PACS 64.60.Ak, 61.43.-j, 11.10.Gh

THE FIELD THEORETICAL APPROACH TO
STUDY OF THE CRITICAL BEHAVIOUR OF THE
WEAKLY DILUTED QUENCHED ISING MODEL IN
GENERAL DIMENSIONS. THREE-LOOP
APPROXIMATION

Yu.HorovarcH®Y, T.YAVORS’KII®

M) Institute for Condensed Matter Physics
of the Ukrainian Academy of Sciences
1 Svientsitskii St., UA-290011 Lviv-11, Ukraine

) Department of Theoretical Physics,
Ivan Franko Lviv State Univesity
12 Drahomanov str., UA-290005 Lviv-11, Ukraine

Received November 6, 1997

Within the fixed-dimension field theoretical renormalization group
approach the expressions for the - and 7-functions of the anisotro-
pic mn-vector model are obtained in the three-loop approximation.
Critical exponents for the most interesting case of the weakly diluted
quenched Ising model, as well as estimates for the marginal order pa-
rameter component number m, are calculated as functions of d in the
region 2 < d < 4. Conclusions concerning the effectiveness of different
resummation techniques are drawn. The results are compared with
avaliable data of recent studies.

1. Introduction

There are at least two quite different possibilities to approach the concept
of non-integer dimensionality. The first one is to consider a function which
characterizes numerically an object on a line or in the space to be defined
not only for natural, but also for any real value of space dimension. This
implies that one is carrying out an analytic continuation of the function,
and besides, neither the space of non-integer dimension nor the object in
it is specified. The second possibility, less formal, consists in the explicit
definition of the non-integer dimensional object itself. This way of extend-
ing beyond Euclidean geometry within the sphere of physical interest was
realized by introducing the concept of a fractal [1].

Both of the stated above ideas were reflected in the theory of critical
phenomena. Thus, the first one was embodied in studying many-particle
systems on abstract hypercubic lattices of the non-integer dimension (d),
e.g. by constructing e-expansion [2], the second one — in examining their
critical behaviour on fractal lattices [3,4]. Since two ways of generalizing
appeared, there arose a question if a model on a fractal lattice (being scale
invariant) possesses universality, as well as a system on a hypercubic lattice
(having translation invariance). The question has been widely studied but
still remains open [5-8]. Today’s point of view states that the usual demand
for ”strong universality” (in sense of critical properties depending only on
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symmetry of the order parameter, interaction range and space dimension)
seems not to be obeyed by fractal lattice systems, and for them the concept
of universality itself should be revised [9,10]. However, some kinds of spin
systems on fractal lattices may interpolate hypercubic lattices results [11].

Now the notion of the non-integer space dimension d is in common use
in the theory of critical phenomena. Speaking about the studies of Ising-like
models in non-integer d, one should note a great variety of theoretical ap-
proaches devised for these problems. These include: the mentioned Wilson-
Fisher e-expansion [2] improved by the summation method [12]; Kadanoff
lower-bound renormalization applied to some special non-integer dimen-
sions [13]; high-temperature expansion improved by a variation technique
[14]; finite-size scaling method applied to numerical transfer-matrices data
[15,16]; new perturbation theory based on the physical branch of the solu-
tion of the renormalization group equation [17-20]; fixed dimension renor-
malization group technique [21,22] applied directly to arbitrary non-integer
d [23,24].

Perhaps the first paper devoted to the study of the Ising model in dif-
ferent, however not non-integer dimension, was [25] where non-universal
properties of the model were discussed.

All these approaches, as well as computer simulations, confirm the cor-
rectness of the universality hypothesis also for non-integer d hypercubic
lattices and allow us to obtain the critical exponents as functions of d with
high accuracy.

Returning to the study of the critical behaviour at integer d, one should
note that the problem becomes more complicated when studying spin sys-
tems with a structural disorder. Whereas the case of the annealed disorder
is of less interest from the point of view of determining asymptotical values
of critical exponents [26], the weak quenched disorder has been a subject of
intensive study. Here the Harris criterion [28] has been devised. It states
that if the heat capacity exponent o, of a pure model is negative, that is
the heat capacity has no divergence at the critical point, impurities do not
affect the critical behaviour of the model in the sense that critical exponents
remain unchanged under dilution. But if only o > 0, then the critical
behaviour of the disordered model is governed by a new set of critical ez-
ponents. As far as for a 3d m-vector spin model only the 3d Ising model
(m = 1) is characterized by apue > 0, it is the Ising model which is of
special interest. And because of the triviality of the annealed disorder in
the sense mentioned above, the most interesting object for study is just the
quenched Ising model. The appearance of a set of new critical exponents
for that model at d = 3 is confirmed by the experiments [29-31], renormal-
ization group (RG) calculations [32-40,23,41], Monte-Carlo (MC) [42-46]
and RGMC [47] simulations.

The situation is not so simple for the 2d Ising model. Onsager exact so-
lution of the pure model proves the logarithmic divergence of heat capacity,
which yields a;ue = 0, and allows one, in accordance with the Harris cri-
terion, to clasify this case as a marginal one. Most of the theoretical works
suggest that the 2d Ising model with a quenched disorder has the same criti-
cal behaviour as the 2d pure Ising model (except for logarithmic corrections)
[48-52,39,40,53] (see also review [54]). This result is corroborated by MC-
simulations on two-dimensional lattices [55-59] and experiments [60,61].

