037, Δ2,3(6) = 0.0818;
Δ1,2(7) = 0.1037, Δ2,3(7) = 0.0818.

At 𝛼 ⩾ 2 the gap between HB is practically independent of 𝛼.
A fine structure of HB is determined by the value of 𝛼, each 𝑗-HB includes 𝛼 subbands with band

width 𝜖 𝑗 ,𝑖 (𝛼), where 𝑖 numetares the subband in the HB 1 ⩽ 𝑖 ⩽ 𝛼. The calculation results for two
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low-energy HBs are presented below

𝜖1,1(1) = 0.0197, 𝜖2,1(1) = 0.0381;
𝜖1,1(2) = 0.0050, 𝜖1,2(2) = 0.0100, 𝜖2,1(2) = 0.0148, 𝜖2,2(2) = 0.0198;
𝜖1,1(3) = 0.0017, 𝜖1,2(3) = 0.0067, 𝜖1,3(3) = 0.0050, 𝜖2,1(3) = 0.0066, 𝜖2,2(3) = 0.0166,
𝜖2,3(3) = 0.0100;
𝜖1,1(4) = 0.0007, 𝜖1,2(4) = 0.0035, 𝜖1,3(4) = 0.0053, 𝜖1,4(4) = 0.0029, 𝜖2,1(4) = 0.0036,
𝜖2,2(4) = 0.0106, 𝜖2,3(4) = 0.0123, 𝜖2,4(4) = 0.0058;
𝜖1,1(5) = 0.0004, 𝜖1,2(5) = 0.0020, 𝜖1,3(5) = 0.0037, 𝜖1,4(5) = 0.0040, 𝜖1,5(5) = 0.0019,
𝜖2,1(5) = 0.0023, 𝜖2,2(5) = 0.0070, 𝜖2,3(5) = 0.0099, 𝜖2,4(5) = 0.0090, 𝜖2,5(5) = 0.0038;
𝜖1,1(6) = 0.0002, 𝜖1,2(6) = 0.0012, 𝜖1,3(6) = 0.0025, 𝜖1,4(6) = 0.0033, 𝜖1,5(6) = 0.0030,
𝜖1,6(6) = 0.0013, 𝜖2,1(6) = 0.0016, 𝜖2,2(6) = 0.0049, 𝜖2,3(6) = 0.0075, 𝜖2,4(6) = 0.0083,
𝜖2,5(6) = 0.0067, 𝜖2,6(6) = 0.0027;
𝜖1,1(7) = 0.0001, 𝜖1,2(7) = 0.0008, 𝜖1,3(7) = 0.0017, 𝜖1,4(7) = 0.0025, 𝜖1,5(7) = 0.0029,
𝜖1,6(7) = 0.0024, 𝜖1,7(7) = 0.0010, 𝜖2,1(7) = 0.0011, 𝜖2,2(7) = 0.0036, 𝜖2,3(7) = 0.0057,
𝜖2,4(7) = 0.0070, 𝜖2,5(7) = 0.0069, 𝜖2,6(7) = 0.0051, 𝜖2,7(7) = 0.0020.

As expected, the bandwidth in 𝑗-HB decreases with 𝛼 and increases with 𝑗 .
Narrow subbands with bandwidths 𝜖 ( 𝑗 , 𝑖) ≪ Δ( 𝑗 , 𝑗+1) form the fine structure of each HB. Quasigaps

between subbands 𝑖 and 𝑖 + 1 in fine structure of 𝑗-HB 𝛿𝜀 𝑗;𝑖,𝑖+1(𝛼) are extremally small, so they are the
following values for two low energy HBs

𝛿𝜀1;1,2(2) ∼ 3 · 10−11, 𝛿𝜀2;1,2(2) ∼ 2 · 10−10;
𝛿𝜀1;1,2(3) ∼ 5 · 10−12, 𝛿𝜀1;2,3(3) ∼ 9 · 10−11, 𝛿𝜀2;1,2(3) ∼ 9 · 10−13, 𝛿𝜀2;2,3(3) ∼ 1 · 10−10;
𝛿𝜀1;1,2(4) ∼ 4 · 10−12, 𝛿𝜀1;2,3(4) ∼ 3 · 10−11, 𝛿𝜀1;3,4(4) ∼ 6 · 10−11, 𝛿𝜀2;1,2(4) ∼ 3 · 10−11,

