
Condensed Matter Physics, 2022, Vol. 25, No. 4, 42201: 1–15
DOI: 10.5488/CMP.25.42201
http://www.icmp.lviv.ua/journal

New trends in the nanophysics of ferroics, relaxors
and multiferroics

M. D. Glinchuk ∗, L. P. Yurchenko , E. A. Eliseev
Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Omeljan Pritsak St.,
03142 Kyiv, Ukraine

Received June 30, 2022, in final form October 30, 2022

The review covers the theoretical and experimental results obtained in the recent years by the scientists with the
help of comprehensive investigation of nanoferroics andmultiferroics. Themain attention will be paid to sponta-
neous flexoeffects and reentrant phase in nanoferroics as well as to a recently discovered giant magnetoelectric
effect in multiferroics.
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1. Introduction

The review covers the theoretical and experimental results obtained in the recent years with the help
of comprehensive investigation of nanoferroics and multiferroics. The main attention will be paid to
spontaneous flexoeffects and reentrant phase in nanoferroics and to a recently discovered giant magne-
toelectric effect in multiferroics. Being characteristic of all nanoes, geometrical confinement generates
many physical effects, which are absent in the bulk ferroic samples. These phenomena are scrupulously
described in Chapter 4 of reference [1]. In particular, the authors of [1] considered the appearance of
ferromagnetism at room temperature in nanoparticles and thin films of undoped CeO2, HfO2, SnO2,
Al2O3 and other nonmagnetic in corresponding bulk oxides. Keeping in mind the detailed description
of this phenomenon in Chapter 4 of reference [1] and references given there, we excluded this problem
from our review. It appeared that in the recent years, different kinds of flexo-coupling (flexoelectric,
flexomagnetic, flexoelastic) in ferroic nanosamples have been the most popular due to strong geometrical
confinement and the influence of the defects.

The flexoelectric effect existing for any solid bodies is known to be the most studied. It was predicted
by Mashkevich and Tolpygo [2]. Later on, theoretical study of the flexoelectric effect in bulk crystals
was performed by Kogan and Tagantsev [3–5], experimental measurements of flexoelectric tensor com-
ponents were carried out by Ma and Cross [6–8] and Zubko et al. [9]. Renovation of the theoretical
description for the flexoelectric response of different nanostructures starts from the papers by Catalan
and co-workers [10, 11], while recent achievements are presented in the papers by Majdoub et al. [12],
Kalinin and Meunier [13] and Lee et al. [14]. In the latter paper, a giant flexoelectric effect (6–7 orders
of magnitude larger than the typical value reported for bulk oxides) was discovered in ferroelectric
HoMnO3 epitaxial thin film on Pt/Al2O3 substrate. In these papers the flexoelectric effect was considered
as a coupling between intrinsic polar properties (e.g., polarization) and the extrinsic factors like the misfit
strain relaxation [10, 11] or the system bending by external forces [12, 13]. The influence of flexoelectric
coupling on the properties of low-dimensional transition metal dichalcogenides was studied by Moro-
zovska et al. [15]. Recent trends and achievements in flexoelectricity research and applications could be
found in [16] and in references therein. The coupling between intrinsic parameters, namely, spontaneous
polarization gradient inherent to nanosystems and strain, was considered in [17]. The crucial role of the
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surface in all physical properties of nanosystems including the strong order parameter gradients in ferroic
nanostructures [18] inevitably leads to the noticeable influence of flexocoupling, almost negligible for
bulk materials, since the order parameters are usually homogeneous in this case.

Flexomagnetic effect is much less studied in comparison with flexoelectric effect, and only a few
relevant papers exist [19, 20]. Partly this can be related to the fact that since the inversion of time
must be included in consideration, there is symmetry restriction for the existence of flexomagnetic
effect. In particular, the existence of time inversion or space inversion uncoupled with other symmetry
operations excludes the flexomagnetic effect in para- and diamagnetics. The existence of the symmetry
operations coupling or the absence of time inversion (e.g., in antiferromagnetics) makes it possible
to get flexomagnetic effect. To find out the non-zero flexomagnetic tensor components, one should
consider 90 magnetic classes and perform their symmetry consideration similarly to piezomagnetic and
magnetoelectric effects (see Section 4.3.7 in the book [1]).

In what follows we will consider the strong influence of flexoelectric effect in nanoferroics, namely
the critical size disappearance at size induced phase transitions and reentrant phase occurrence in
nanoferroics. Stabilization of ferroelectric phase with nanoparticles sizes decrease as it was observed
earlier in tetragonal BaTiO3 nanospheres of radii 5–50 nm stayed unexplained until the appearance of our
paper [21]. Our calculations have shown that the physical mechanism of this exciting phenomenon can
be the flexo-chemo effect, being a synergy of the flexoelectric stresses and the chemical pressure induced
by ion vacancies via Vegard effect. The coexistence of ferroelectric and relaxor phases due to oxygen
vacancies is considered in [22]. The results of our calculations and comparison of the developed theory
with experiment can be found in sections 2, 3 and 4; a giant magnetoelectric effect in multiferroics is
presented in section 4.2 and was published in our papers [23, 24].

2. Spontaneous flexoeffect

The most general definition of the direct flexoeffect is the appearance of either polarization 𝑃 or
magnetization 𝑀 in response to inhomogeneous mechanical impact, i.e., strain gradient 𝜕𝑢𝑖 𝑗/𝜕𝑥𝑙 . The
converse flexoeffect corresponds to the appearance of mechanical strain in response to the gradient of
either polarization or magnetization, respectively. Therefore, the form of flexoelectric and flexomagnetic
effects can be written as:

𝜂𝑖 = 𝑓𝑖 𝑗𝑘𝑙
𝜕𝑢𝑖 𝑗

𝜕𝑥𝑙
, (2.1)

𝑢𝑖 𝑗 = 𝑓 ′𝑖 𝑗𝑘𝑙
𝜕𝜂𝑘

𝜕𝑥𝑙
. (2.2)

Here, 𝜂 = 𝑃 and 𝑀 stand for flexoelectric and flexomagnetic effects, respectively.
For flexoelastic direct and converse effects 𝜎𝑖𝑚 = 𝑓𝑖𝑚 𝑗𝑘𝑙

(
𝜕𝑢 𝑗𝑘/𝜕𝑥𝑙

)
and 𝑢 𝑗𝑘 = 𝑓 ′

𝑖𝑚 𝑗𝑘𝑙
(𝜕𝜎𝑖𝑚/𝜕𝑥𝑙),

respectively, so that they are defined by 5th rank tensors, while flexoelectric and flexomagnetic effects
are defined by 4th rank tensors. In what follows we will pay attention mainly to flexoelectric and
flexomagnetic effects in nanostructures. Let us underline that flexocoupling affects both the system
response to the external impact and the intrinsic gradient of the order parameters.