Deviations from the expected critical exponents, which sometimes are
observed during such computations, are explained by a system being not
in the asymptotic region (see [59] for recent study). Nevertheless, some
authors assert that for the 2d Ising model with a quenched disorder a new
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critical behaviour appears [62,63]

While the undiluted Ising model at non-integer d was a subject of in-
tensive study [2,12-20], it is not the case for the diluted Ising model. We
can only mention here the work [36], where the model was studied within
the Golner-Riedel scaling field [64] approach. It is worthwhile to note that
the e-expansion technique applied to this model, due to the fact that RG-
equations appear to be degenerated on the one loop level, results in y/e-
expansion for the critical exponents [34]. The latter is known up to the £3/2
order [65,66]. Most likely this expansion is not asymptotic and thus does
not yield reliable quantitative data for d far enough from d = 4 [67]. The
equations of the massive field theory at fixed integer d [21,22] first applied
to the diluted Ising model at d = 2,3 in [35,37] were found to be the most
effective method for investigating this problem. In order to consider an
arbitrary non-integer d the Parisi approach [21,22] was generalized in [68]
where critical behaviour of the model was studied in a two-loop approxima-
tion. The aim of the present work, based on the massive field theoretical
approach, is to make a more detailed investigation of the critical behaviour
of the diluted O(m)-vector model at arbitrary d. Though it is the case
m = 1 in which we are interested most of all, we consider the RG-equations
for any m, which also allow us to study the crossover in the model at any
d. We will obtain the RG-equations within the 3-loop approximation and
apply to their analysis different resummation procedures in order to find
the most reliable one.

The set-up of the article is as follows. In the next Section we introduce
the model and the notation. Then we describe the RG-procedure adopted
here and give the series for the RG-functions of the weakly diluted quenched
m-vector model in the three-loop approximation. Being asymptotic, these
series are to be resummed. This is done in Section 2 where different ways of
resummation are used. Section 3 concludes our study giving results for the
quantitative characteristics of the critical behaviour and discussing them.
In the Conclusions we give some general comments to the present work. In
the Appendix we list some lengthy expressions for the coefficients of the
RG-functions in the three-loop approximation.

2. The Model and the RG-procedure

As it is well known, the critical behaviour of the quenched weakly-diluted

m - vector model is governed by a Lagrangian with two coupling constants
[34]:

L(g) = /ddR{é 3 [|V$a|2+m3|$“|2]+%<i|&“|2> +

"5 () e

in replica limit n — 0. Here any ¢* is a m-component vector
d* = (™', p*2 ..., d*™); ug > 0,v9 < 0 are bare coupling constants; mq
is bare mass.

As it was already stated above, we adopt here the renormalized massive
field theory scheme [21,22] in order to extract the critical behaviour governed
by (2.1). We start from the defined by (2.1) unrenormalized one-particle

a=1
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irreducible vertex functions
F(L7N)(Q1a - qrLiP1y--yPN; Mo, Uo, Vo AO; d) (22)

depending on the wave vectors {q},{p}, bare parameters mg,ug,vo and
the ultraviolet momentum cutoff Ay,. The vertex functions’ dependence
on the space dimension d is explicitly noted here as well. We impose the
renormalization conditions at zero external momenta and non-zero mass (see
[69,70] for instance) at the limit Ay — oo for the renormalized functions [71]

0,2 0,4 0,4 1,2
L, Tow T T,

U7 (p, —psm,u, v;d) g = M, (2.3)
d
Sl = v )l = 1, (2.4)
T (o} myu, ;)| (piy—o = m* %, (2.5)
T (b} myu,v;d)| o = m* o, (2.6
Fgﬁ)(q;p,—p;m,U,U;d)|q:p:0 = 13 (27)

with m, u, v being the renormalized mass m = Zsmy = ZsI'*2) (0; myg, ug, vo)
and couplings u = m* 1 Z2Z; ug,v = m? *Z2Z; ,v,. From these conditions
there follow expansions for the renormalized constants for field (Z), vertices
u (Zy4), v (Z,) and ¢* insertion (Z,). Subsequently, these define the
coefficients 3,y entering the corresponding Callan-Symanzik equation:

fultt) = 5o (2.9
Bul) = 5o (29
Yo =7z = %Iuo,%, (2.10)
Vo2 =72 = —%Iuo,vo. (2.11)

In the stable fixed point {u*,v*} to be defined by a simultaneous zero
of the both S-functions:

1811 (u* 7 IU*) = 07
Bo(u*,v*) = 0, (2.12)
the ~y4-function gives the critical exponent 1 of the pair correlation function:
Yo(u™,v") =1. (2.13)

The correlation length critical exponent v is defined in the stable fixed
point by:

by (Ut v"). (2.14)

Using familiar scaling relations, one can easily calculate any other critical
exponents on the basis of  and v.

’7¢2(U*,U*) =2-v
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Applying the described above procedure, one obtains in the three-loop
approximation [72] - and 7y-functions in the form [73]:

Bu(u,v) = —(4— d)u{l —u—

[(5m +22)(6, — %) + (m+ 2)¢Q]u2 g 8)9((;” 5
[(m +5)(ir — %) + m; 22'2]1”) + ﬁ x
[(mn + 1461 — %) + m”3+2 Jot 4800+ (215)
Bulue) = —(—dpofi—v— 2(7;”182)u+ (mniS)Q y (2.16)
96(m + 2)

[(5mn +22) (i, — %) + (mn + 2)2'2}@2 A R

[il_l iz]uv 24(m+2)[.1_1 i

) L (3LA)
2+6 (m + 8)2 2+3] +B7 4 }
2Am +2) , A(m +2)
) = =204 - d{ [Tt + e +
mTan:r; iy + 48+ (2.17)
2 2 2
oo (uyv) = (4—d){218u+2218v—1g[ﬁu2+ (2.18)
2(m+2) mn+2 .. 1 L)
(m+8)(mn+8)uv+(mn+8)2v}(h 2)+7 +}

Here d is space dimension, m is order parameter component number, n is
replica index, 4; and i, are dimensionally dependent two-loop integrals. The
corresponding coefficients for three-loop parts are listed in the Appendix.
The values for the three-loop integrals i3 ...43 which appear in three-loop
coefficients for integer d = 2,3 are listed in [74]. In particular, substituting
loop integrals i;,4,, as well as is,...,4g in (2.15)-(2.18) by their values at
d =3 we get at n = 0,m = 1 the corresponding functions of the 3d weakly
diluted Ising model, which in the 3-loop approximation were obtained in
[35]. At d = 3, m,n- arbitrary corresponding expressions coincide with
those, obtained for the 3d anisotropic mn-vector model in [75]. Our idea is
to keep the dimensional dependence of the loop integrals and, being based
on their numerical values for arbitrary d [24], to study the O(mn)-model at
arbitrary (non-integer) d as well. But for the reason explained above, the
point of main interest here will be the replica limit n = 0 of the anisotropic
mmn-vector model, especially the case m = 1.

