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We review the nonasymptotic critical temperature dependence of
the hydrodynamic transport coefficients in pure fluids near the criti-
cal point and in mixtures near the consolute point calculated in lowest
nontrivial order of renormalization group theory. Two dynamical back-
ground parameters of the theory (respectively three for the mixtures)
are fixed by fitting one of the transport coefficients (we take the shear
viscosity). The other transport coefficents are then predicted without
any adjustable parameter. Our analysis shows good agreement with
the asymptotic one loop value of the Kawasaki amplitude R = 1.056.
Deviations of the transport coefficients in the asymptotic region are
due to the one loop approximation for the asymptotic exponents.

1. Introduction

Universality of the dynamics at liquid and mixture second order phase tran-
sitions can be proven by measuring the asymptotic values of exponents and
amplitude ratios of transport coefficients (TCs) calculated by renormaliza-
tion group theory (RGT). In order to extract reliable values for these quan-
tities it is necessary to include corrections to scaling in the analysis of the
experimental data (for a review see [1]). This was interesting in itself since
the correction amplitudes are also related by universal ratios. An extensive
study of mixtures at the consolute point of this type has been performed
in [2-4]. However it also has become clear that such a linearization may
be insufficient in the experimental accessible region. The most prominent
example for the indispensability of a nonlinear analysis, is the dynamics of
*He near its superfluid phase transition [5] (for *He-*He mixtures see [6]).
A strategy for the treatment of nonuniversal behaviour by RGT was devel-
oped [7] which also applies for the pure liquid and mixture phase transitions.
The main point of this strategy in our case is to describe the nonasymp-
totic behaviour of various physical quantities (e.g. TC’s) by the flow of a
small number of model parameters (e.g. mode couplings, ratios of model
Onsager coefficients (OCs)). Once the flow of these parameters has been
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identified by fixing its initial conditions by a comparison with experiment,
parameter free predictions are possible (e.g. a prediction of the temper-
ature behaviour outside the region where experimental data are available,
prediction of the temperature behaviour of TC’s not used in the comparison
with experiment). The strategy may lead even further, as has been shown
for the superfluid transition, to the study of finite size effects [8], or the
nonlinear-response regime [9] after a suitable extension of the theory.

The description of the crossover from background region (with regular
nonuniversal behaviour) to the asymptotic region (with universal power law
behaviour) requires the calculation of crossover functions which could be
checked by comparison with experiment. For the second order phase tran-
sitions in pure liquids and mixtures (plait points, consolute points) most
of such calculations were performed within mode coupling theory (MCT)
(for a review see [10]) and decoupled mode theory [11,12]. Only recently
such crossover functions have been calculated within RGT. In particular
a nonasymptotic RGT of model H and H’ [13] has been formulated in
[14],[15],[16] and compared with experiments at the gas-liquid critical point
in pure fluids as well as at the consolute point in mixtures [17] and at the
plait point [14]. On the other hand important improvements have also been
made within MCT by extending [18] an earlier version of MCT [19] (this
formulation is based on the general theory of [20]) and comparing its the-
oretical results with experiments in pure fluids near the critical point [21]
and mixtures near plait points [22].

RGT calculations are restricted to a certain region near the phase tran-
sition, usually of the order of t = (T — T,)/T. < 107! and do not treat
the regular temperature behaviour. However within this region it treats
the full TCs, whereas MCT considers the singular part only. The values of
the TCs in the background are in fact the nonuniversal parameters within
the RGT. The nonasymptotics is determined by the flow equations (these
are systematically calculated in a loop expansion) of the model parame-
ters. Universality is established by the flow of these parameters to their
fixed point values, reached in the asymptotic region. Thus the exponents
and amplitude ratios are not at our disposal, contrary to the MCT calcu-
lations, but fixed by the loop expansion. However it is promising that the
calculated one loop RGT value for the Kawasaki amplitude (see equation
below) is in agreement with the value adopted in MCT [21], [22] for optimal
consistency with experiment.

The RGT calculation for the consolute point takes full account of the
ratio w (see equation (2.9) below) between the model H’ OCs, so far ne-
glected [13]. This model parameter may be found by comparison with the
shear viscosity near the consolute point. However it appears most directly in
the thermal conductivity at zero mass flow, which is finite at the consolute
point, determining the magnitude of the critical enhancement. It would be
very worthwhile to compare our theory with such measurements leading to
much more accurate values of w.