𝛿𝜀2;2,3(4) ∼ 9 · 10−13, 𝛿𝜀2;3,4(4) ∼ 2 · 10−11;
𝛿𝜀1;1,2(5) ∼ 1 · 10−11, 𝛿𝜀1;2,3(5) ∼ 1 · 10−11, 𝛿𝜀1;3,4(5) ∼ 2 · 10−11, 𝛿𝜀1;4,5(5) ∼ 1 · 10−11,

𝛿𝜀2;1,2(5) ∼ 4 · 10−11, 𝛿𝜀2;2,3(5) ∼ 1 · 10−10, 𝛿𝜀2;3,4(5) ∼ 3 · 10−11, 𝛿𝜀2;4,5(5) ∼ 2 · 10−11;
𝛿𝜀1;1,2(6) ∼ 1 · 10−11, 𝛿𝜀1;2,3(6) ∼ 4 · 10−12, 𝛿𝜀1;3,4(6) ∼ 3 · 10−11, 𝛿𝜀1;4,5(6) ∼ 3 · 10−11,

𝛿𝜀1;5,6(6) ∼ 3 · 10−11, 𝛿𝜀2;1,2(6) ∼ 2 · 10−11, 𝛿𝜀2;2,3(6) ∼ 9 · 10−11, 𝛿𝜀2;3,4(6) ∼ 1 · 10−10,

𝛿𝜀2;4,5(6) ∼ 3 · 10−11,

𝛿𝜀2;5,6(6) ∼ 5 · 10−11;
𝛿𝜀1;1,2(7) ∼ 3 · 10−12, 𝛿𝜀1;2,3(7) ∼ 3 · 10−11, 𝛿𝜀1;3,4(7) ∼ 8 · 10−12, 𝛿𝜀1;4,5(7) ∼ 4 · 10−11,

𝛿𝜀1;5,6(7) ∼ 2 · 10−11, 𝛿𝜀1;6,7(7) ∼ 1 · 10−11, 𝛿𝜀2;1,2(7) ∼ 1 · 10−11, 𝛿𝜀2;2,3(7) ∼ 2 · 10−11,

𝛿𝜀2;3,4(7) ∼ 9 · 10−11, 𝛿𝜀2;4,5(7) ∼ 5 · 10−11, 𝛿𝜀2;5,6(7) ∼ 5 · 10−11, 𝛿𝜀2;6,7(7) ∼ 3 · 10−11.

Positive values of 𝛿𝜀 𝑗;𝑖,𝑖+1(𝛼) correspond to quasigaps or zero density states at fraction fillings, since
its values are extremely small ∼ 10−10–10−13. It follows from numerical calculations that, in the semi-
classical limit, the fine structure of a low-energy HB does not change for different 𝑞.

B. Counterexample

As a counterexample, we analyze the results of the paper [19]. The authors considered a similar
model, namely the Hofstadter model with a periodic potential𝑈1 cos(2π𝑥/𝑎) +𝑈2 cos(2π𝑥/𝑏), for both
small and large 𝑈1/𝜔, 𝑈2/𝜔, where 𝜔 is the cyclotron frequency. The problem is reduced to a solution
of equation (2.3) for rational magnetic fluxes determined as 𝑝/𝑞. The authors believe that the two-
dimensional periodic potential forms the gaps into HB and obtain the Diophantine equation for Chern
numbers at fillings that correspond to these gaps. I quote: “If the Fermi surface is located in the 𝑟-th gap
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of the 𝑁-th Landau level the total Hall conductance is equal to 𝜎𝐻 = (𝑒2/ℎ) (𝑡𝑟 + 𝑁 − 1) [equation (10)],
with 𝑡𝑟 the solution of” 𝑟 = 𝑠𝑟𝑞 + 𝑡𝑟 𝑝 (|𝑠 | ⩽ 𝑝/2) [equation (9) in [19]] . The Diophantine equation (9)
and formula (10) are the main result of [19]. The problem is reduced to the traditional Hofstadter model
with the same Diophantine equation (11). Therefore, the Hofstadter model with the two-dimensional
periodic potential did not describe the fractional Hall states.