Expressions for 8- and v-functions will be the starting point for the
qualitative study of the main features of the critical behaviour which will
be done in the next section.
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3. Resummation

As we have already mentioned, the values of the y-functions in a fixed point
(u*,v*) lead to the values of the critical exponents n and v. However, it is
well known now that the series for RG-functions are of asymptotic nature
[76-78] and imply the corresponding resummation procedure to extract re-
liable data on their basis. Let us note, however, that, as to our knowledge,
the asymptotic nature of the series for RG-functions has been proved only
for the case of the model with one coupling [79], and the application of a
resummation procedure to the case of several coupling constants is based
rather on general belief than on a proved fact. Dealing with a series of a
zero radius of convergence, one needs to apply a resummation procedure
to reconstruct functions in a non-zero region of convergence. The idea of
such a resummation method which can be applied to an asymptotic series
consists in changing the order of passing to the limit [80]. In the case of
one variable it means that, being based on the classic definition of a power
series sum

S(z) = Jim ;aim’, (3.19)
one performs an identical transformation [81]
S (z) = lim, 0 Z?:l(‘“’” Jo° dtexp(—t)t') =
i, oo {limy o f; dE[0, “E00 exp(—1)]}, (3.20)

and by a new definition of the sum one understands the expression:

S' () = limy oo {lim,, o f5' de[y7, 20 L exp(—t)]} =
[ dtexp(—t) 232, ﬂ (3.21)

where >0, a;(zt)" /4! is called the Borel image of ., a;z'. Such a trick is
natural in a sense that in the case of a convergent series S’ = S within its
radius of convergence.

The above mentioned procedure in the case of one variable is known
as the Borel resummation technique and in different modification is widely
used in the studies of asymptotic series. Unfortunately such a technique
cannot be applied in our case because only truncated sums of the series
are known. To get over this obstacle one represents the Borel image of
the initial sum in the form of a rational approximant and in such a way
reconstitutes the general term of the series. The technique which involves a
rational approximation and the Borel transformation together is known as
the Padé-Borel resummation technique (in the field-theoretical RG content
see [82,83] as an example of its application).

Note here that the resummation technique, based on the conformal map-
ping, which is widely used in the theory of critical phenomena [84], cannot
be applied in our case because its application postulates information on the
high order behaviour of the series for #- and y-functions. The latter is still
unknown for the theory with the Lagrangian (2.1).

We recall that in the case of one coupling the Padé-Borel resummation
is performed as follows:

e constructing the Borel-image of the initial sum:

Y ari =Y “"(jt)l; (3.22)
i=1 i=1 :




The field theoretical approach . . . 93

e the Borel-image is extrapolated by a rational approximant

[M/N] = [M/N] (t); (3.23)

here by [M/N] one means the quotient of two polynomials in zt; M
is the order of the numerator and N is that of the denominator;

e the resummed function is obtained in the form:
gres — / dt exp(—t) [M/N] (¢). (3.24)
0

In the two variables case only the first step is changed; namely, here we
define the Borel image as

Za”xy :>Zaz’32+] yt)’ . (3.25)

Generalization to the many variable case is trivial.

Now one can easily see that not only one way of resummation can be de-
vised. First of all, an arbitrariness appears when noticing the g-functions to
have non-trivial prefactors which depend on the variables u and v and thus
may or may not be involved into resummation. Being taken into account,
the latter ambiguity leads to the generalization of a resummation procedure
— instead of the Borel image we construct the so-called Borel-Leroy image:

Zaw ;»Z Z+p+1) (3.26)

where I'(z) is the Euler’s gamma function, and after performing the second
step (3.23) in the resummation procedure the new sum is defined via:

gres — / " dtexp(—t)#? [M/N] (1), (3.27)

here p = 0 when taking §-functions without prefactors, p = 1 — with prefac-
tors. But nothing prevents us from considering p to be an arbitrary number.

The second arbitrariness rises up from the fact that the Borel-Leroy
image of the initial sum may be represented by a rational approximant in
different ways. Thus, one can write down its various Padé approximants in
the single variable ¢. Within the three-loop approximation these are [2/1],
[1/2] and [0/3] approximants.

On the other hand, it is also possible to take into account the fact that
(- and ~-functions of the problem under consideration actually depend on
two variables and, therefore, Chisholm approximants may be used. They
are the generalization of Padé approximants to the case of two variables
[85]. Chisholm approximant of type [M/N](u,v) is defined as a quotient
of two polynomials both in u and v, of degrees M and NN, so that the first
terms of its expansion are equal to those of the function which is being
approximated.

The way of the resummation procedure, when Chisholm approximant of
the Borel-Leroy image is constructed, is referred to as the Chisholm-Borel
resummation technique. Generally speaking, Chisholm approximants in our
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case can be of type [3/1], [2/2], [1/3] and [0/4], but none of them is unique
now. One can easily comprehend the reason on an example of constructing
an approximant [3/1]. Being by definition the quotient of two polinomials
of degree 3 and 1, in general it looks like:

[ 14 aiou + ag1v + ast? + a1 uv + agav®+ (3.28)
a30u3 + a21u2v + alg’LL’UQ + 0031]3 ]/[ 1 + blou + bo]’U ]

thus having 2+3+4 + 2 = 11 variables a;; and b; ; to be defined. In its
turn the input expression, namely any of the functions (2.15-2.18), has the
structure:

1+d10U+d01’U+d20U2 +d11U’U+d02’U2+d30U3+d21U2’U+d12U’U2 +d03U3 (329)

and thus guarantees only 11-2 = 9 equations for a; ; and b; ;. This means
that 2 additional conditions should be imposed. These could be:

aso=ag3 =0 (3.30)

or

ag1 = a12 = 0 (331)

or any other conditions. There exists no particular reason which can make
us prefer any one of them. Except for some general suggestions.

