Condensed Matter Physics, 2020, Vol. 23, No 2, 23501: 1{T4] CONENSED
DOL:[10.5488/CMP.23.23501 IVIANTRGER
PRVYSIES

http://www.icmp.lviv.ua/journal

Electromagnetic field energy in an absorptive
medium with temporal and spatial dispersion

A.G. Zagorodnyl S.A. Trigger? A.I. MomotZ

L Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine,
14-b Metrolohichna St., 03680 Kyiv, Ukraine

2 Joint Institute for High Temperatures, Russian Academy of Sciences,
13 Izhorskaya St., Bd. 2, 125412 Moscow, Russia

3 Taras Shevchenko National University of Kyiv, 64/13 Volodymyrs'ka St., 01601 Kyiv, Ukraine

Received February 27, 2020

General relations for electromagnetic field energy outside the transparency domain are proposed. It is shown
that charged particle contribution to the energy of electromagnetic perturbations in the general case can be
described in terms of a bilinear combination of the dielectric polarizability of the medium. The explicit form
of such contribution is found. The relations obtained are used to generalize the Planck law to the case of an
absorptive medium.
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1. Introduction

The energy density of an electromagnetic wave in a medium with spatial and temporal dispersion can
be consistently defined only in the transparency domain [[1H5]. After the pioneer Brillouin result for the
electromagnetic wave energy in dispersive transparent media [6} [7] a lot of papers have been published
on this subject (see, for example, [8H21]) and many attempts to generalize the Brillouin approach have
been made [10} [16, [18H21]] to take into account absorptive properties of the medium. Nevertheless, the
results known from the literature do not concern the general solution of the problem, but only various
particular cases (weak absorption [[LO} [16} [18] 20, 21]], medium with no spatial dispersion [11, [15521]],
some specific field configuration, particularly the two-wave construction to extend the Brillouin approach
[19] etc.). In contrast to these results, in the present paper we propose general relations to describe the
energy density without such restrictions for any field configuration.

As is known, the energy of an electromagnetic perturbation in a matter contains the “pure” electromag-
netic energy and the kinetic energy of charge carriers obtained due to their motion in the electromagnetic
field [2} 13, [10]). If neutral particles (i.e., atoms or molecules) are present, the additional potential energy
acquired by bound electrons in such a field should be also added [2,[10-12}[14}[15117,[18]]. Beside that, in
the case of absorptive medium some part of electromagnetic energy is converted into heat [[10} 12} [14}[18].
Thus, the problem arises to consistently describe all these quantities. This introduces principal difficulties
into generalizing the Brillouin formula to the case of dispersive absorptive medium since in such a case
the macroscopic Maxwell equations generate a Poynting-like equation that does not provide an explicit
identification of the total energy of electromagnetic perturbations and especially the heat production in
contrast to the case of an nondispersive medium for which the total energy of the field is well defined and
the heat production is absent.

In order to avoid the above-mentioned difficulties, it is possible to calculate all constituents of the
electromagnetic field energy directly and express them in terms of dielectric susceptibilities as it was
done for the case of a dissipative medium without spatial dispersion [2, [10} [L11} [14} [15 {17, [18]]. This
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approach can be justified using the energy balance equation which follows from the combination of
the Maxwell equations and the kinetic equation for charge carriers. Such energy balance equation was
originally formulated by Ginzburg for a plasma medium [8},19]. Similar energy balance equation can be
formulated for the combined plasma-molecular medium using the kinetic equations for free and bound
charged particles [22H24]]. In spite of the fact that the general ideas of electromagnetic field energy
description were formulated many years ago, it was not yet applied to the case of absorptive medium
with spatial dispersion.

The purpose of the present contribution is to derive a general relation for the energy of electromagnetic
perturbation in the medium with temporal and spatial dispersion. We use the idea proposed in [8, 9, [11]],
namely, we treat the energy of the perturbation as a sum of the electromagnetic field energy and particle
energy (both kinetic and potential) acquired by the particles in the field. The relations thus obtained
are applied to calculate the fluctuation field energy and to generalize the Planck formula for the case of
non-transparent medium with spatial and temporal dispersion.