2. Pure fluids

2.1. Hydrodynamic transport coefficients

The equations of motion of model H [13] for the order parameter ¢y (o =
VN o with o the entropy density per mass and N, the Avogadro number)
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and the transverse momentum density j, are

Oy _o 0H H
0o _3 o0H [ Mf} B
T =\ V 5. " T |9 (V¢0)5¢0 (2.2)
0H 0H
9T [ V——-V.3 —] + O;.
{zk: Jt.k 5‘7“6 k.?t(sjtk } t

where the Hamiltonian is given by

1= [ (17 0 + HVh@) + i@ + adi0)  2a)

which contains the fourth order coupling 4. The parameters in dynamics

o o o
are the model-OCs T, \; and the mode coupling constant g. The fluctuating
forces ®; and © fulfill the usual Einstein relations. The subscript ¢ at the
densities and the superscript ¢ at the parameters indicate these quantities
as unrenormalized.
The static order parameter correlations (inverse vertex function) are

(g0 do)e = ’ <2;>P :f‘;; . (2.4)

Comparing the hydrodynamic limit within theory defined by the model
equations (2.1)-(2.2) with the usual hydrodynamic equations for the en-
tropy per mass o and the transverse momentum density j, linearized in the
velocity

do K o dj, 0

_— = — T —_— = — 25 2

we find the identification of the thermal conductivity /<c and the shear viscos-
ity 7 expressed by model vertex functions f 0f= k2 I’aﬁ |k=0 where a = ¢

and 8 = ¢. This comparison gives for the dynamical coupling constant
J= RT/\/N, and the TCs

k= pT <6—0>P;¢¢, n=p (2.6)

]
The vertex functions f,; appearing in (2.6) contain static contributions
which can be separated according to a dissipation fluctuation theorem like
0 o old) o(d)
fap = Tapfaps leading to purely dynamic vertex functions f,;. Using the
identification of the static vertex functions by thermodynamic derivatives
one gets

9 p (0T\ ol o(d)
f¢¢3: RT <3_U>p f¢g£a ftt a; ftt . (2.7)



30 R.Folk, G.Moser

The purely dynamic vertex functions on the right hand side of the equa-
tions are in lowest order given by the unrenormalized OCs of model H.
A systematic loop expansion of the vertex functions leads to higher order
contributions to the OCs. Inserting (2.7) into (2.6) the TCs simplify to

o(d)
=a; f;i - (2.8)

‘z
I
‘b
~~o
©
©
I

o(d)
The dynamic vertex functions f,; with a, 8 = ¢, generally depend on the
o o), 0 4,
mode couplings and the OCs, this means f_ ;=f 3 (f‘, ey 9, gﬂ). Performing
the perturbation expansion in the usual way, one can see that the dynamic
vertex functions are functions of ratios of the OCs and the mode couplings.
Therefore we introduce suitable parameters

‘ .6 0 f
f=—F7= W= . (2.9)
VI At
The Cut-Off dimensions of the original dynamic parameters are [IO‘] =0

[it] = 2 and [ﬁ] — 1+¢/2 (e = 4 —d). One can see that the ratio W, is
irrelevant and will be set to zero.

2.2. Renormalization

The model will now be treated within the field theoretic renormalization

group formalism [23,24]. We use the minimal subtraction scheme [25,26]

where just the ﬁ singularities in the vertex functions are absorbed in the

Z-factors. The following static renormalizations are necessary

o

bo=2)2¢ T —T=27"Zr, U=z Z,uA7 (2.10)

where y is a reference wave number, the factor Ay = T'(3—d/2)/[2¢2n%/?(d—
2)]. The renormalization of the static vertex functions reads

Loo = 2 Too - (2.11)

From the conservation law follows that the Z-factors of the auxiliary
fields ¢o which are defined analogous to (2.10) are related to the renormal-
ization factors of ¢y namely Z; = Z, ! Thus one has

$o =2, (2.12)