Summarizing what has been said, one can state that all the above de-
scribed resummation methods, depending on the type of the applied ap-
proximant, may be divided into two large groups: the Padé-Borel and the
Chisholm-Borel method. Any of them can differ by degrees M and N of
polynomials in the numerator and the denominator of the respective ratio-
nal approximant [M/N]. For the Chisholm-Borel method even for given M
and N the appropriate approximant is not unique. In addition, an arbitrary
parameter p should be noted (see eq.3.26).

One would have to apply different resummation frameworks in order
to obtain reliable results and find which of the methods is the most effec-
tive. However, strong restriction on the number of choices can be imposed.
Further in this Section we are going to discuss this in detail.

First of all, there are some considerations concerning the order of poly-
nomials in the approximant [M/N]. The series for 8- and ~y-functions are
sign-alternating, also in the asymptotical regime. This is confirmed by the
asymptotics of the series for the RG-functions in the case m = 1, n = 2
and n = 3 which was found in [86]. The approximant generating such a
series might be chosen in the form [M/1] with the positive coefficients at
the variable ¢ (or u and v). Choosing an approximant with a non-linear
denominator, generally speaking, one does not ensure the desired proper-
ties. Direct calculations affirm the argumentation: (-functions, resummed
with the Padé-Borel and the Chisholm-Borel methods with approximants
[M/N],N > 1, for u < 0,v > 0 give the roots which lie far from the ex-
pected values, which for d = 3 are known up to the order of four loops
[39], and for general d were calculated from the two-loop (-functions [68].
This is true for any p. The stated results permit us to eliminate from our
consideration approximants with a non-linear denominator.

Note as well that choosing representation of the RG-functions (2.15)-
(2.18) in the form of Padé or Chisholm approximant might result in the



The field theoretical approach . . . 95

appearance of a pole in the obtained expression. In the present study we
will avoid such a situation. In particular, this leads to the fact that the
Chisholm-Borel method of resummation is preffered, as far as it allows us
to proceed in a wide range of the space dimension without the appearance
of poles. Treating the task in this way and comparing the results obtained
within the frames of the Padé-Borel and the Chisholm-Borel methods one
notes that there exists an upper bound of the dimension, above which there
are no solutions for the resummed (-functions. The upper bound depends
on a resummation method and on an order of loop approximation. When
applying the Chisholm-Borel method, the progress from the 2-loop [68] to
the 3-loop approximation increases the bound from d = 3.5 to d = 3.8; the
application of the Padé-Borel method, on the contrary, decreases the bound
from d = 3 to d = 2.1 in the respective loop level.

So, the results given below are obtained by the Chisholm-Borel method
applied to the approximant of type [3/1]. In order to determine the form of
the approximant completely one must define two additional conditions, al-
ready mentioned. Here there also exist some general suggestions which can
make us prefer some kind of additional equations. Firstly, they are expected
to be symmetric in variables v and v, otherwise, the properties of the sym-
metry related to these variables would depend, except for the properties of
the Lagrangian, on the method of calculation. Secondly, it is obvious that
by the substitution v = 0 all the equations which describe the critical be-
haviour of the diluted model are converted into appropriate equations of the
pure model. However, if a pure model is solved independently, the resum-
mation technique with the application of Padé approximant is used. Thus,
Chisholm approximant is to be chosen in such a way that, by putting any of
u or v equal to zero, one obtains Padé approximant for a one-variable case.
This also implies a special choice of additional conditions. In the present
study amidst all the possible expressions which satisfy the stated demand
we choose Chisholm approximant [3/1] by putting coefficients at v* and v?
to be equal to zero (see eq. 3.30).

4. Results

Now we are going to apply the mathematical framework which was discussed
in previous sections in order to obtain numerical characteristics of the crit-
ical behaviour of the weakly-diluted Ising model in general dimensions. We
will also confirm quantitatively some general suggestions concerning resum-
mation methods, mentioned so far.

It was noted in Section 1 that the critical behaviour of the quenched
weakly-diluted Ising model is described by the effective Lagrangian (2.1) in
the case m = 1 and a zero replica limit. Namely, the task in the end comes
to obtaining fixed points which are defined by simultaneous zero of the both
[-functions. Among all the possible fixed points we are interested only in
those in the ranges u* > 0,v* < 0 and only in stable ones where the stability
means that two eigenvalues by, b, of the stability matrix B = 93, /0u;|.:,

u; = {u,v} are positive or possess positive real parts. The structure of
the S-functions (2.15)-(2.16) yields the possibility of four solutions for the
fixed points. The first two {v* = 0,v* = 0} and {v* = 0,v* > 0} in
our case at d < 4 are out of physical interest, while the second pair which
consists of pure {u* > 0,v* = 0} and mixed {u* > 0,v* < 0} points,
are responsible for two possible critical regimes. The critical behaviour of
the diluted model coincides with that of the pure model when the pure
fixed point appears to be stable. If the mixed point is stable, the new
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(diluted) critical behaviour of the system takes place. The type of the critical
behaviour depends on the number m of the order parameters components
and on the dimensionality d: at any d, 2 < d < 4 a system with large enough
m is not sensitive to the weak dilution in the sense that asymptotic values
of critical exponents do not change; only starting from some marginal value
me, at m < m, the mixed fixed point becomes stable and the crossover to
the random critical behaviour occurs. The problem of determining m, as
a function of d will be discussed later. Now we would like to state that
m. > 1 for any d,2 < d < 4, and, thus, just the mixed fixed point governs
the asymptotic critical behaviour of the the diluted Ising model.