The paper is organized in the following manner. In section 2 we formulate the basic equations and
discuss the general statement of the problem. Section [3] gives the derivation of the kinetic and potential
particle energy in the presence of an electromagnetic perturbation. We show that the results obtained
make it possible to recover the relations known from the literature for various particular cases. In sectionf4]
we apply the obtained formulae to the description of the fluctuation field energy density in the case of
non-transparent medium with spatial and temporal dispersion. The results of numerical calculations
concerning the effect of a nontransparent medium on the energy spectrum are presented in section 5]

2. Basic set of equations and statement of the problem

We start from the Maxwell equations for the electromagnetic field in a medium in the form that is
often used in the plasma theory [3} 14, 25/ [26]

1 0B(r, 1)
tE(r,t) = —-— ,
rot E(r, t) p—
divB(r,1) = 0,
1 OD(r, ¢ 4
I’OtB(I’,l) = - (r )+_ﬂ:Je(r’t)’
c Ot c
divD(r,r) = 4np°(r,1), 2.1

where Jé(r, t) and p(r, t) are the external sources, if present. In the case under consideration H(r,7) =
B(r, t), and thus the total medium response to the electromagnetic field is described by the dielectric
permittivity tensor &;;(r,r’;¢ —t')

t t

D;(r,t) = E;(r,t) + 4mn J de’ Ji(r,t') = j dr’ j dr'e;j(r,x’;t —t")E;(r', 1),

—00

where J;(r, t) is the total induced current that includes all kinds of responses and can be expressed in
terms of the conductivity tensor o;(r,r’; 1 — t’) [26]

t
Ji(r,1) = J dt'Jdr’o-ij(r, r'st—t)E;j(x', ). (2.2)

Thus,

t
gij(r,xr’st — 1) = 6;;6(r —x')6(t — t') + 4m J dt” oyj(r,x’st" = 1'). (2.3)

t
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In the case of spatially homogeneous stationary medium with temporal and spatial dispersion
s,j(r, r';t—t)= 8,‘.,‘(1' —r’;t—1t')and

Dixo = ¢ij(kw)Ejke,,

Jdr eler JdRe‘ikRsij(R, 7, R=r-r, t=t-t. (2.4)
0

gij(k w)

In this case, the dispersion relation for eigenfrequency of a free electromagnetic wave is given by
det A;j(k, w(k)) = 0, 2.5)
where
K2
We also need equations describing the interaction of electromagnetic fields with the medium. In
what follows we illustrate the possibility to calculate the energy of electromagnetic perturbation using

a plasma-like medium. Thus, we supplement equations (2.1)), (2.2) with the kinetic equation for plasma
particles

k*c? kik;
Aij(k w) = &;(k w) - e (5ij - ]) .

d 0 Cayen  Ca v 4 _
{ Gt Vo e [E(r, N+ xBr, t)] 6v} v =1,, (2.6)

where f,(r, v, t) is the distribution function of particles of a species, I, is the collision term, F*X! is the
external force field, if present, the other notations are traditional.

Equation (2.6) is valid in the case of a classical plasma-like medium. Appropriate calculations for
the case of a combined plasma-molecular medium can be performed using the model of bound particles
(see, for instance, [[10H12} [14}[15]). Quantum description of both plasma and plasma-molecular systems
is also possible [22H24] 27, [28]]. However, since the formulation of the general approach does not require
the explicit form of the response function (except for the calculation of specific examples) as is shown
below, we need to know only the general relation between the induced macroscopic currents J(r, f) and
the self-consistent electric field E(r, r) given by equation (2.2).