The transverse momentum density j does not renormalize, thus the corre-
sponding conjugated field 5 also does not renormalize. Using Ward identi-
ties which are a consequence of the Galilean invariance of the equations of

motion [23] one finds, that the mode coupling g needs no renormalization
factor. We introduce the dimensionless coupling g

o

9= ptt<rrgAT (2.13)
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The renormalized OCs are defined as
T = ZT  , N=p"Z )\ (2.14)

From the factorization of the vertex functions into purely static and purely
dynamic parts as discussed in the preceding section, it follows that the Zp-
factor also separate into purely static and purely dynamic parts, namely

Zp = Zy 2. (2.15)

Using (2.10) and (2.12) the renormalized dynamic vertex functions are de-
fined as

o o
Fcp& =Ty > Iy =Ty - (2.16)
Inserting the separation of the static and dynamic parts of the Z-factors
and the dynamic vertex functions the renormalization of the purely dynamic
functions f(i%) are obtained

o(d) o(d)
d d
Foa=2Zofd . Fa =19 (2.17)

The static vertex function of the transverse momentum density is simply
given by the constant a;. Therefore Z,, contains no static contributions.

With (2.13) and (2.14) the relevant ratio defined in (2.9) renormalizes as
f= w20 2y) " F AT, (2.18)

The change of the renormalized parameters under renormalization is
described by flow equations, which contain the {-functions

InZ*
gi:uanTul, i= ¢, ru, T\ (2.19)

The factorization of the renormalization constants in (2.15) leads to a sepa-

ration of the corresponding (-functions in static and purely dynamic parts.
Inserting (2.15) in (2.19) one gets

Gr=a" + ¢ (2.20)

The temperature dependence of the static and dynamic parameters is de-
termined by the flow equations

du

b= = ul=e = 26 [u(0)] + G[u (D)), (2.21)
e% = _%f (€ + GPLF O, F(Ou®)] + C L (0, F(Ou(0)] + Co[u(®)]), (2:22)
E% = TGO (0), £ (u(®)] + Clu(®))), f% = MG LF(0), F(O)u(0)](2.23)
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The flow parameter £ is related to the relative temperature distance via the
relation [26]

r(¢)
(pt)?

The O(u(?))-terms in the matching condition are found from the calculation
of the correlation length ¢ [27] and ensure that with the choice u = &' (in
principle u is a parameter within theory which at this stage of comparison
we do not make use of; for the choice see remarks in [28] finally / is related

to & by
€= &) (2.25)

The fixed point relevant to critical behaviour is defined by the stable zero of
the right hand sides of the flow equations. The resulting asymptotic power
laws are governed by the exponents

1
V= ————,
-G+

for the correlation length, the critical correlations at T, the thermal conduc-
tivity and the shear viscosity respectively (see Table [1] for the exponents
used). The transient exponent wy is of the order O(1). The solution of the
RGT-equation for the static vertex function is

=1+ 0(?), r(¢) = r(0) exp [/f df((r - Cd))] . (2.24)

n=—C, zn=-G, z,=-C. (2.26)

£ da

oo (1) = (u0)Z5 el Ty, [u(0)]. (2.27)

The temperature dependence of the vertex functions (2.17) is determined
by the corresponding renormalization group equations. Their solutions can
be written as

o(d) ¢ da A~
Fos Q) = Zeem L 24 [ D)),

o(d) .
fa (0D = w0’ f e}, (2.28)

where we have abbreviated the set {T', A, g, gu} by {Q} and the /-dependent
parameters correspondingly.

2.3. Temperature dependence of the transport coefficients

The temperature dependence of the TCs (2.6) is obtained by replacing the
unrenormalized model parameters by the renormalized ones. Thus we have
to insert equations (2.17) and (2.28) into (2.6). The temperature depen-
dence of the renormalized static and dynamic parameters is governed by
the flow equations (2.21) and (2.22). The connection between the flow pa-
rameter £ = £(t) and the temperature distance is given by (2.25). The TCs
then are

% = 2T LECT O+ GO, FOu(O), (2.29)

() = %(NE)QAt(E)(l + E[f(0), f(D)u(0)]). (2.30)
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The functions G and FE represent the contributions from perturbation theory
to fd(;? and ft(;l ). The corresponding one loop expressions can be found in
(A.5).