Let us note that spontaneous flexocoupling was introduced in [17], physical mechanism of reentrant
phase appearance was considered in [21], the appearance of morphotropic phase in the relaxor due to
oxygen vacancies influence [22], mechanism of giant magnetoelectric coupling appearance as well as the
materials of this phenomenon observation [23, 24] were proposed by the authors of this review.

2.1. Analytical theory and comparison of the theory with experiment

Landau–Ginzburg–Devonshire (LGD) functional bulk (b) and surface (s) densities have a relatively
simple form for a nanoparticle with uniaxial ferroelectric polarization ®𝑃 = (0, 0, 𝑃3) [17]:
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Φ𝑏 =

∫
𝑉

𝐺d3𝑟, (2.3)
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𝑃2

3
2

+ 𝛽
𝑃4

3
4

+ 𝛾
𝑃6

3
6

+
𝑔𝑖 𝑗33

2

(
𝜕 𝑃3
𝜕𝑥𝑖

𝜕𝑃3
𝜕𝑥 𝑗

)
−

𝐹3𝑖 𝑗𝑘

2

(
𝑃3

𝜕𝜎
𝑖 𝑗

𝜕𝑥𝑘
− 𝜎𝑖 𝑗

𝜕𝑃3
𝜕𝑥𝑘

)
− 𝑃3

(
𝐸𝑑

3
2

+ 𝐸

)
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3 −

𝑠𝑖 𝑗𝑘𝑙

2
𝜎𝑖 𝑗𝜎𝑘𝑙 −𝑊𝑖 𝑗𝜎𝑖 𝑗𝛿𝑁, (2.4)

Φ𝑆 =

∫
𝑆

d2𝑟

(
𝛼𝑆

2
𝑃2

3 +
𝛽𝑆

4
𝑃4

3 + 𝜇𝑆𝛼𝛽𝑢𝛼𝛽 + ...

)
. (2.5)

The coefficient 𝛼𝑏 (𝑇) typically depends on the temperature 𝑇 . Here, we assume the linear dependence,
𝛼𝑏 (𝑇) = 𝛼𝑇 (𝑇 − 𝑇C), where 𝑇C is a Curie temperature. Coefficient 𝛽 sign depends on the ferroelectric
transition order, 𝛾 > 0. 𝐸𝑑

3 is depolarization field, 𝑄𝑖 𝑗𝑘𝑙 are the bulk electrostriction tensor coefficients,
𝑔𝑖 𝑗𝑘𝑙 is the gradient coefficients tensor, 𝐹𝑖 𝑗𝑘𝑙 is the flexoelectric strain tensor, 𝜎𝑖 𝑗 is the stress tensor,
𝑊𝑖 𝑗 is the elastic dipole (or Vegard strain) tensor, that is regarded diagonal hereinafter, i.e., 𝑊𝑖 𝑗 = 𝑊𝛿𝑖 𝑗
(𝛿𝑖 𝑗 is delta Kroneker symbol). 𝛿𝑁 = 𝑁 (®𝑟) − 𝑁𝑒 is the difference between the concentration of defects
𝑁 (𝑟) in the point 𝑟 and their equilibrium (average) concentration 𝑁𝑒. Surface energy coefficients 𝛼𝑆 and
𝛽𝑆 are supposed to be positive and temperature independent, 𝜇𝑆

𝛼,𝛽
is the surface stress tensor [2, 25], 𝑢𝑖 𝑗

is the strain tensor.
Figure 1 (a) shows the best fit of our theoretical results (solid curve) obtained with the help of

equations (2.3), (2.5), which allowed to fit all physical properties with two fitting parameters (see [21] for
details) to experimental results on tetragonality [26] (symbols with error bars). The latter is obtained from
X-ray diffraction data on the size and temperature dependence of the lattice constants. Our aim was not
to fit well the tetragonality for the smallest particle of radius 2.5 nm, because here the phenomenological
continuous approach may be invalid.

Figures 1 (b) and (c) illustrate the dependences of the spontaneous polarization and transition tem-
perature on the spherical particle radius calculated for the same fitting parameters as in the figure 1 (a).
Hence, we “reconstruct” the polarization and transition temperature from to the best fit of the tetragonality
measured experimentally [26]. The reconstructed dependences clearly demonstrate a strong (more than 2
times) enhancement of polarization and transition temperature for the particle radius less than 10 nm.
The reentrant phase region appears for radii 𝑅 < 10 nm. One can see that theoretical figure 1 (a) rather
well describes the spontaneous polarization and transition temperature reconstructed from experimental
𝑐/𝑎 value.

It is important to underline that the obtained results are very important for both fundamental physics
and applications in modern electronic technique.

3. Relaxor ferroelectrics with perovskite structure

In this section we consider relaxor ferroelectrics with perovskite structure having a broad application
in modern electronic devices [27, 28]. More than 15 years ago the authors of [29] observed the appearance
of ferroelectricity in relaxors lead zinc niobate - lead lanthanum zirconium titanate (PZN–PLZT) sintered
in nitrogen atmosphere, which induced high concentration of oxygen vacancies.