If one attempts to find the fixed points from the S-functions (2.15)-
(2.16) without resummation, there always appears only the Gaussian {u* =
0,v* = 0} trivial solution; the existence of the rest possible three fixed
points depends on the concrete details of the (-functions portions in the
braces in expressions (2.15)-(2.16). In a 3d case it appears that without a
resummation the non-trivial mixed fixed point does not exist in one-, two-
and four-loop approximations [39,40]. It is only the three-loop approxima-
tion where all the four solutions of the set of equations (2.12) exist [35].
In figure 1 we show the behaviour of the non-resummed (-functions of the
three-dimensional weakly diluted Ising model in the three-loop approxima-
tion. Resummed functions are shown in the same approximation in figure
2. The shape of the functions remains alike in the region of 8, = 38, = 0.
The fixed points correspond to the crossing of the lines 5, = 0,5, = 0 as it
is demonstrated in figures 3, 4. The left-hand column in figures 3, 4 shows
the lines of zeros of non-resummed (-functions in three dimensions in one-,
two-, three- and four-loop (results of [39,40]) approximations. The thick line
corresponds to the roots of the 3,-function, the circles depict zeros of the
B,-function; the thin solid and dashed lines show the roots of analytically
continued f,- and G,-functions respectively. One can see in the figures that
all non-trivial solutions are obtained only within the three-loop level of the
perturbation theory. In the next order all fixed points disappear which is
a strong evidence of their accidental origin. At any arbitrary d, 2 < d < 4
the qualitative behaviour of the functions is very similar to that shown in
figures 3 and 4.

As it has already been mentioned, in order to reestablish the lost pure
and mixed points one applies the resummation procedure to [-functions.
In the three-dimensional space the result of resummation is illustrated by
the right-hand column in figures 3 and 4. Here we have used the Chisholm-
Borel resummation technique choosing Chisholm approximant in the form
discussed in the previous Section with p = 1 in successive approximation in
the number of loops. The icons in the figures which correspond to a one-
loop level are the visual proof of the degeneracy of S-functions in this order
of the perturbation theory: the graphs of root-lines are parallel indepen-
dently of resummation. The rest three images in the right-hand columns
are a good graphic demonstration of the reliability of the Chisholm-Borel re-
summational method: two-, three- and four-loop pictures are quantitatively
similar, the coordinates of the pure and mixed point are close.

The numerical results of our study are given in table 1. Here the coordi-
nates of the stable mixed fixed point, as well as of the critical exponents of
the quenched weakly diluted Ising model are listed as functions of d between
d = 2 and d = 3.8. The eigenvalues b; and by of the stability matrix are
given as well.

It was already noted that the values of y-functions in a stable point yield
the numerical characteristics of the critical behaviour of the model. For
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Figure 1. The non-resummed [-functions in the three-loop ap-
proximation; d = 3,m = 1,n = 0.

Figure 2. The Chisholm-Borel resummed [-functions in the
three-loop approximation; d = 3,m = 1,n = 0.
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The lines of zeros of non-resummed (left-hand column)
and resummed by the Chisholm-Borel method (right-
hand column) S-functions for m = 1,n = 0 in different
orders of the perturbation theory: one- and two-loop
approximations. Circles correspond to 3, = 0, thick
lines depict B, = 0. Thin solid and dashed lines show
the roots of the analytically continued functions (3,
and (3, respectively. One can see the appearance of
the mixed fixed point u > 0,v < 0 in the two-loop
approximation for the resummed S-functions.
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Figure 4. The lines of zeros of non-resummed (left-hand column)
and resummed by the Chisholm-Borel method (right-
hand column) S-functions for m = 1,n = 0 in three-
and four-loop approximations. The notations are the
same as in figure 3. Close to the mixed fixed point
the behaviour of the resummed functions remains alike
with the increase of the order of approximation. This
is not the case for non-resummed functions.
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Table 1. The stable point coordinates, critical exponents and
the eigenvalues of the stability matrix of the weakly
diluted Ising model at arbitrary d. The three-loop
approximation (the c-subscript denotes that real parts
of the corresponding eigenvalues are given).

* *

u v ¥ v (6] i b by

¥

2.0268 -0.2802 1.8395 0.9664 0.0673 0.0965 0.2176 1.5189
2.0327 -0.3156 1.7679 0.9229 0.0620 0.0843 0.2373  1.4608
2.0412 -0.3523 1.7026 0.8838 0.0558 0.0734 0.2562 1.4011
2.05625 -0.3908 1.6427 0.8484 0.0488 0.0637 0.2742 1.3395
2.0671 -0.4312 1.5875 0.8162 0.0411 0.0550 0.2913 1.2739
2.0854 -0.4740 1.5364 0.7868 0.0330 0.0472 0.3074 1.2100
2.1081 -0.5196 1.4890 0.7598 0.0245 0.0402 0.3226 1.1418
2.1359 -0.5687 1.4449 0.7349 0.0157 0.0340 0.3370 1.0709
2.1698 -0.6219 1.4036 0.7119 0.0068 0.0284 0.3505 0.9971
2.2113 -0.6803 1.3648 0.6905 -0.0023 0.0234 0.3635 0.9197
2.2621 -0.7454 1.3283 0.6705 -0.0115 0.0189 0.3764 0.8380
2.3250 -0.8190 1.2938 0.6518 -0.0205 0.0150 0.3905 0.7504
2.4039 -0.9038 1.2611 0.6342 -0.0295 0.0116 0.4095 0.6528
2.5044 -1.0040 1.2299 0.6176 -0.0381 0.0086 0.4653 0.5127
2.6359 -1.1259 1.2001 0.6019 -0.0464 0.0061 0.4436¢ 0.4436¢
2.8140 -1.2804 1.1714 0.5869 -0.0541 0.0040 0.3946¢ 0.3946¢
3.0678 -1.4869 1.1436 0.5724 -0.0608 0.0023 0.3411c 0.341lc
3.4570 -1.7849 1.1160 0.5583 -0.0657 0.0010 0.2822c¢ 0.2822c
4.0852 -2.2303 1.0870 0.5436 -0.0656 0.0003 0.2136c 0.2136¢

NS W R OIS W= O

example, given the resummed functions 'yfes and f_ygées, the pair of equations

Yo () =, (4.32)
Yot (wtv*) = 2—v =0 (4.33)

allows us to find the exponents 1 and v. All other exponents can be obtained
from the familiar scaling laws.