For a calculation of the TCs as a function of the temperature it is con-
venient to replace the renormalization constants and exponential functions
in (2.29) by the appropriate static quantities via the relations (2.27) and
(2.4).

o = (or

= 8T>p (0 Los[u(@ILO (1 + G (0), f(Ou(e)]).  (2:31)

The solutions of equations (2.23) can be rewritten as

¢ x
L) = ro@el o (2.32)
where the dynamic part of the model OC I'¥) is determined by the equation

dr
T =T, (2.33)

Thus we finally get eliminating ¢ by the matching condition (2.25)

£(t) d_2<¢ -~

K() = pCy(E() 2el FCTy (w(E)TD (1) (1 + GLf (), f(Bu(®)]). (2:34)
Using the relation (A, = T'(3 — d/2)/[2¢727%/%(d — 2)])

(RT)* (nt)~*
A(E) = A — , (2.35)
"Nl Eera
we can express the shear viscosity by T'?(¢) and f(¢)
A(t) = AghpTE(t)e™ [10 22y (e L+ ELf (D), f(t)u(t)]. (2.36)

L@ (t) f2(t)

equations (2.34) and (2.36) constitute the main result of RGT for the TCs
in a pure liquid. One may further simplify the expressions by approximating
Cs(u(t)) by its asymptotic value —7 as well as the static amplitude function.
Then

R(t) = pCy (1) () > (u”) T () (1 + GIf (1), f(B)u(D)]) . (2.37)
or the thermal diffusivity Dy = x/(pC,)

Dr(t) = &"E(t) g (w)T D (1) (1 + G[f (1), f(D)u(t))) (2.38)
and
en L+ E[f (), f(#)u(?)]
L@@ f2(t)

The static amplitude function f’¢¢ in one loop order is one. In princi-
ple the temperature dependence of the static coupling u(4(t)) can be found

7(t) = AakpT&HE(2)

(2.39)
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from the specific heat [29]. At every place where possible we replace the
static theoretical quantities by their experimental counterpart. The tem-
perature dependent dynamic parameter f(£(¢)) are obtained by solving the
flow equations (2.22). The remaining unknown quantities are the initial
values T (¢y) and f(t,). These are found by fitting one of the TCs (2.6) or
(2.36) over a certain temperature interval to experimental data.

Asymptotically when the dynamical parameters take their fixed point
values we get the following behaviour of the TCs with temperature (at
d=3)

K= Kt ™, Dy = D gt Fm)Y, N = fat " . (2.40)
We have made use of the asymptotic behaviour of the static quantities
pCp = Xal™", £=¢&t™" . (2.41)

and the scaling law v = (2 — n)v and z, + 2, = € — 7.

2.4. Nonuniversal Kawasaki amplitude

The Kawasaki amplitude is defined (at d = 3 relative to its mode coupling

value ¢-) as [30]
6mkKé <6T )
RPYME = — | . 2.42

exp ,OkBT2 do P ( )
Inserting the theoretical expressions we obtain the nonasymptotic amplitude
ford:3(A3: 1)

3. (14 GIF (0, S OuOD + B O SOu@)) 1y 4o

Run(6) = STg0(u(0) 12(0)

At T =T, it is expected that RP""¢ reaches its universal value [13,23,24,15]

exp

R;,.,, (see Table 1) which reads
. 34 o~ L+ G[f* e )+ E[f*, f*u*])
Rtheor = §F¢¢(u ) [ ;*2 [ ] : (244)
Ref. v 7 I Ty z, R
this work | 0.63 0 1.12 0.95 0.05 1.056

two loop | 0.69 | 0.019 | 1.02[13] | 0.908[13] | 0.073[13]
[21] | 0.63 | 0.033 - 0.904 0.063 | 1.05

Table 1. Values used in the comparison with experiment

On the other hand inserting the asymptotic behaviour of the quantities
involved into the experimental expression we obtain

GWﬁaﬁaSO
R ==—" 2.45
exp kBTch ) ( )
or if the thermal diffusivity is measured
GWﬁDTg GWﬁaDTago
pure — T - > * oo 7y 2.4
Rezp kBT ’ Remp kBTc ( 6)
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2.5. Expected temperature behaviour according to the theory