The recent paper [22] based on the phenomenological theory approach showed that since the oxygen
vacancies are known to be elastic dipoles, they affect the elastic and electric fields due to Vegard and
flexoelectric couplings. We have shown that a negative Curie temperature 𝑇∗

C of a relaxor is renormalized
by the elastic dipoles due to the electrostriction coupling and could become positive at some large enough
concentration of the vacancies. A positive renormalized temperature 𝑇𝑅

C = 𝑇∗
C + Δ𝑇 is characteristic of
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Figure 1. (Colour online) Room temperature tetragonality ratio 𝑐/𝑎 (a), spontaneous polarization (b), and
transition temperature (c) vs. the particle radius 𝑅. Plot (a) shows the best fit of our theory (solid curve)
to experimental data [26] (symbols). Temperature 𝑇 = 293 K. Adapted from [21].

the ferroelectric state. At 𝑇 < 𝑇𝑅
C , all the polar properties could be calculated in the conventional way for

ferroelectrics, but the obtained experimental data favor the coexistence of the ferroelectric phase with a
relaxor state, i.e., the presence of a morphotropic region in PZN–PLZT relaxor.

Therefore, both the spontaneous flexoelectric effect in nanoferroics appearing due to the surface
influence and the flexoelectric effect induced by the elastic field of the defects can be the source of new
physical properties important for fundamental physics and for modern technical applications.

Oxygen vacancies in ABO3 ferroelectrics have a great impact on their physical properties and the
perovskite structure is capable of conserving the structure stability even for a high concentration of
oxygen vacancies. “B” cations are usually shifted from central position in the neighborhood of the
oxygen vacancy, because in ABO3 structure the size of oxygen ions and so its vacancies used to be
larger than the cation ones. To compensate for the loss of the oxygen negative charges, the equivalent
amount of B4+ cations should be in a B3+ state. The PZN–PLZT samples sintered in nitrogen atmosphere
appeared to be black and opaque, because off-central Ti4+ transforms into color center Ti3+. Note that
Ti3+ can create layers of the ordered dipoles at large concentration of oxygen vacancies. The electrons
necessary for Ti4+ into Ti3+ transformation can be created from ionization of neutral oxygen vacancy
𝑉O → 𝑉•

O + 𝑒, 𝑉•
O → 𝑉••

O + 𝑒, the 𝑉•
O and 𝑉••

O being positively charged vacancies. Uncharged vacancy 𝑉O
represents dilatational center which creates a local compressive strain. Since the conductivity is mainly
attributed to the electromigration of oxygen vacancies in perovskite ferroelectrics, the measurements of 𝑑𝑐
conductivity temperature dependence of the NS and OA specimens were carried out in order to estimate
the oxygen vacancies concentration and charge states. Since this complex defect can be represented as
𝑉••

O +2Ti3+, it can be observed in high temperature region only. Therefore, we are faced with the existence
𝑉••

O and 𝑉O in NS sample with high concentration of oxygen vacancies.
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Note that vacancies tend to accumulate in the vicinity of any inhomogeneities, surfaces and interfaces,
since the energy of vacancies formation in such places can be much smaller than in the homogeneous
volume [1]. In the places of vacancies accumulation they can create sufficiently strong fields, which in
turn can lead to the appearance of new phases in relaxors, for example, polar (ferroelectric) ones. On
the contrary, in the places where there are few vacancies, the non-polar relaxor remains. Thus, the polar
ferroelectric and nonpolar relaxor states coexistence can be realized in this case. Let us briefly consider
possible mechanisms of ferroelectricity appearance in NS samples of PZN–PLZT. As we discussed above,
the oxygen vacancies in this sample are uncharged 𝑉O, singly and doubly positively charged 𝑉•

O and 𝑉••
O ,

respectively. Because of the necessity of loss oxygen negative charges compensation, approximately an
equivalent amount of Ti3+ off-central ions is another group of defects.

If one formally puts charges +4𝑃𝜇 and −4𝑃𝜇 into the unoccupied point of Ti4+, the charge +4𝑒 makes
an ideal lattice and −4𝑒 corresponds to the defect in it. A similar formal operation with the addition of +𝑒
and −𝑒 to Ti3+ position leads to the appearance of an ideal lattice defect −4𝑃𝜇 + (Ti3+ + 𝑒), that is dipole
𝑑1 = 4𝑒𝑠, where 𝑠 is Ti3+ off-central shift. The existence of electric dipoles will lead to the appearance of
ferroelectric phase due to an indirect interaction of dipoles via the soft optic mode, while the soft mode
existence in the ferroelectric relaxors will be discussed later.

Keeping in mind that all the electric dipoles in the regions with sizes of the order of correlation
radius 𝑟𝑐 must be oriented, one can write the criterion of FE phase appearance as 𝑁𝑟3

𝑐 ⩾ 1, where 𝑁 is
concentration of dipoles.

Another possible mechanism of ferroelectricity in the relaxors can originate from inhomogeneous
elastic field via flexoelectric effect, namely 𝑃𝑖 = 𝑓𝑖 𝑗𝑘𝑙𝜕𝑢𝑘 𝑗/𝜕𝑥𝑙 , where 𝑃𝑖 is electric polarization com-
ponent, 𝜕𝑢𝑘 𝑗/𝜕𝑥𝑙 is mechanical strain gradient, 𝑓𝑖 𝑗𝑘𝑙 is the tensor components of flexoelectric effect.
Detailed consideration of this mechanism along with the mechanical strain field originated from the
oxygen vacancies (Vegard mechanism) contributions to the appearance of ferroelectricity in the relaxors
will be given below.