However, one can proceed in a different way. That is, by means of the
scaling laws it is possible to reconstitute the expansion in coupling constans
of any exponent of interest or of any combination of exponents, and only
after that to apply the resummation procedure. If exact calculations were
performed, the answer would not depend on the sequence of operations.
However, this is not the case for the present approximate calculations. We
have chosen the scheme of computing where the resummation procedure
was applied to the combination v 1 —1=1—F42 — 7y, and v ' = (2 — 4 —
v6)/(2 — 7). The exponents «, 5 and 1 have been calculated on the basis
of numerical values of the exponents v and v. The resummation scheme is
quite insensitive to the choice of the parameter p given by (3.26)-(3.27). We
visualize this by figure 5 where the magnetic susceptibility critical exponent
v is plotted as a function of p within the three-loop approximation in the
three-dimensional space. The value of « increases by about 0.08% when
passing from p = 0 to p = 10 which is below the expected accuracy of the
exponent. This permits us not to pay special attention to the parameter
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p. However, we should remark that all output computations have been
performed here, as well as in [68], with p = 1. The dependence of other
critical exponents on p yields the same order of accuracy for them.

One can see in table 1 that the chosen way of calculation yields the
results which are in good agreement with the data of recent studies. For
example, at d = 2 the critical behaviour of the weakly diluted quenched Ising
model is assumed to coincide with that of the pure model. Our computations
confirm the conjecture: the exponent « differs from the exact value 7/4 by
the order of 5%, the exponent v is smaller from the expected value less
than by 4%. It is also interesting to compare these numbers with those
obtained within the 2-loop approximation [68]: all the exponents of the
three-loop level lie slightly farther from the expected exact values of Onsager
than those of the two-loop approximation. This may be explained by the
oscilatory nature of the approach to the exact values depending on the order
of the perturbation theory. It is also interesting to note that the two-loop
approximation yields better estimates for the heat capacity critical exponent
a for all d in the range under consideration. Namely, in accordance with
the Harris criterion, the a-exponent for the diluted Ising system should
remain negative. This picture is confirmed much better by the two-loop
approximation where « is negative in the whole range of d, unlike the three-
loop level of the perturbation theory, the results of which yield a > 0 for
2<d<28.

gamma

1.3288 *
1A3286{
1.3284{
1.3282 *

1.328

0 p) 4 3 8

Figure 5. The dependence of the susceptibility exponent -y of the
three-dimensional weakly diluted Ising model on the
choice of the parameter p. The calculation has been
done by the Chisholm-Borel resummation technique.

However, table 1 shows that the next (third) order does improve our
underestanding of the critical behaviour of the model in general dimen-
sions. The results of the two-loop calculations [68] show that starting from
some marginal space dimension the approach to the stable point becomes
oscilatory: the eigenvalues b; and b, turn to be complex possessing positive
real parts. This is an artifact of the calculation scheme and therefore it
is expected that by increasing the accuracy of calculations one decreases
the region of d which corresponds to the complex eigenvalues. It is realy
the case. In the three-loop approximation the region of complex by,b, is
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bounded from below by d = 3.3, whereas in the two-loop approximation
[68] the corresponding value is lower and is equal to d = 2.9. Thus, the re-
gion of d characterized by the oscilatory approach to the stable fixed point
shrinks with the increase of the order of the perturbation theory.

The comparison of the three-dimensional value of v with the four-loop
result [40] v = 0.6701 gives the accuracy of 0.05% for our computations
(compare with 1% for two-loops). Thus, it may be stated that the general
accuracy of calculations decreases when passing from d = 4 to d = 2. In
particular, this may be explained by incresing the expansion parameters
value u* and v* in the stable point.

The comparison of the present results with the recent studies is pro-
vided by figure 6. Here the behaviour of the correlation length critical
exponent v obtained by different methods is demonstrated in general di-
mensions. The results of the massive field-theoretical scheme are plotted by
solid (three-loop approximation; the present paper) and dashed (two-loop
approximation; ref. [68]) lines. One can see that the two lines practically
concide far enough from d = 2, in particular, both lie very close to the most
accurate result for d = 3 [40] which is shown by the box. However, the
three-loop result reconstitutes the latter one with much higher accuracy of

1.10

1.00

0.90

0.80

0.70

0.60

050 | L I B |
2.0 2.5

LI N B I LI N B I LI N B B B B

3.0 3.5 4.0
d

Figure 6. The correlation length critical exponent v of the
weakly diluted Ising model as a function of the space
dimension d. The results of two- [68] and three-loop
(the present paper) approximations are shown by the
dashed and the solid lines respectively, the square re-
flects the number of the four-loop approximation [40]
at d = 3, asterisks correspond to work [36] and open
diamonds refer to the resummed y/e-expansion.
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0.05% comparing to 1% of the two-loop approximation. On the contrary,
the exact result of Onsager v = 1,d = 2 lies closer to the two-loop approach
(see the above consideration).

The application of the scaling-field method [36] yields numbers shown
in figure 6 by asterisks. The limit from below (d = 2.8) of the method
applicability is caused by the truncation of the set of scaling-field equations,
which were considered in [36].