The temperature dependence of the dynamical part of the order parameter
OC, equations (2.23,2.33), the shear viscosity, equation (2.39), and the ther-
mal conductivity or diffusivity, equation (2.37) or equation (2.38), and the
Kawasaki amplitude, equation (2.42), depend on the flow of the dynamical
parameter f equation (2.22). All these quantities reach finite background
values at temperatures depending on the temperature where the correlation
length itself reaches its background value. This value defines the value of
¢ (via the matching condition equation (2.25)), at which the flow of all pa-
rameters becomes stationary. figure 1 demonstrates this for an theoretical
example. We have used the simple temperature dependence of the correla-
tion length £(t) = &ot” + &. Note that the observable value of the crossover
temperature to a constant background in the OC and the TC’s also de-
pends on the crossover temperature in the flow of the model parameter f
(which depends on the background value and the flow equation) and on the
dependence of the OC and TC’s on the parameter f.

3. Comparison with experiment in pure fluids

3.1. General procedure

Our analysis of the experimental data, quite similar to the general strategy
developed for the superfluid transition [7] is the following:

(i) We determine the parameters I'¥)(t,) and f(t,) by a fit of the shear
viscosity in the temperature region ¢; <t < t,. We prefer to take the shear
viscosity since there are no static quantities involved besides the correlation
length and since f enters in leading order, which makes it more sensitive to
the flow of f. For the correlation length we take, for the lack of anything
better, the asymptotic power law £ = £yt~ (values are taken from the Table
4.3.4 in [31]), which is assumed to be valid in most of the cases in the region
of the fit. It would be very desirable to have more experimental information
on ¢ especially in the crossover region to its background value.

As discussed in the preceding section the theoretical temperature de-
pendence leads to a temperature independent background behaviour of the
shear viscosity. However the experimental shear viscosity has a a regu-
lar temperature dependence in the background not contained in the RGT.
Therfore if one extends the region of fit into the region where the regular
temperature dependence sets in one has to correct for that dependence.
This can be done in the following simple way. From a fit of the shear vis-
cosity outside the critical region (¢ > t,.,) one determines the regular part
of the shear viscosity 7),.,(¢). This regular part takes the value 7,.,(0) at
T.. Then the corrected experimental shear viscosity corresponding to the
shear viscosity calculated by RGT is

ﬁcorr(t) = ﬁezp(t) - ﬁreg (t) + ﬁreg(o) . (31)

In mode coupling theory the procedure in the comparison is somewhat dif-
ferent since there the complete background shear viscosity has to be sub-
tracted in order to compare only the singular part of the shear viscosity
with theory (see figure 2 in [10]). Extending the fit region into the region of
constant background values is only possible if the temperature dependence
of the correlation length over the whole region is known. For the examples
of pure fluids discussed below we restricted our fit to a region, where such
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Figure 1. Temperature dependence of (a) the mode-coupling f
according to the flow equation (2.22), (b) the correla-
tion length ¢ and the order parameter diffusion rate
I' according to the flow equation (2.23), (c¢) the shear
viscosity 7 according to equation (2.39), (d) the ther-
mal diffusivity D according to equation (2.38), and the
(e) Kawasaki amplitude ratio R according to equation
(2.46) in one loop order (Appendix A). All quantities
reach temperature independent background values, f

and R reach at T, their one loop fixed point values f*
and R* = 1.056.
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correction could be neglected, however for the mixtures discussed below we
demonstrate, in one example, the effects of considering 7)., instead of 7.,.

(ii) We calculate the thermal conductivity or thermal diffusivity. In
the last case the result is fixed by (i) alone. Otherwise the prediction of
the thermal conductivity depends on the data of pC, which has to to be
calculated via the thermodynamic relation

dP\? [ dp
c, = CU+T<—> (_) . 3.2
p P p dT ) dP T ( )

Thus several static measurement are involved and enter the quality of the
prediction.

The measurements are effected by gravity near T, and by the regular
temperature dependence further a way from T,. Thus without any correc-
tions the analysis works within a temperature window ¢, < ¢ < t,.,. Of
course these border line temperatures depend on the specific liquid, typical
values of t,., are 107! to 1072 and apart of He t, is smaller than 10~* for

CO, even smaller than 1077 [31].

Comparison with *He As already indicated we take the experimental
results for the static quantities. These are represented by power laws in the
experimental temperature region 1072 < ¢t < 107!, We use the following
representations of experimental data common in literature

dp
il = Tt
<dP>T oo
dP
<d—T> , = Qo + alt + ath + Atl_a, (33)
C, = t (A + Axt?).