Gibbs potential density of relaxor ferroelectric materials having some hidden soft phonon polar mode
has the following form [22]

𝐺 =
𝑎𝑖 𝑗 (𝑇)

2
𝑃𝑖𝑃 𝑗 + . . . +

𝑔𝑖 𝑗𝑘𝑙

2
𝜕𝑃𝑖

𝜕𝑥 𝑗

𝜕𝑃𝑘

𝜕𝑥𝑙
+
𝐹𝑖 𝑗𝑘𝑙

2

(
𝜎𝑘𝑙

𝜕𝑃𝑖

𝜕𝑥 𝑗

− 𝑃𝑖

𝜕𝜎𝑘𝑙

𝜕𝑥 𝑗

)
−𝑄𝑖 𝑗𝑘𝑙𝜎𝑖 𝑗𝑃𝑘𝑃𝑙

−
𝑠𝑖 𝑗𝑘𝑙

2
𝜎𝑖 𝑗𝜎𝑘𝑙 − 𝑃𝑖𝐸𝑖 (r) − 𝑢𝑊𝑖 𝑗 [𝛿𝑁𝑑 (r)] 𝜎𝑖 𝑗 + 𝑘B𝑇𝑆

(
𝑁𝑑 , 𝑁

+
𝑑

)
, (3.1)

where 𝑃𝑖 are the components of polarization vector (𝑖 =1, 2, 3) and 𝜎𝑖 𝑗 is the elastic stress tensor. The
summation is performed over all repeated indices. Dielectric stiffness expansion coefficients 𝑎𝑖 𝑗 (𝑇) are
positive, because the intrinsic ferroelectricity is absent, but it depends on temperature reflecting the fact
that the hidden phonon mode could soften at negative absolute temperatures. This statement follows from
the above mentioned fact, that in PZN, a soft mode was observed at 𝑇 = 20 K, so that its frequency could
be zero at a negative temperature. Note that extrapolation of PMN soft mode frequency to zero leads to
𝑇C ≈ −150 K.

Matrix of the gradient coefficients 𝑔𝑖 𝑗𝑘𝑙 is positively defined. 𝑄𝑖 𝑗𝑘𝑙 is the electrostriction tensor, 𝑠𝑖 𝑗𝑘𝑙
is the elastic compliances tensor, 𝐹𝑖 𝑗𝑘𝑙 is the forth-rank tensor of flexoelectric coupling. In equation (3.1),
𝐸𝑖 (𝑟) denotes the random electric field. The configuration entropy function 𝑆(𝑥, 𝑦) is taken as 𝑆 (𝑥, 𝑦) =
𝑦 ln (𝑦/𝑥) − 𝑦 in the Boltzmann–Planck–Nernst approximation; 𝑘B = 1.3807 × 10−23 J/K, where 𝑇 is
the absolute temperature. Equations of state 𝜕𝐺/𝜕𝜎𝑖 𝑗 = −𝑢𝑖 𝑗 determine the strains 𝑢𝑖 𝑗 . Euler–Lagrange
equations 𝜕𝐺/𝜕𝜎𝑖 𝑗 = 0 determine the polarization components.

Equation (3.1) includes Vegard-type concentration-deformation energy, 𝑢𝑊
𝑖 𝑗

[𝛿𝑁𝑑 (𝑟)] 𝜎𝑖 𝑗 , which is
determined by the random defects with concentration of 𝛿𝑁𝑑 (𝑟) ∼ ∑

𝑘 𝛿 (𝑟 − 𝑟𝑘) − �̄�𝑑 (e.g., charged or
electroneutral oxygen vacancies). The equilibrium concentration of defects is �̄�𝑑 ≪ 2.25 × 1028 m−3.
The average distance between the defect centres 2𝑅 should be associated with the average volume per
inclusion and so it is defined from the relation (4π/3)𝑅3 = 1/�̄�𝑑 . The defect size 𝑟0 is much smaller
than the average distance 𝑅, e.g., 𝑟0 is ionic radius ∼ (0.1 − 1) Å3 (see figure 2).

The results [22] showed, that at some concentration of oxygen vacancies, their contribution can be
larger than the negative value of temperature 𝑇∗

C of a relaxor, and so we obtained a positive transition
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Figure 2. (Colour online) Schematics of the spherical defects with radius 𝑟0 embedded into the matrix.
The distance between defects “𝑖” and “ 𝑗” is 𝑅𝑖 𝑗 . The average distance between defects is 2𝑅. The average
volume per one defect is 𝑉 = (4π/3)𝑅3. Adapted from [22].

temperature characteristic of a ferroelectric. To transform the relaxors into ferroelectrics, one needs a
large enough concentration of oxygen vacancies and Vegard tensor amplitude. Unfortunately, the exact
value of negative Curie temperature 𝑇∗

C is not known and we should discuss some estimations only. It
is obvious that even a large enough value of 𝑇∗

C can be overcome by special choice of oxygen vacancies
concentrations and parameters. In such a case, at 𝑇 < 𝑇𝑅

C (ferroelectric phase), all the properties can
be written by conventional way on the base of free energy Φ = 1

2𝛼(𝑇 − 𝑇𝑅
C )𝑃2 + 1

4𝛾𝑃
4, so that, e. g.,

polarization 𝑃2 = 𝛼(𝑇𝑅
C − 𝑇)/𝛾, while at 𝑇 > 𝑇𝑅

C , 𝑃 = 0, and we again have a relaxor. For this case, we
consider local polarization and electric field induced by Vegard and flexoelectric effects (flexo-chemical
coupling). The dependence of the mean square variation of polarization and electric field on concentration
of oxygen vacancies showed that flexo-chemical coupling essentially contributes to local polarization and
internal electric field.

Keeping in mind the accumulation of oxygen vacancies in the vicinity of different inhomogeneities,
we came to the conclusion regarding the oxygen vacancies concentration inhomogeneity. In such a case
one can expect coexistence of relaxor state and ferroelectricity Therefore, at some concentration of oxygen
vacancies and 𝑇 < 𝑇𝑅

C , we are faced with morphotrophic region in PZN–PLZT.
To resume, the transition to a ferroelectric phase can be induced in a relaxor by the influence of oxygen

vacancies being elastic dipoles due to the joint action of electrostrictive and Vegard couplings at some
large enough concentration of the vacancies. In the regions where the concentration of vacancies is low,
the local polarization and electric field could be induced by the flexo-chemical coupling in dependence
on the concentration of oxygen vacancies. Because of inhomogeneity of the vacancies concentration, the
coexistence of ferroelectricity and relaxor state can be expected.