One can also attempt to obtain some results by resumming the /e-ex-
pansion which is known for the diluted Ising model up to order O(e%/?)
[65,66]. The corresponding results are shown by open diamonds. They were
obtained by applying the Padé-Borel resummation scheme to the series of
\/e- expansion [66,65]. The value of v obtained in such a way is of physical
interest only very close to d = 4. Even in the next orders of the expansions
the values of critical exponents are not improved [67]; this is an evidence of
the y/e-expansion unreliability in tasks like the one under consideration. To
compare, one can state that the situation with the applied in the present
paper theoretical scheme is contrary to the /e-expansion. While the two-
loop approximation is valid in ranges 2 < d < 3.4, the next order of the
perturbation theory enlarges the upper bound up to d = 3.8. One can
expect that the next steps within the perturbation theory will permit us to
obtain the description of the critical behaviour of the model with enough
accuracy for any d, 2 < d < 4.

Let us recall now that expressions (2.15)-(2.18) for the RG-functions,
as well as their three-loop parts listed in the Appendix, allow us to study
asymptotic critical properties of the mn-vector model with arbitrary m and
n in arbitrary d not only for the case m = 1, n = 0. In particular, by
keeping m as an arbitrary number and putting n = 0 one can obtain the
numerical estimates for the marginal order parameter component number
m, which divides the diluted (governed by the mixed fixed point) asymp-
totic critical behaviour from the pure one, when the O(m)-symmetric fixed
point remains stable. In accordance with the Harris criterion, the case
m = m, corresponds to zero of the heat capacity critical exponent « of
the model. One may extract the value of m, from this condition. How-
ever, the above discussed results of the three-loop approximation do not
yield enough accuracy for a. Alternatively, the mixed fixed point should
coincide with the pure fixed point at m = m,, which in particular means
that v*(m = m,)|mixea = 0. The last condition was chosen as a basis of
our calculation. The appropriate numbers of the present three-loop approx-
imation (thick solid line) together with the data of the two-loop approxi-
mation (dashed line) [68] are shown in figure 7. The result of e-expansion
m,. = 4 — 4e is depicted by the thin solid line. In the three-loop approxima-
tion we obtain m,. = 1.40,d = 2 and m, = 2.12,d = 3. These values are to
be compared with the exact results of Onsager which are m, =1 at d = 2,
and the theoretical estimate m, = 1.945 £ 0.002 [87]. One can see that
the two-loop results are closer to the expected values for both d = 2 and
d = 3. For a two-dimensional case the two-loop value m, = 1.19 [68] differs
from the exact one by 20%, while the three-loop number decreases the ac-
curacy to 40%. The case d = 3, m, > 2 contradicts the suggestion that the
zy-model asymptotic critical behaviour should not change under dilution
in three dimensions. The reason for decreasing the calculation accuracy
with increasing the order of the perturbation theory may lie in oscilatory
approach to the exact result. Thus, one can expect that already the four-
loop case will improve the estimates for m, for all 2 < d < 4. Let us also
note that the determination of m, may serve as a test for improving the
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resummation scheme.

d

a4+

i 1.5 3 255 3 355 P

Figure 7. The dependence of the marginal order parameter com-
ponent number m. on the space dimension d. Two-
and three-loop results are shown by the dashed and
thick solid lines respectively, the e-expansion data
m,. = 4 — 4e are depicted by the thin solid line.

5. Conclusions

The goal of this paper is to study the critical behaviour of the weakly diluted
quenched Ising model in the case when the space dimension d continuously
changes from d = 2 to d = 4.

As it was mentioned in the Introduction, the study of the pure Ising
model at arbitrary d, which corresponds to a scalar field-theoretical model
with one coupling constant, is the subject of a great deal of papers. It is not
the case for the model with a more complicated symmetry. In particular,
here we study a model with two couplings corresponding to terms of different
symmetry in the Lagrangian (2.1). Up to our knowledge, such a problem
was studied previously on the basis of the scaling-field method [36], and
field-theoretical fixed dimension renormalization group calculations within
a two-loop level of the perturbation theory are available [68].

Our calculations hold within the theoretical scheme of [24,68]. This
approach appears to be one amidst other possible calculation schemes for
many tasks; however, in our case it seems to have no alternatives within the
field-theoretical approach.

Being asymptotic, the resulting series for the RG-functions are to be
resummed. In the present study we have chosen the Padé-Borel and the
Chisholm-Borel resummation techniques. Restricting ourselves to analytic
expressions for the resummed functions, we present numerical data mainly
obtained on the basis of the Chisholm-Borel resummation technique. Note
that the absence of any information on the high-order behaviour of the
obtained series for the RG-functions does not allow one to apply other

resummation schemes, e.g. those based on the conformal mapping technique
[84].
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The quantitative description of the critical behaviour of the model is
steady from the point of view of passing from the two- to the three-loop
approximation. Smaller agreement between the two- and the three-loop ap-
proximations at d far away from d = 4 may be explained in a way that the
precision of computing falls down with the increase of the expansion param-
eter which takes place at d — 2. The real parts of eigenvalues corresponding
to the mixed point seem to remain positive up to d = 4, which testifies that
at arbitrary d the weakly diluted quenched Ising model is described by the
mixed fixed point. Note that performing the resummation scheme as de-
scribed in this paper, one can make use of the analytic continuation of the
resulting expression when a pole in the approximant appears. The results
obtained in this way will be presented elsewhere.