Using equations (2.1)) we obtain the well-known equation

1 oD 0B
4r

C
EZ i B2 + JE = - div[EB 2.7
ar © az)” 2 SVIEB], 27

which is reduced to the Poynting equation in the case of non-dispersive (D = €E) medium

9 cE? + B2
ot 8x

) + J°E = - div[EB]. (2.8)
4

According to the traditional interpretation, the term in the brackets is nothing else but the field energy
density consisting of the electric and magnetic parts

W=Wg+Wpg,
where
14 ! .r2- Lep 14 L p2
= — & = — 5 = — .
E™ 8n 8 B~ 8

Taking into account that D = E + 47P, where P is the polarization vector, it is easy to see that the electric
field energy includes the energy of “pure” electric field and the energy of dipoles in the self-consistent
electric field

1
Wi = —(E? + 47EP).
8
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In the case of quasi-monochromatic field, it is possible to show that [[10]

1 oD Vg 1 0 0 welikw)
= =— k)| ZEGE + —1 " " E.EF
47 dr o 727 Tonow [ i€ “’)] ki © gy 00
1 Ok w) (9Ey c')E(’)“J.E
t Ton 6w or 0T Tgp U
_ e P55k w) 0o e %, 2.9)
16n 0k ar, ar, V)’ '

where slfj (k, w), & J’ (k, w) are the real and imaginary parts of the dielectric permittivity tensor. Here, Eg
is assumed to be weakly dependent on time and coordinate.
In the transparency domain, one obtains the well-known Brillouin formula

1

d
= Ton { £ [weij(k, w)]Ex;i Ey; + BszkJ} (2.10)

However, equations (2.9), cannot be used in the case of a strongly absorptive medium. To get rid
of this restriction we can use the idea to derive an equation for energy balance which explicitly takes
into account the particle energy. This idea was suggested by Ginzburg [8| 9]]. In order to derive such an
equation it is necessary to multiply the kinetic equation by ngmeqv? /2 and integrate over the velocity
v. The result is

2
9 ‘[dvnama Ja(X 1) + 9 Idvvnama Jo(X, 1) + J naezav [E + Y% B] 9fa(X.1) =0;

ot c ov
(2.11)
J dvl, =0.
Taking into account that
2 O fu(X,t
D Jdv% [ >< B] f’( ) —en, Jdv VEf,(X,1) = —EJ 2.12)
07
and combining equation (2.12) with the equation (2.7), which can be written in the form
1 OE 0B
— (E ey BO_) +EJ+JE=-— le[EB] (2.13)

one obtains the equation for the energy balance

0 1 n(zmavz
o {Q [E*(r, 1) + B(r,1)] + ; JdV 2 Ja(X, I)}

+% {% [E(r, 1) X B(r, )] + Za: Idv ylellal

where the terms responsible for the particle energy and energy flux are present in the explicit form. We
see that there is no need to extract the particle energy term from the quantity E%_];) as it is done for the
derivation of equation (2.8)) and its generalization to the case of a weakly absorptive medium [[10} 16} 19].

Thus, the problem under consideration can be solved, if the distribution function is known. On the
other hand, equation (2.14) opens up the possibility to use physical arguments to describe the particle
energy contribution to the energy of perturbation without restriction to the treatment of the case of a
transparent medium.

Notice that equation (2.7) can be easily generalized to the case of a molecular medium, or a combined
plasma-molecular medium. To do this in the case of classical model of molecular system, it is necessary

2
Ja(X, t)} +J(r,)E(r,1) =0, (2.14)
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to use the kinetic equation for bound pairs [22H24]], multiply it by the bound particle energy in terms
of the variables describing the internal motion and velocity of center of mass of the bound pair and
integrate over these variables. As a result, the appropriate additional terms taking account of the kinetic
and potential energy of bound particles are generated in the equation of the type of equation (2.14).