The parameters used for *He and *He are listed in Table 2. From the

“He "He
p [g/cm?] 0.04145 0.0696
7 1.19 1.19
«a 0.11 0.11
A 0.54 0.54
I'710* [g/(cm*Torr)] 2.23 0.753
ag [Torr/K] 888.0 1289.2
ay [Torr/K] ~1294.14 | —5190.46
ay [Torr /K] 0 4504.99
A [Torr /K] 1288.98 | 4085.66
Ay [J/(moleK)] 25.11 48.00
Ay [J/(moleK)] 2.6 2.6

Table 2. Parameters found from fits of the static quantities with
the functions in equations (49) for liquid *He and *He.

measurements of (j—}pj)T [32], (%)p [33], both are strongly diverging sus-

ceptibilities, and C, [34] an effective power law for pC, holds over that
temperature region.



38 R.Folk, G.Moser

First we fit the shear viscosity data [35] by equation (2.36) with the ini-
tial conditions T'(¢t = 107!) and f(¢t = 107!) as fit parameters and find the
flow of these parameters (see figure 2). Then we predict without any fur-
ther parameter the thermal conductivity by equation (2.34) and compare
with the thermal conductivity of [36] and the Kawasaki amplitude (the val-
ues are found by interpolating the shear viscosity data) (see again figure 2).

w 06| SRS

— e q\k"‘n_ )

04+ 4 i~
S e

a2 ia PR T bbb d b PR T

nrPoise]

K[AH(EmK)]

_3

N o -0 [ R
T T
.

1 Gﬂj:ﬁ?/‘/ 7
X w0 ]
2+ ot e 4
D i . . 1 L
10° 1wt 103 102 10!

Figure 2. Comparison of theory with *He and *He data (see text
for the Refs.). We show the flow of f found from a fit
of the shear viscosity 1 and compare with the predic-
tion of the thermal conductivity x. We also compare
with the Kawasaki amplitude R for *He, and give the
prediction for “He.

Comparison with *He The experimental situation in *He is not so
favourable as in *He since there are not enough dynamical data for the
thermal conductivity [37] and there are less exact static data. Neverthe-
less we want to see if qualitative agreement can be achieved. Again from

the measurements of (;—Iﬂ)T [38], (Z—;)p [39] and C, [40] we determine pC,,.
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The correlation length has been measured in light scattering experiments
[41] and the values of & = 2.2+ 0.64 and v = 0.62 + 0.1 have been found
together with the same value of v as in the compressibility measurements
[38]. Not that although the value of v is compatible with the hyperscaling
law, it leads to v = 2 — X = (.13 which is much larger than the expected

value = 0.033 [10]. The same analysis before leads to the results shown
in figure 2.

Comparison with Ethane The shear viscosity has been measured by
[42], the thermal conductivity in the critical region by Mostert [43], and the
thermal diffusivity in [44]. Thus from statics we only need the correlation
length again taken in its asymptotic form. The same quality for our fit and
for the prediction is reached as in the case of He.

All three analyzed cases show a considerable temperature dependence
of the model parameters (see e.g. f(¢)) in the experimental region which
reflects itself in the strong temperature dependence of the Kawasaki am-
plitude. However since there are no experimental data of the correlation
length into the region of constant &, we cannot extend our analysis of the
TC’s into the regular region. Therefore the thermal diffusivity in this region
shows no indication of the onset of the regular region (a bending over as
seen in the theoretical curve of figure 1).

We just mention that we have used the flow found from the fit of the
shear viscosity to compare our prediction of the sound attenuation (see [17])
with the data of [45] for *He and *He and also good agreement has been
found. Preliminary application of this analysis to other pure liquids lead to
similar conclusions.