4. Giantmagnetoelectric coupling at room temperature inmultiferroics

Nowadays, magnetoelectric coupling is a very important problem for scientists and engineers (see
e.g., Feibig et al. [30]). That is why we decided to give a separate introduction and a list of references for
the convenience of readers. Moreover, this part is divided into two parts, namely subsection 4.1 based on
reference [23] and subsection 4.2 based on reference [24]. The subsections 4.1 and 4.2 differ from one
another by the choice of the materials, although the preparation of samples, structural characterization
and experimental methods will be the same. The concluding remarks were given as a separate section.
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4.1. Room-temperature ferroelectricity, superparamagnetism and large magnetoelec-
tricity in solid solution PbFe1/2Ta1/2O3 with (PbMg1/3Nb2/3O3)0.7(PbTiO3)0.3

A strong magnetoelectric (ME) coupling existing at room temperature is especially vital for novel func-
tional device fabrication [31–35]. A straightforward way of increasing the magnitude of the ME response
is to choose the components with large magnetostrictive and piezoelectric coefficients. For a long time,
mainly composite multiferroics on the base of PbZr1−𝑥Ti𝑥O3 (PZT) or (PbMg1/3Nb2/3O3)0.7(PbTiO3)0.3
(PMN–PT) has been used. The latter component produces the largest ME effect and has been often used in
the multilayer multiphase (ferroelectric/ferromagnetic) structures. The reason is the large piezoelectricity
of PMN–PT in the morphotropic region with the coexistence of the relaxor and ferroelectric phases.
For a single crystal, it is 7 times larger than the piezoelectricity of PZT [30]. For ceramic materials, the
piezoelectricity in PMN–PT is 2 times larger than that in PZT [36].

In the recent years, considerable attention of scientists and engineers was paid to ferroelectric antifer-
romagnets PbFe1/2Ta1/2O3 (PFT), 𝑇𝑁 ≈ 130–180 K, and PbFe1/2Nb1/2O3 (PFN), 𝑇𝑁 ≈ 140 K [37, 38]
and their solid solutions with PbZr0.53Ti0.47O3 [39–46]. Some of these solid solutions exhibit room-
temperature multiferroism and large enough ME coupling, which includes a mixture of linear and
biquadratic contributions. The ME coupling was theoretically analyzed in references [47, 48] and was
described by second and fourth rank tensors, namely, 𝜇𝑖 𝑗𝑃𝑖𝑀 𝑗 and 𝜉𝑖 𝑗𝑘𝑙𝑃𝑖𝑃 𝑗𝑀𝑘𝑀𝑙 (𝑃 is polarization and
𝑀 is magnetization). The authors of papers [47, 48] have shown that large ME effect and the appearance
of magnetization originate from the nanostructure of the considered materials. Another mechanism of the
appearance of magnetization in chemically disordered antiferromagnetic multiferroics was considered
in works [49, 50]. It was shown that antiferromagnetically interacting Fe3+ ions may form superstruc-
tures having a ferrimagnetic ground state. Such a structure has a different number of nonequivalent Fe
positions in a unit cell. As a result, the ground state magnetization may reach several B per Fe spin.
Experimental indications on the ferrimagnetic superstructure formation were reported in reference [51]
for PbFe1/2Sb1/2O3. The F-center exchange mechanism was proposed in [52]. It provides an explanation
for the existence of ferromagnetism in oxides due to the presence of oxygen vacancies.

Recently, the attention of scientists and engineers was attracted to the paramagnetoelectric (PME)
effect introduced by Hou and Blombergen [53] described by the term 𝜆𝑖 𝑗𝑘𝑃𝑖𝑀 𝑗𝑀𝑘 . The results of
experimental and theoretical studies of this effect in PFN and its solid solution with PbTiO3 were
published in references [54, 55].

It was not excluded that the replacement of PZT by PMN–PT in solid solution with PFT could lead
to an essential increase of ME effect due to a larger piezoelectric coefficient in PMN–PT. Surprisingly,
to the best of our knowledge, there is no information about the synthesis of the (PFT)𝑥(PMN–PT)1−𝑥
solid solution. Probably the more complex characteristics of PMN–PT than PZT, and thus the more
complicated mechanism of ME effect, were the main reason for the fact. On the other hand, both
components of the (PFT)𝑥(PMN–PT)1−𝑥 solid solution were broadly studied (see e. g., [56–62]). In
particular, it was shown that multiferroic PFT is antiferromagnetic-ferroelectric with ferroelectric phase
transition at 𝑇C ≈ 250 K [36]. The considered PMN–PT is non-magnetic with a maximum of dielectric
permittivity at 𝑇𝑚 ≈ 410–420 K [61, 63].

The aim of this study is to briefly describe the synthesis methodology of the novel single-phase
multiferroic, to characterize the obtained samples and to present the results of experimental and theoretical
investigation of its properties, namely, polar, magnetic and magnetoelectric characteristics.

As seen in figure 3, the temperature dependence of the inverse dielectric permittivity, measured for
both samples at 1 kHz does not follow the linear behavior predicted by the Curie–Weiss law for a certain
temperature range above 𝑇𝑚. In this case, the modified Curie–Weiss law can be used to describe the
temperature dependence of the dielectric permittivity [64]:

1
𝜀
=

1
𝜀𝑚

+
(
𝑇 − 𝑇𝑚

𝐶

)𝛾
, (𝜀𝑚 = 𝜀′max). (4.1)

Parameter 𝛾 characterizes the degree of phase transition diffuseness, and its values lie in the region from
1 (for ferroelectrics) to 2 (for relaxors). Fitting of the experimental data gives the 𝛾 values equal to ∼1.85
for 𝑥 = 0.4 and ∼1.8 for 𝑥 = 0.5. As shown in [65], the diffuse phase transition could be considered as an
intermediate state in which both ferroelectric and relaxor phases can be presented simultaneously. This
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allows us to suggest that both relaxor and normal ferroelectric phases coexist in the studied compounds,
and an increase in the PFT content leads to an increase in the ferroelectric phase contribution.