3. Energy density of the electromagnetic field perturbation with regard
to the particle energy acquired under the action of the field
In the zero-order approximation on the gas-dynamic parameter (//L < 1, where [ is the mean free

path, L is the size of the system) the solution of the kinetic equation (2.4) may be written in the form of
the local Maxwellian distribution [22]

3/2 2
I’la,(l', t) My ma[v - lla(l', t)]
X, 1) = —_— ), 3.1
faXo) = = = | t)} *P { 2o, 1) G-
where
ne(r,t) = ng Jdv fo(X, 1),
ng | dvvfy(X,t
ua(r, t) — M ,
ng(r, t)
g [ dv(me /2)[V — un(r, 1)]* fo(X, t
ey o Tl (e DR fo(X.1) 52
3nq(r,t)
Within such an approximation, we can present the full energy density as given by
W = Wg+Wr+ Wk
1 3 Mane (T, (1, 1)
—|Bwn+Bwn|+ Z [Enam e i )
where the field Wr, thermal Wt and kinetic Wk energies, respectively, are given by
1
WF = g [Ez(rv t) + Bz(r’ t)] 5
3
We = ) Sna®0Ta(r),
a
mau>(r, 1)
We = D na(rn)—"—5==. (34)

a

Since Wr is the heat produced by the perturbation we can treat the energy associated with the electro-
magnetic field as the sum of Wg and Wk.

Restricting ourselves by the second order approximation in the perturbation, we can rewrite the part
of energy Wx as

2
W=y RalMaVa (1) _ 3 B ). (3.5)

2 a
@ 2 a Zeanaf

Here, J,(r, 1) is the partial contribution of the particle of « species to the induced current J(r,7) =
2a Ja(r,1).

It should be noted that equation (3.5) directly follows from the transparent physical reasoning: the
kinetic energy acquired by particles under the action of the electromagnetic field can be directly expressed
in terms of the averaged induced velocity. Namely, this approach was used to estimate the energy density
of particles in the case of cold plasmas [2, |10} [14]. However, as is seen, the equation @]) does not require
such restrictions.
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Generalization of the results obtained in [2} |10} [14]] can be achieved using the relation between the
induced current and the electric field (2.2)) that yields

Wk Z I dr’ Jdr’(r(”)(r r';t—t) J dr”’ jdr" ((')(r v 1,1 )E;(x',t")Ex(r”, 1)
Zeana

2eana J (275)3 J (;113';3

« 1(w —w')t oi(k-K)r (Cl)(k w)o.(fl)*(kf ) Eno E? e

(3.6)

w'?

where o-l.(]‘.l)(k, w) is the partial contribution of particles of @ species to the conductivity tensor of the
system

Tij (k, w) = O'I(;l)(k, a)),
a
or in terms of the generalized polarizability X;J‘.’)(k, w) = %o-l.(;’)(k, w), the effective energy of electro-
magnetic perturbation in the medium ngf = Wr + Wk can be written as

Weﬁ — L dk dk’ I I 1(k—k’)re—i(w—¢u’)t
F Qnp ) (2n)

X

kikj’. 2 k,kj ) @5 vr s
i L | e R %x,a (k. w)x " (6 0") | Btk B - (37)
a=e,i @

where a)p = 4qe? Sl /M.

This is the general relation for the electromagnetic perturbation energy in a plasma-like medium.

It should be noted that equation (3.3]) can be also used to estimate the kinetic energy of bound electrons
in atoms and molecules. However, in this case the energy of electromagnetic perturbation along with the
kinetic energy of electrons also contains the potential energy of bound electrons in the fields of ions with
which they are bound. In the case of the classical model of the atom-oscillator [10, 22} 27]] such energy
can be estimated as
w%r%(r, t)

> .
Here, ny, is the density of the bound electrons, wy is the eigenfrequency of the oscillator, ry(r, 7) is the
reduced coordinate of the bound electron. Since uy(r, 1) = dr"‘(r D the energy Wy may be expressed
in terms of the mean velocity up(r, t), i.e., in terms of the 1nduced current of the bound electrons. The
validity of the expressions for kinetic and potential energy of the bound particles is confirmed by the
appropriate derivation on the basis of the equation of the type of equations R.14)-(3.2) for a classical
molecular model. Thus,