4. Mixtures near the consolute point

4.1. Hydrodynamic transport coeflficients

In the critical dynamics of a mixture we have to consider in addition to the
densities of the pure fluid case the local concentration c¢(x). In fact it turns
out that at the consolute point the local concentration constitutes the order
parameter density,

$o(z) = VNa(Be(z) = (De(x))),

w(z) = \/N_AlAU(:v)—(%)TP(AC(:E)—(Ac(m)))]. (4.1)

)

The static Hamiltonian then reads
= [ {22 g2 + Lo + Laie)
- g 10 2 70 4170
1 1o

30 (5) + 3 o a0()h () + Sast(a)) (4.2

with the static correlations

(¢ d)e = RTT <§—2>T7P, (4.3)
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(¢9).= RTT <g—;)ﬁp. (4.4)

There are now two critical susceptibilities, a strong one (4.3) diverging with
exponent vy and a weak one (4.4) diverging with exponent a.
The set of appropriate dynamic equations are those of model H’ [13]

6¢0 ,O0H ,OH o o0H
il o o 4.
o FV6¢O+LV Sae 9 (Vo) 57, + Oy, (4.5)
qu 25H o _,0H o 0H
. 4.
5t L \Y% 5o +XV 7 9 (Vo) — 57, + Oy, (4.6)
07, o _,0H [ 0H o 5H}
-t = NV'—+T|9(V 9 (Vqgy)—
ot t 5.7t ( ¢0)5¢0 ( QO)5q0
o SH 0H
_ QT{Z [jth6 Vk3t6 }}+@t. (4.7)
k t

There are now three model OCs according to the modes of mass diffusion,
heat conduction and the modes of heat transport induced by a concentration
difference or mass transport induced by a temperature difference. One may
proceed as in the case of the pure fluid and compare with the hydrodynamic
equations for a mixture

o GG, ),)

+ D [kT <36§> <g_?>C’P] Ve, (4.8)
% DkT VT + DV’e, (4.9)
% = %V% (4.10)

in order to identify the physical TC’s by the model vertex functions
D =5 (4.11)
k?T - % <§_;>C’P Jofqan (4.12)
piT - <2_;>C’P %[}w}qq — Foifoi) (4.13)

Separating the static parts from the vertex functions

P _ P %) A S (%) o
f¢¢_ RT < Jdc T,P f¢¢ ’ fd)q_ RT oc T,P f¢(j’ (414)
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N aT) 2@ o p <8T> o(d)
" RT \ 9o ; = 77 \ 30 ; 41
fq¢ RT (ao' P fq¢’ qu RT \ oo P qu s ( 5)
we get
P 8A> o(d)
D=25 30 j 4.1
RT(GC T.P Fos: (4.16)
kr p 1 o(d)
T T RT D 4.1
T RTD’* (4.17)
? o(d) o(d)  o(d)
K P 6A> 1 of ,
o \&r) \oc ), DYeila V) 4.1
pr (RT) (ac TP D[f¢¢qu (fq¢) ] (4.18)

Note that the thermal conductivity is defined under the condition of zero

old) o

mass flow. Since f ;=L we have the relation k7D = %.
We again define suitable dynamical parameters

b=t =L (4.19)
LA, VI
Wy=3L, W= £ . W= £ (4.20)
t At Aq
The Cut-Off dimensions of the original dynamic parameters are [f’] =0,

[f,] =1, [)fq] = [it] = 2 and [5] =14¢€¢/2 (¢ =4 —d). One can see that
the ratios in (4.19) have dimension zero, while in (4.20) the dimensions

are negative ([wy] = [w4] = —2), which means that these parameters are
irrelevant. To be consistent all irrelevant parameters have to be set to zero.
Moreover diagrammatic contributions containing w, do only appear with a
prefactor, which is irrelevant. Therefore we do not consider this time ratio
as well.

4.2. Renormalization

Model H’ needs additional renormalization factors, but all of them can be
related to the renormalization of model H. In particular we have for the
second conserved density gy and the static parameters

qo = Z;/Qq 3 /? - 7(23: Z¢_IZT7-5
5: MeZQZQZﬂaAgl 3 };/q: Me/QZdjlzq_l/QZW’YqA;lm' (4.21)

One can prove [23,46] the relations

2
Zl=a 1t <ﬁ> Aw),  Z,=2,%,. (4.22)

q q
aq
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A(u) is the additive renormalization constant of the specific heat, calculated
within the ¢*-model. The parameters @ and v, only appear in the combina-
tion u = @ — 377 /a, in Z,, thus with relations (4.22) follows that all static

renormalization factors can be written as function of v and -,.
The renormalization of the static vertex functions reads