As an illustration, the authors considered the flux to be equal to 7
11 with the first 11 values of

𝑡𝑟 : −3, 5, 2, −1, −4, 4, 1, −2, 6, 3, 0 and so that the Hall current is proportional to −3 or 8 in
each subband. Unfortunately, this set of 𝑡𝑟 values does not satisfy the spectrum symmetry, such as
−3 + 5 + 2− 1− 4 + 4 + 1− 2 + 6 + 3 + 0 = 11 = 𝑞. This spectrum is shown in figure 3 a) for𝑈1 = 𝑈2 = 0,
the structure of the first HB is shown in figure 3 b) for 𝑈1 = 0.002, 𝑈2 = 0 and 𝑎 = 3𝑞 = 33. Numerical
analysis shows that the gaps that form the fine structure of each HB (see in figure 3) are absent for a weak
periodic potential and we cannot talk about the Hall conductance.

a) b)

Figure 3. (Colour online) The Hofstadter spectrum calculated at 𝑝 = 7, 𝑞 = 11,𝑈1 = 𝑈2 = 0 a) and a fine
structure of the lowest HB calculated at 𝑝 = 7, 𝑞 = 11, 𝑎 = 3𝑞,𝑈1 = 0.002,𝑈2 = 0 b) for a sample in the
form of a hollow cylinder with open boundary conditions along the 𝑦-direction, 𝑘𝑦 is the wave vector.

Numerical analysis (see the calculations obtained in the semi-classical limit) shows the absence of
the gaps (only extreme small quasi-gaps or peculiarities of the density of states at partial filling), when
the Hubbard interaction is taken into account. Note that there are no calculations of the gap values [19],
only an assumption.

According to equations (9), (10) [19], the Chern number is different for different HB fillings, and
when the HB filling changes, the topological phase transitions occur between topological states with
different topological indices. This result follows from equations (9), (10) [19]. The periodic potential
does not break the time reversal symmetry (like a magnetic field), it has a different nature and cannot
induce topological phase transitions between the states with different topological indices. Numerical
calculations show that the Chern numbers of HB are not changed (in the sense that the number of chiral
edge modes remains the same when the HB is filled). The obtained results really make sense, but not the
topological states discussed in [19].
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Фермiонний спектр Дiрака дробових квантових холлiвських
станiв

I. М. Карнаухов
Iнститут металофiзики iм. Г. В. Курдюмова НАН України, бульвар Академiка Вернадського 36, 03142 Київ,
Україна

Застосовуючи унiфiкований пiдхiд, ми дослiджуємо цiлочисельний квантовий ефект Холла i дробовий
квантовий ефект Холла в моделi Гофштадтера з короткодiючою взаємодiєю мiж фермiонами. Ефективне
поле, яке враховує взаємодiю мiж фермiонами, визначається як амплiтудою, так i фазою. Його амплiтуда
пропорцiйна силi взаємодiї, фаза вiдповiдає мiнiмальнiй енергiї. Фактично задача зводиться до рiвняння
Гарпера з двома рiзними масштабами: перший — магнiтний масштаб з розмiром комiрки, що вiдповiдає
одиничному квантовому магнiтному потоку, другий масштаб визначає неоднорiднiсть ефективного по-
ля, формує сталу тонку структуру поля спектра Гофштадтера i призводить до реалiзацiї дробових кванто-
вих холлiвських станiв. У зразку скiнченного розмiру з вiдкритими граничними умовами тонка структура
спектра Гофштадтера складається з дiракiвських гiлок фермiонних збуджень, а також включає тонку струк-
туру крайових хiральних мод. Числа Черна топологiчних зон Гофштадтера зберiгаються пiд час формуван-
ня їхньої тонкої структури. Крайовi моди формуються в зонах Гофштадтера, вони з’єднують найближчi
сусiднi пiдзони i визначають провiднiсть для дробового заповнення.

Ключовi слова: цiлочисельний квантовий ефект Холла, дробовий квантовий ефект Холла, модель
Гофштадтера
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