1 dk dk’ I
Wo = — | o SJ J eitk—K)r
nJ) (2n) (275)

U = Nm

x e—i(a)—u) )I 2 Xkl )(k, U-))X(m)*(kl, w/)EikwE;k'w' , (38)

pm

where ngl)(k, w) in the case of the classical model of an atom-oscillator is given by [23]]

wgmem(V)
w —kv)? - w(2) +iy(w—kv)’

Xk w) = - 5 Jdv ( (3.9)

a)f)m = 4ne§nm /myp, fom(V) is the distribution function of bound particles (atoms, or molecules), e, and
my, are the effective charge and the reduced mass of a bound electron.
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Thus, in the case of a plasma-molecular system, the energy of a perturbation may be written as

1 dk dk’ o ) ,
W = Wp+Wg+Wy= 2P (23‘5)3 J J el k=K gmilw-ai

kik’ 2kk’ kik
. — J (Y) (a)* ’ ’
x (51., kk,)(1+ — ) +Z szz (k w)x, " (K, )
a) +a) «
K ) (K, )| Bk Efe,, (3.10)
pm

This equation remains valid in the case of quantum description provided the polarizabilities )(}jc.”) (k, w)
(@ = e,i, m) are calculated appropriately (see, for example, [22} 24]).

In the case of the monochromatic field E(r, ¢) = 1/2 [E(r)e‘i“” + E*(r)el“! ], after the averaging over
the oscillation period T = 27/w and the volume of the system V, equation is reduced to

kikj c2k?\  kik;
((5,'j— 2 )(1+ 2 )+7

2 +w2
oy o Pk "k w) + —5— Pk ) (ko) | BBy (31

a=e, i@ wpm

1 dk
16zv J (2m)3

Let us consider the case when the spatial dispersion is formally neglected, i.e., we put X;}’)(k, w) =

/\(E]‘.’)(w). In this case, equation 1) is simplified to

W=Wg+Wsg, (3.12)
where
b 1 w? +a)
Wg = F 6ij + Z _ /\/](;:)(w)/\/(a) (w) _EiE;,
T a=e,i,m pa'
Ws = ——[BP. BP=- JdrlB(r)F
1671: ’ V )
1 *
EiE]).k = V JdI'Ei(l')Ej (l‘),
0, a=e,i,
“or 7 { wy, @=m. 3.13)

Using (3.12), (3.13)) it is easy to recover the results obtained in [I0H12]] for the electric field energy
density outside the transparency domain. For example, in the case of a cold molecular system

w,
X w) = =5 ——5—— (3.14)
w* — Wy +iyw
which leads to
2 ()2 2
— 1 Wym (W + wp)
Wg = —IE|? |1 3.15
E 16n| | @ — 2P+ (3.15)
In the case of a cold plasma
2
©(w) = L 3.16
Xij (@) w(w +ive) (3.16)
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where v, is the effective collision frequency, that gives
2

Wg=—1|1+
E 163'5( a)2+ve

IEP. (3.17)

Equations (3.13)) and (3.17) are in agreement with the well-known relation [see the first term in equa-
tion (2.10)]

7 = 1 9
167 dw
only in the case of nondissipative systems (y = 0 and v, = 0).

[wRe &;;(w)| E;ET E; (3.18)

4. Energy density of the electromagnetic field fluctuations

Within the context of the theory of electromagnetic fluctuations it is easy to show that equation (3.10)
may be also applied to the description of the energy density of fluctuations. The statistical averaging of

equation (3.10) yields
1 [ dk kik; ck? kik;
W) = — + {1+ —]|0ij — =~
W) 87 (2n)3j 2 ( wz)(” kz)
W+ cu .
Y O ) (K w) (GBS E - @.1)
a=e,i,m P‘Y
When deriving equation (4.1)) we take into account that
<6E,-kw6E;k,w,) = 2m)*s(k - K)d(w — W )(OESE ke » 4.2)
where
wmmm=ﬁm“ﬁwwmmmmmm
R=r-r, T=t-1. 4.3)