  

Figure 3. (Colour online) (a) Temperature dependences of the reciprocal dielectric permittivity of the
(PFT)𝑥(PMN–PT)1−𝑥 (𝑥 = 0.4, 0.5) compounds; the inset shows logarithmic dependence of 1/𝜀−1/𝜀𝑚
on𝑇 −𝑇𝑚. Adapted from [23]. (b) Pristine nano-grained ceramics before prepoling. The angles 𝜃 between
the grain polarization 𝑃 and global axis 3′ vary between 0 and 180 degrees. The static magnetic field 𝐻

was applied to measure 𝑀 (𝐻). (c) The ceramics after the pre-poling in a strong electric field 𝐸 . The field
was applied and then removed. The angle 𝜃 changes between 0 and 90 degrees after strong pre-poling.
For 𝑚3𝑚 parent symmetry, the local axes can be re-numbered in such a way that the axis with minimal
angle to the global axis 3 can be labeled as axis 3*. The low-frequency magnetic field 𝐻 is applied after
pre-poling to measure the ME current.

The magnetic response of solid solutions (PFT)𝑥(PMN–PT)1−𝑥 is due to the presence of octahedrally
coordinated Fe3+ ions having 3𝑑5 electronic 𝑑-shell configuration in 𝑆-state, spin 𝑆Fe = 5/2 and 𝑔-factor
𝑔 ≈ 2. Their fraction in the formula unit is 𝑥/2. Figures 4 (a) and (b) show magnetization isotherms
𝑀 (𝐻) at 𝑇 = 293 K for the compositions 𝑥 = 0.4 (a) and 𝑥 = 0.5 (b). The 𝑀 (𝐻) isotherms have a
qualitatively similar look for 𝑥 = 0.4 and 𝑥 = 0.5. Symbols are experimental data [23]. For all considered
temperatures, the curves are anhysteretic, i.e., reversible. We see that the measured magnetization may be
presented as a sum of a paramagnetic contribution that is proportional to the field 𝑀𝑝 (𝐻,𝑇) = 𝜒𝑝 (𝑇)𝐻
and of superparamagnetic-like contribution 𝑀𝑠 (𝐻,𝑇) that saturates at the field of the order of 1 kOe.
The absence of noticeable hysteresis for the observed curves allows us to consider nonparamagnetic
contributions as superparamagnetic ones registered at 𝑇 ≫ 𝑇𝑏, 𝑇𝑏 being a blocking temperature [66, 67].
Therefore, the blocking temperature is 𝑇𝑏 ≪ 293 K.

Solid and dashed curves in figures 4 (a) and (b) are theoretical fitting using Langevin and Brillouin
functions, respectively, for the description of the superparamagnetic contribution. Herein below we
assume the following dependence of the magnetization 𝑀 on applied quasi-static magnetic field 𝐻:

𝑀 (𝐻) = 𝑀𝑃𝑀 (𝐻) + 𝑀𝑆𝑃𝑀 (𝐻) ≈ 𝜒𝑚𝐻 +
𝜇max∫
𝜇min

𝐹 (𝜇 − 𝜇𝑆) 𝑀𝑃 (𝜇) 𝑓
(
𝜇𝐻

𝑘B𝑇

)
d𝜇 + 𝛿𝑀, (4.2)

where the first term is a purely paramagnetic (PM) contribution of effective “host-matrix”, and the
second is the superparamagnetic (SPM) contribution of the nanoregions. The value 𝛿𝑀 can be non-zero
reflecting a very small device-related systematic error (shift).

PM contribution. Note that the linear approximation for PM contribution,

𝑀𝑃𝑀 (𝐻) ≈ 𝜒𝑚𝐻, (4.3)
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Figure 4. (Colour online) Magnetization dependence on magnetic field for solid solution (PFT)𝑥(PMN–
PT)1−𝑥 for 𝑥 = 0.4 (a) and 𝑥 = 0.5 (b) at 𝑇 = 293 K. Small red symbols are experimental data [23], solid
and dashed curves are the fitting using Langevin and Brillouin functions, respectively, for describing
the superparamagnetic contribution. Plots (c) and (d) show the ratio of the superparamagnetic (SPM) to
paramagnetic (PM) contributions to magnetization for 𝑥 = 0.4 and 0.5, respectively.

is valid for magnetic fields |𝐻 | ≪ (𝑘B𝑇)/(𝑔𝜇𝐵𝑆), where 𝜇𝐵 is Bohr magneton, 𝑘B is Boltzmann
constant, and factor 𝑔 is taken ≈ 2. At room temperature, the fields should be much smaller than 800
kOe. The number of Fe3+ ions in the PM part of the sample can be obtained from the Curie constant
𝐶𝐶𝑊 value in the Curie-Weiss law for the 𝜒𝑚 = 𝐶𝐶𝑊/(𝑇 − 𝜃). The temperature 𝜃 is negative in
case of the antiferromagnetic interaction between the ionic spins. Constant 𝐶𝐶𝑊 = 𝑁𝑃𝑀𝜇2

𝑝/3𝑘B ≈
4𝑁𝑃𝑀𝜇2

𝐵
𝑔2𝑆 (𝑆 + 1) /3𝑘B, where 𝑁𝑃𝑀 is the number of paramagnetic spin 𝑆 in a unit mass volume.

Hence, 𝑁𝑃𝑀 = 3𝑘B𝐶𝐶𝑊/
[
4𝜇2

𝐵
𝑔2𝑆 (𝑆 + 1)

]
.

SPM contribution. Following Binder and Young [68], and Wiekhorst et al. [67], the integration
(or averaging) in the last term in equation (4.2) reflects the fact that the number of elementary spins,
which contribute to the magnetic moment 𝜇 of a given SPM no-regions [and thus to its super-spin]
should be different for different inclusions. The magnetic moment can fluctuate around the average value
𝜇𝑆 (𝑇) in dependence on the sharpness of its distribution function 𝐹 (𝜇 − 𝜇𝑆). The function is defined
as 𝜇𝑆 (𝑇) =

∫ 𝜇max
𝜇min

𝐹 (𝜇 − 𝜇𝑆) 𝜇d𝜇. The magnetization amplitude 𝑀𝑃 (𝜇) of SPM contribution is equal
to 𝑀𝑃 = 𝑁𝑆𝜇, where 𝑁𝑆 is the average number of super-spins in one gram of the material having the
average magnetic moment 𝜇𝑆 (𝑇).