Appendix

Here we have collected the most lengthy expressions for the three-loop contributions
to the RG-functions. The three-loop part of the 3,-function reads:

ﬁﬁLA(u, v) = Bg’OUS + ﬁi’lu% + 55’211/02 + ,32’31)3, (5.34)
where
1

3,0 _ 2 .
P = e [ — 4(31m? + 430m + 1240)i1 + (m + 8)(m + 2) x

( — (3d + 8)is + 12(i5 + z'g)) 4 48(m? + 20m + 60)iy +

24(2m? + 21m + 58)i5 + 6(3m? + 22m + 56)ig +

24(5m + 22)i7 + 8(4m?2 + 61m + 178)];

2

nl = —12(17m? + 2 j
2 TR [ (17m?2 + 256m + 780)i1 +

(m + 2)( — (3dm, + 42d + 16m + 80)iy + 12(m + 14)i5 +

18(m + 8)i8) +24(3m2 + TOm + 224)i4 +

6(15m2 + 158m + 448)i5 + 6(3m? + 32m + 100)i +

48(5m + 22)i7 + 6(9m? + 146m + 448)];

1

L2 — —12(19m?n + 80 470m + 2032)i; —
v (m+8)(mn+8)2[ (19m"n + 80mn + 470m + 2032)ix

(8(mn +8)(3d + 4) + m(3dmn + 40mn + 78d + 176))2'2 +

12(m?n + 8mn + 26m + 64)is + 48(m>n + 8mn + 68m +

9024 + 12(11m>n + 34mn + 136m + 584)is +

6(m*n + 8mn + 50m + 256)ig + 576(m + 5)iy +

36(m + 2)(mn + 8)is + 12(5m?n + 22mn + 136m + 584)];

4

0,3 _ . .

(mn + 2) ( — (4mn + 9d + 8)iz + 36i3 + 3(mn + 8)2’8) +
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72(3mn + 22)ig + 9(m>n® + 14mn + 88)is +
24(mn + 14)iy + 3(m?n? + 38mn + 264)].

The three-loop part of the 3,-function reads:
BEA (u,v) = 930 4+ BL2un? 4 21uPe + 53003, (5.35)

where

1
03 ~ G 5 [ — 4(31m2n? + 430mn + 1240)i, + (mn + 8) x

(mn + 2)( — (3 + 8)iy + 12(i5 + z'g)) +48(m?n? +
20mn + 60)i4 + 24(2m>n? + 21mn + 58)i5 + 6(3m?n? +
22mn + 56)ig + 24(5mn + 22)iz + 8(4m*n? + 61mn + 178)|;

4(m + 2) .

Vo= - —4(28 275)iy —

v (mn+8)2(m+8)[ (28mn + 275y
(3dmn + 4mn + 15d + 56)is + 12(mn + 5)iz +

24(2mn + 27)i4 + 3(13mn + 100)i5 + 6(3mn + 13)i¢ +
96i7 + 9(mn + 8)is + (29mn + 316)];

2,1 m + 2 )
o= = —12 42 224)i; —
v (mn+8)(m+8)2[ (mn + 42m + 224)i,
(3dmn + 12dm — 8mn + 48d + 16m + 256)i2 +
12(mn + 4m + 16)iz + 48(5m + 34)i4 +

12(13m + 56)is + 6(3mn + 14m + 40)ig +
14447 + 36(m + 8)is + 12(11m + 64)] :

B = —% [ — 4(11m + 70)iy — 3(dm + 2d + 16)is +

6(m + 2)(2i3 + 3ig) + 2(m + 8) (1244 + 3is + 3is + 5)|.

The three-loop part of the y4-function reads:

3LA m+2 4 3(m+2) 9
= — 5.36

Yo () m+ 2t T mr it (5-36)
3(m+2) 9 mn + 2

(m+8)(mn+8) "~ " (mn+8)?

v? | (3ig — 4is).

The three-loop part of the y42-function reads:

Y2 (u,v) = Fyq?;;OUS - ’7;7211121) + "y;)’fuvz - ’72’231)3, (5.37)
where
_3,0 _ m+ 2 . .

12i5 + 18i6) +2(m + 8)(12iy + 3i5 + 5)] ;
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_921 m+2 .
Vs (T 82 (mn 7 8) [ (mn + 10m + 70)i; +

(mn + 2m + 6)( — (3d — 8)is + 12i5 + 18i6) +

6(m + 8)(12i4 + 3i5 + 5)] ;

1,2 3(m +2) )
yo= —4(11
Vs (m + 8)(mn 1 8 [ (11mn + 70)iy +

(mn + 2) ( — (3d — 8)iy + 123 + 182’6) +

2(mn + 8)(12i4 + 3is + 5)] :

_0,3 mn + 2 _ .
'y¢2 = 7(mn T 8)3 [ 4(11mn + 70)21 +

(mn + 2) ( — (3d — 8)iy + 123 + 182’6) +

2(mn + 8)(12i4 + 3is + 5)] .
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TEOPETUKO-IIOJILOBUM HIOXIO 0O OOCJIIXKEHHS

KPUTUYHOI IIOBEOIHKY CJIABO PO3BEIEHOI

3AMOPOXKEHOI MOJIEJII I3IHI'A IIPU JOBIJILHIN
BMMIPHOCTI ITPOCTOPY.
TPUIIETJIEBE HABJIM>KEHHSA

FO.T'onosau, T.fIBopchkuit

Y paMKax TeOPeTUKO MOJLOBOTO PEHOPMIPYIIOBOIO MiAXOIY IPU
¢ikCcOBaHi BUMIPHOCTI IPOCTOPY y TPUIETIEBOMY HAOJIMKEHHI
OTpUMaHi BUpa3u s [- i y-QyHKIIA aHI30TPONHOI MN-BEKTOPHOI
Mogeni. PospaxoBani KpuTuuHi moKa3sHUKU cjaabo po3BemeHoi “3a-
MOpOxeHoi” mopmesi I3inra Ta momaHi OmiHKM MapTriHAJLHOI KiJjb-
KOCTi KOMIIOHEHT MapaMeTpa MOPANKY M. AK (yHkuii d y imTep-
Baidi 2 < d < 4. HaBenmeni BUCHOBKM mOI0 €(pEeKTUBHOCTI pizHUX
IpoLenyp mMepecyMOBYBaHHA. Pe3ynnLTaTu MOPIBHIOIOTLCA 13 TaHU-
MU TOTIEPEIHIX TOCTIMKEHD.