In the case of an equilibrium system (S E; 6 E} )k, is given by the fluctuation dissipation theorem (see,
for example, (3} 14]])

A
OEBE e = —0(w) | A7k @) - A7l (k ) (4.4)
w
Here,
hiw hiw k2 2 kik;
6= —cotho—.  Ajlkw)=sikw) - (51-,- - k—z’) : 5

Further simplification of (.I)), (4.3) can be done in the case of an isotropic system for which

kikj
sij(k,w) = er(k, w) (6ij 2 ) eL(k, a)) 4.6)

where et1(k, w) and g (k, w) are the transverse and longitudinal parts of the dielectric permittivity tensor.

Substituting @.6) into (@.4) and (.1} yields

(W) = J<W>wdw, 4.7
0
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where for the general case of the non-transparent medium we have

_ Q(w) Im ep (k, w) w? + w?)a @ ,
e = { oLk @)1 [1 +(,Zm wga bk o)
2Im 8T(k, w) Oa @ ,
ler(k, w) — k2c? |w?|? [ + a;m Lxr " (k w)l l} (4.8)

that describes the contribution of both longitudinal and transverse electromagnetic fields.
In the case of negligible dissipation, we can use the approximation of the type

Im er(k, w)
ler(k, w) — k2c?/w?|?

kZ 2
~ 1§ (Re er(k, w) - ) . 4.9)
w?
In the case of cold plasma for w > v we have
wp
er(w) =~ 1-—

and the part of the energy associated with the transverse electromagnetic field is given by

W, =< 9(“’) 2YNe@). (@ > wp). (4.10)

This relation is in agreement with the well-known result for the energy density in the dispersive transparent
medium [29] and reproduces the energy density for transparent plasmas [30].
In the case of a molecular medium with weak absorption y — 0

2
pm

ep(w) =1 - 4.11)

2_ 2
w* — Wy
and thus,

2 (2 2
W (W™ + wy)

(W, = w*0(w) VReep(@) |1+ Re ep(w) +

223 (@? - 2P +7y2w?

For w > wy we come back to the equation of the type (4.10).
For w <« wy, the frequency dispersion can be neglected and we obtain the result for nondispersive
transparent medium [29]]

w*O(w) _
Who = 58", (4.12)
where
£ = lim gp(w).
w—0

In the general case, equation (4.8) may be rewritten in the form

hw’ (1 1
(W) = =3 (E + pri 1) S(w), (4.13)

where S(w) is the function describing the effect of the medium

Il r Im g (k, w) W+ o
S = — |4k k2 el 1 —OQ (@) k, 2
@) 2nw3f {ISL(k,w)I2 " Z )
0

a=e,i,m (upa
2Imer(k, w) 0@ (@) 2
let(k, w) — k2c% ] w?|? [ w2 " Z oz ar kel r (@14
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5. Numerical analysis of the fluctuation field energy spectrum

As mentioned above, equations (4.8)) and (4.14) take into account the contribution of both longitudinal
and transverse electromagnetic field fluctuations. Particularly, the contribution of transverse fields into
the function S(w) is given by

c r Im er(k, w) k2c? w? + W}
Sr(w) = — | dk k2 i 1+ + O Dk, w)2], 5.1
@) nw? J ler(k, w) — k2c?jw?|? w? a;m Wi her (k- ) e
0 Ll
and thus,
hw’ (1 1
T _
<W>u) - JTZC?’ (5 + ehw/T _ 1) ST((,L)) (52)

can be considered as a generalization of the Planck formula to the case of absorptive medium. The
function St(w) makes it possible to see what is the influence of the medium on the equilibrium radiation.
Particularly, in the case of a transparent medium without spatial dispersion [e1(k, w) = er(w)]

St(w) = Ve(w)
and in the case of transparent nondispersive medium [eT(w) = eT]
St(w) = .9%/ 2,

Now, let us consider the results of numerical calculation of the quantity St(w) in the case of collisional
plasmas.
The calculations have been performed for one-component classical electron plasma, i.e.,

Im er(k, w)
ler(k, w) — k2c?/w?|?