Depending on a spin, one can use Langevin (LF) or Brillouin (BF) functions for the function 𝑓 (𝑥)
describing SPM contribution:

𝑓 (𝑥) =
{

coth (𝑥) − 1
𝑥
, LF,

2𝑆+1
2𝑆 coth

(
2𝑆+1

2𝑆 𝑥

)
− 1

2𝑆 coth (𝑥/2𝑆) , 𝑆 ≫ 1, BF. (4.4)

As one can see, BF transforms into LF in the limit 𝑆 ≫ 1, since coth [𝑥(2𝑆 + 1)/2𝑆] ≈ coth (𝑥) and
coth (𝑥/2𝑆) ≈ 2𝑆/𝑥.
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In the simplest assumption, when all SPM particles are formed by the same Fe3+ ions with 𝑆 = 5/2 and
𝑔 = 2, one can obtain that in average each of these particles contains 𝑛SPM = 𝜇𝑆 (𝑇 → 0) /[2𝜇𝐵

√︁
𝑆 (𝑆 + 1)]

ions and the number of spins (ions) that is included in SPM ensemble is 𝑁SPM = 𝑛SPM𝑁𝑆 . The ratio of
the ion Fe3+, which belongs to PM and SPM ensembles in the sample, is equal to:

𝑁PM
𝑁SPM

=
2𝜇𝐵

√︁
𝑆 (𝑆 + 1)𝑁PM

𝑁𝑆𝜇𝑆 (𝑇 → 0) ≡
2𝜇𝐵

√︁
𝑆 (𝑆 + 1)

𝑁𝑆𝜇𝑆 (𝑇 → 0) ·
3𝑘B𝐶𝐶𝑊

4𝜇2
𝐵
𝑔2𝑆 (𝑆 + 1)

≡ 3𝑘B𝐶𝐶𝑊

2𝜇
𝐵
𝑔2

√︁
𝑆 (𝑆 + 1)𝑁𝑆𝜇𝑆

. (4.5)

Figures 4 (c) and (d) show the ratio of SPM to PM contributions to magnetization, i.e., the dimen-
sionless parameter

𝛼 (𝐻) = 𝑀𝑃

𝜒𝑚𝐻
𝑓

(
𝜇𝑆𝐻

𝑘B𝑇

)
, (4.6)

for 𝑥 = 0.4 and 0.5, respectively.
Figure 5 shows ME current as a function of the applied 𝑑𝑐 magnetic field in a PFT–PMN–PT ceramics

for the compositions 𝑥 = 0.4 (a) and 𝑥 = 0.5 (b). Symbols are experimental data [23]. One can see that ME
signal sharply increases with an increase of the 𝑑𝑐 magnetic field in the range of±300 Oe, then it saturates
in value and decreases down to almost zero at fields larger than ±3000 Oe. Note, that the ME current
does not change too much with temperature lowering from 293 K down to 120 K [23]. Only the current
peak position moves from ±300 Oe to ±400 Oe when the temperature changes from 293 K to 120 K. The
measurements show that the main contribution to the ME current is caused by the superparamagnetic
phase while the contribution of isolated Fe3+ spins from the paramagnetic phase is negligibly small due
to their much lower magnetic moment.

Solid and dashed curves in figures 5 (a), (b) are theoretical fitting using Langevin and Brillouin
functions. Indeed, using equations (4.2) and (4.4), one can suppose that the dependence of ME current
on the magnetic field 𝐻 could be described with the following equation

𝐼𝑀𝐸 ≈ 𝐼0

〈
𝜕𝑀2

PM
𝜕𝐻

〉
+ 𝐼1

〈
𝜕𝑀2

SPM
𝜕𝐻

〉
≈ 2𝐼0𝜒2

𝑚𝐻 + 2𝐼1

𝜇max∫
𝜇min

𝑀2
𝑃 𝑓

(
𝜇𝐻

𝑘B𝑇

)
𝜕

𝜕𝐻
𝑓

(
𝜇𝐻

𝑘B𝑇

)
𝐹 (𝜇 − 𝜇𝑆) d𝜇. (4.7)

Here, 𝑓 (𝑥) is a LF or BF given by equations (4.4). Since the phenomena are sample-dependent, the fitting
parameters in equations (4.7) are 𝜒𝑚, 𝑀𝑃 , 𝜇𝑆 , 𝐼0, 𝐼1, and the distribution function 𝐹 (𝜇 − 𝜇𝑆), while the
signs of 𝐼0 and 𝐼1 can be arbitrary.

Figures 5 (c), (d) show the ratio of SPM to PM contributions to ME current, dimensionless parameter

𝛾 (𝐻) =
𝐼1𝑀

2
𝑃

𝐼0𝜒
2
𝑚𝐻

𝑓

(
𝜇𝑆𝐻

𝑘B𝑇

)
𝜕

𝜕𝐻
𝑓

(
𝜇𝑆𝐻

𝑘B𝑇

)
, (4.8)

calculated from equations (4.8) for 𝑥 = 0.4 and 0.5, respectively.
Note that the strong scattering of ME effect values in PFT–PZT solid solutions made it cumbersome

to perform a direct comparison with our results obtained for PFT–PMN–PT solid solution. Our study
demonstrates that multiferroics with superparamagnetic phase can be considered as promising materials
for applications along with composite multiphase (ferroelectric/ferromagnetic) structures. Since the ME
response in multiferroics with the superparamagnetic phase is proportional to d𝑀2/d𝐻, its value can be
amplified by many orders due to a sharp change of magnetization with the field. The measurements and
theoretical analysis show that the main contribution to the ME current is caused by the superparamagnetic
phase.
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Figure 5. (Colour online) Experimental data [23] (symbols) for ME current in (PFT)𝑥(PMN–PT)1−𝑥
ceramics at 𝑇 = 293 K for 𝑥 = 0.4 (a) and 𝑥 = 0.5 (b). Dotted, dashed and solids curves are fitted
using LF. Plots (c) and (d) show the ratio of SPM to PM contributions to ME current calculated for
𝑥 = 0.4 and 0.5, respectively.