ST(U.)) = ﬁ dk k
0

w? k%c?
1+ = (k. o)) + — l . (5.3)
a)p w

The quantity yT(k, w) was calculated on the basis of the Bhatnagar-Gross-Krook model
l—w w+iv
k uT

where v% = Te/me, v is the collision frequency, W(z) is the plasma dispersion function

2
_ %
w(w +iv)

s

XT(k’ U.)) ==

Z
1/2
Wiz)=1- ze_zz/zj dy e’ /2 4 (g) e N2,
0

St(w) can be divided into two parts

37 Imer(k, w) w?
SEK =C—Jdkk2 ’ 1+ — |yr(k, w)? 54
T () — o (ko) — K22 o Lxt(k, w)| (5.4)
and
e Im er(k, w)
SB(w) = — Jdk k* - ) 55
(@)= ler(k, @) — k262 [?|? (5-5)

The first one is associated with the electric field energy and particle kinetic energy, and the second one
with the magnetic field fluctuations.
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Sll? (w) in its turn can be presented as

SE(w) = SEW(w) + SE ¥ (w), (5.6)
where
Sf div _ € Idk Im er(k, w), (5.7)
Tw
0
sBree _ € mdk IO 5.8
T _@J‘ " _&‘T—kzcz/a)2 ' (5-8)
0

As it easy to show, the integrals in equations (5.4) and (5.8) are convergent. On the contrary, the
integral in equation with et(k, w) under consideration is divergent and the restriction of integration
to the cut-off wavenumber kp,x is needed. This problem is well-known and has been discussed in detail
in [31H33]]. Notice that in the case of quantum calculations of er(k, w), the integral in equation (5.7)
is convergent which follows from the explicit form of Im e(k, w) in such a case [34]]. However, in the
case of classical calculations, the problem of the choice of kp,x arises. In order to obtain the qualitative
picture of the energy spectrum behaviour, we take the simplest well-known approximation kpmax = /€.

Herein below we present the results of calculations of St(w), S%K(w), Sf div and Sf "8 for three kinds
of plasmas: solar corona, high-pressure gas discharge and electron-positron plasma at the beginning of
primordial nucleosynthesis. The parameters of plasmas are presented in table[I] The previous expressions
are reduced to a dimensionless form. In this manner, the energy density depends on dimensionless
parameters w/wp, ¢/vt, v/w,. The dimensionless value of kpay is

cT

wWpee

Ymax = R (5.9

The total spectral energy density for three types of plasma is shown in figure[I} One can see that St
considerably depends on the parameter c¢/vr. With an increase of frequency, St tends to a unit which
means that for w > w, the energy spectrum reproduces the Planck spectrum.

The comparison of figures[T]and[2]shows that the energy density is provided almost fully by a divergent
part of the magnetic field fluctuations energy density Sf d4iv_except the domain of high frequencies, where
the divergent part tends to zero.

S]TEK for solar corona is presented in figure |3} and Sf "€ for solar corona is presented in figure

These quantities depend on the collision frequency, but only for w < w,. Both S%K and Sf € tend to
0.5 for high frequency, that corresponds to the value of total energy density (see figure [I)). Notice that
for the given plasma, parameters St* and Sf "€ with a rather high accuracy do not depend on the cut-off
wavenumber.

As it follows from the numerical results, the dissipation of electromagnetic field results in crucial
changes of the energy spectrum in the domain in which transverse electromagnetic perturbations cannot
propagate (see, figures 2] [3] ). It looks as if in such a case the energy of fluctuating electromagnetic
fields can be accumulated in the nontransparent frequency domain, since the generated fields cannot be

Table 1. Plasma parameters.

‘ Ne, cm™ ‘ T, eV ‘ Ymax ‘ c/vr ‘
solar corona 1010 150 | 5-10° | 40
high-pressure gas discharge 107° 5 1.8-10° | 225

electron-positron plasma
at the beginning of primordial nucleosynthesis | 4.8 - 103 | 8.6-10° 1450 1.08
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Figure 3. S%K v.s. w/wyp for solar corona ¢ /vt = 40, v/wp = 0.1, 0.01, 0.001.

efficiently emitted from the region of their generation (the radiation mechanism of the energy loss does
not work).
This is in a distinct contrast to the case of transparent medium for which

S (@) = Ve @) [2 - er(@)] 6w - o),
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Figure 4. 52 "% v.s. w/wj for solar corona ¢ /vy = 40, v/wp = 0.001, 0.01, 0.1.

SE™H(w) = Sler(@) 000 - wp),
Sf'i diV(w) =0
and thus St(w) = yer(w)f(w — wp).

One more essential feature of the energy spectrum outside the transparency domain is that the
dominant contribution to the spectrum is given by Sf 4iv(w), i.e., by the part directly related to the
Im e7(w). Thus, the role of the cut-off wavenumber is very important (as is seen from figures|I} [2). Notice
that appropriate calculations show that the magnetic fluctuations still dominate in the case of er(w)
calculated within the quantum approach. It can be explained by the fact that in such a case Im er(w)

decreases considerably only at k > +/2mT /#.

6. Conclusions

Thus, in the present contribution we derive general relations for the electromagnetic-field energy
density in an absorptive medium with temporal and spatial dispersion. The treatment is based on the
assumption that the energy density of an electromagnetic perturbation contains both the electromagnetic
field energy and the particle energy acquired in the perturbation field. The results obtained provide a
possibility to generalize the Planck law to the case of an absorptive dispersive medium. The analysis
shows that outside the transparency domain, the dominant contribution to the energy spectrum is given
by the magnetic field fluctuations.

The present work was supported by the National Academy of Sciences of Ukraine within the project
“Mathematical models of nonequilibrium processes in open systems” N 0120U100857.
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EHepris eneKTpOMarHeTHOro noJisi B NOr/IMHajbHOMY
cepeAoBULLi 3 HaCOBOKO i MPOCTOPOBOIO AUCNEPCIEID

A.T. 3aropogHiif?, C.A. Tpirep? A.I Momot®

1 IHCTUTYT TeopeTuyHoi ¢pisnkm im. M.M. borontobosa HaujioHanbHoi akageMii Hayk YkpaiHu,
By/N. MeTponorivHa, 14-6, 03143 Kuig, YkpaiHa
2 06'egHaHN IHCTUTYT BMCOKKX TemnepaTyp PAH, Byn. Isropcbka, 13, 125412 Mocksa, Pocis
3 Kuiscokuii HaLioHaNbHW YHiBepcuTeT iMeHi Tapaca LLleBueHka,
By/. Bonognmupceka, 64/13, 01601 Kuis, YkpaiHa

OTprMaHo 3arafbHi CNiBBiAHOLLEHHS ANS eHeprii eleKTpoMarHeTHOro noas nosa obnacTo npo3opocTu. Moka-
3aHO, LL|0 BHECOK 3apAAKEHNX YaCTUHOK B €Heprito eNekTpoMarHeTHMX 36ypeHb y 3arajibHOMY BUMNagKy MOXHa
onucaty Yepes biniHeapHy KOMGiHaLit0 gieneKTpUYHOI MONAPN30BAHOCTU CepeAoBULLA. SHalAeHO ABHWI BU-
rnag, Takoro BHecky. OTpMMaHi CriBBiAHOLLIEHHA BUKOPUCTAHO AN y3aralbHeHHS 3aKoHy MnaHka Ha BUNajoK
NOrNNHaNbLHOIO CepejoBuLLa.

KntouoBi cnoBa: yacosa i npocTopoBa ANCepCis, MOrNHaAbHE CePEAOBULLE, EHEPTis eNeKTPOMAarHeTHOro
nonsi
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