4.2. Giant magnetoelectric response in multiferroics with coexistence of superpara-
magnetic and ferroelectric phase at room temperature

Another example of ME materials where the ME coupling is quite large is the solid solution of PFT
with Pb(ZrTi)O3 (PZT). In particular, the composition 0.4PFT–0.6PZT was studied. Figure 6 shows the
dependence of the ME voltage as a function of bias magnetic field at temperatures from 300 K down
to 6 K. One can see that the behavior of the ME response in the magnetic field at𝑇 > 100 K is very similar
to that of the 0.4PFT–0.6(PMN–PT) ceramics presented in subsection 4.1. Namely, there is a strongly
nonlinear ME response in small magnetic fields and the linear part at 𝐻 > ±1 kOe. This linear part of the
ME signal is related to the paramagnetoelectric contribution in the ME signal. The paramagnetoelectric
contribution strongly increases at the temperature decrease. Its temperature dependence (the calculated
ME coupling coefficient) measured at the magnetic field of 10 kOe is shown in figure 7. It follows well the
temperature dependence of the magnetic susceptibility (or its square) in the paramagnetic phase created
by isolated Fe3+ ions. The ME coefficient in this phase tends to infinity as the temperature approaches 0 K
due to the relation 𝜒 ∼ 1/𝑇 . However, its actual value is, of course, limited by a saturated magnetization
of spins in the magnetic field.

Another part of the ME signal is related to superparamagnetism or rather weak magnetism of
the 0.4PFT–0.6PZT ceramics. Figure 8 shows this ME signal at small magnetic fields together with
magnetization. The magnetization nonlinearly changes at 𝐻 < ±2 kOe and shows a hysteresis with slim
magnetization loop and remanent magnetization ≈ 0.004 emu/g. Similar hysteresis is seen in the ME
signal. Obviously, the superparamagnetic clusters in 0.4PFT–0.6PZT ceramics are larger in volume than
those in 0.4PFT–0.6(PMN–PT) and some interaction may also exist between them. This leads to freezing
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Figure 6. (Colour online) ME voltage as a function of the applied bias magnetic field measured for
0.4PFT–0.6PZT ceramics at temperatures from 300 K down to 6 K. Adapted from [24].

 

Figure 7. (Colour online) Temperature dependence of the PME coupling coefficient of 0.4PFT–0.6PZT
ceramics at the bias magnetic field of 10 kOe. Square symbols and smooth line are measured and
calculated data, respectively. Adapted from [24].

(thermal blocking) of the superparamagnetic moments of the clusters even at room temperature. Since
the remanent magnetization is non-zero, the linear ME effect is expected. Note that similar magnetic
loops were observed for the PFN–PZT and PFT–PZT ceramics. However, the remanent magnetization
ascribed to ferromagnetism was a few times bigger than that in our ceramics.

The results are valid for other multiferroics having superparamagnetic and ferroelectric phases.
The study performed by us demonstrated that multiferroics having superparamagnetic and ferroelectric
phases can be considered as promising materials for various applications along with composite mul-
tiphase (ferroelectric/ferromagnetic) layered structures. Since the ME response in multiferroics having
superparamagnetic phase is proportional to d𝑀2/d𝐻, its value can be amplified by many orders due to
a sharp change of magnetization with the field. The discovery of physical mechanism responsible for a
giant ME response opens the way for obtaining novel multiferroics, both single-phase and composite,
necessary for modern electronic technological devices. In particular, superparamagnetic magnetization
obtained for a composite based on carbon powder with nanopores filled with Ni might probably be ob-
tained using some ferroelectric material (e.g., KNbO3 with large region of FE phase) instead of carbon.
On the other hand, in single-phase multiferroic on the base of nanosized particles of Fe3O4 having a
superparamagnetic phase, the ferroelectric phase can be induced by annealing in the nitrogen atmosphere,
producing oxygen vacancies, which due to the Vegard effect is capable of introducing the FE phase.
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Figure 8. Field dependence of the linear ME coefficient (a) and magnetization (b) measured for 0.4PFT–
0.6PZT ceramics at 296 K. Adapted from reference [24].

5. Conclusion

We reviewed the recent trends of nanoferroics and multiferroics studies. The main attention is paid to
spontaneous flexoeffects and reentrant phase in nanoferroics and to recently discovered giant magneto-
electric effect in multiferroics. In particular, ME coefficient measured by the authors of references [23, 24]
at room temperature is equal to 𝛽 = 0.54·10−15 s/Å for (PFT)𝑥(PMN0.7–PT0.3)1𝑥 while its value for PFN–
PT appeared to be much smaller, namely 𝛽 ∼ 10−18 s/Å and its value for BiFeO3 is 𝛽 = 2.54 · 10−19 s/Å.
We have to note that both these phenomena (see references [15, 18]) as well as the appearance of mor-
photropic phase in a relaxor due to the influence of the oxygen vacancies (see [22]) were proposed by
the author of this review for the first time in the world science. The same statement is also correct for the
recently discovered giant magnetoelectric effect in multiferroics (see [23]).
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Новi тенденцiї у нанофiзицi фероїкiв, релаксорiв та
мультифероїкiв

М. Д. Глинчук, Л. П. Юрченко, Є. А. Єлiсєєв
Iнститут проблем матерiалознавства НАН України, вул. Омеляна Прiцака 3, 03142 Київ, Україна

Огляд охоплює теоретичнi та експериментальнi результати, отриманi за останнi роки авторами за допо-
могою комплексного дослiдження нанофероїкiв, релаксорiв та мультифероїкiв. Основна увага придiлена
спонтанному флексоелектричному ефекту i реентрант-фазi в нанофероїках, а також нещодавно вiдкрито-
му гiгантському магнiтоелектричному ефекту в мультифероїках.
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