Lop = Zs Tos » Dog =24 Tyq - (4.23)
The Z-factor of the new auxiliary field g
Qo=2;""q (424)

is given by Z; = Z_*. The new renormalized OCs are defined as

L=pZiL . X = 220, A=A (4.25)

Using (2.10) and (2.12) the new renormalized dynamic vertex functions are
defined as

Tyi=Te. Teg=2,22Ty. T,5=2;"2Z"T,; (4.26)
From the factorization of the vertex functions into purely static and purely
dynamic parts as discussed in the preceding section, follows that the Z-
factors defined in (4.25) also separate into purely static and purely dynamic
parts, namely

Zy, = 2,20, 7y =277 (4.27)

Inserting the separation of the Z-factors and the dynamic vertex functions
in static and dynamic contributions in (2.16), (4.26) the renormalization of

the purely dynamic functions fi%) are obtained
o(d) 12 /2 p(d) o(d) (@)
foa=25"2,""foi + Jaa = Zataz - (4.28)

From perturbation theory one can immediately see that Zéd) =1 and
Z;\'? = 1 in every order of the loop expansion. Thus L and ), stay unrenor-

malized and merely enter the calculation of the vertex functions as constant
parameters. Only I' and A; renormalize, and no new independent renor-
malization constant is needed. This means that no new critical exponent
appears in the asymptotic power laws. This is fundamentally for model H
and model H’ to belong to the same universality class. With (2.13) and
(4.25) the new time ratio w (4.19) renormalizes as

o

= 77w, (4.29)

£ = =2 F et GO T (O, w(l] +G, L0, F@u(e), ()] + G u(0),

(4.30)
dw 1 d
= =3O, Fule),w ], (4.31)
ng -T (d) d>\q _
=7 = DG (0, f(Oull), w(O)] + Co[u(O)])  £—7F = A(=2+ (), (4.32)

dL 1, 1 dX;

dl = A [f(0), f(Quf), w(0)].  (4.33)
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4.3. Temperature dependence of the transport coefficients

Repeating the steps made in subsection 2.3 and inserting for the vertex
functions we obtain

D(t) = (u)°Tosfu(@L(O)1+ Glw(0), f(0), f(Ou(e)]),  (4.34)

kr(f) _  pl
T RTD(®)’ (435)
= U (57) Pl fute) (o)
x {NOTO 1+ Glw(®), £(0), F(Oue)]) - L2(B)]}, (4.36)
A6 = = (P MO (1+ ELw(0), /(0. fOue)). (437

In the same way as before for pure fluids, using the matching condition
(2.24) and approximating ¢, by 7, we obtain the final results for the TC’s,
namely the mass diffusion

D(t) = & "E(t) 7 "L (w )T () (1 + Gluw(?), (1), f(R)u(®)])  (4.38)

the shear viscosity

A(t) = AgkpTENE ()11 E[z;((g( {) (;3( ; (4.39)
and the thermal conductivity
w(t) _ P g w’(t)
o = ' T TG rw o))

Thus the critical enhancement of the thermal conductivity is directly related
to the flow of the parameter w. Unfortunately we are not aware of any
measurements of the thermal conductivity near the consolute point. The

thermal diffusion ratio is exactly the inverse of the mass diffusion kz(t) =
R%L(t). This has been verified in [47] for aniline-cyclohexane up to values

of t ~ 1072, but it would be worthwhile to prove this further out to the
background region.

4.4. Nonuniversal Kawasaki amplitude

The corresponding Kawasaki amplitude [30] at the consolute point reads (at
d=3)
6mnD
Rigyr = 2
b kT

(4.41)
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Inserting the theoretical expressions we obtain the nonasymptotic amplitude
(1 + Glw(8), £(£), f(Qu@)]))(A + Elw(f), f(£), f(Du(£)])

2 '

“ (4.42)

Although the asymptotic value of the Kawasaki amplitude is the same as in
the pure liquid, the nonasymptoic expression is different. We would like to
mention that it is the same as for the plait point. However the definition of
the Kawasaki amplitude by the experimental quantities is different for the
plait point (see [15]).

3.
Ifﬁns:§r¢¢ (u(f))

5. Comparison with experiment in mixtures

The general procedure is the same as already described, however we have
now more parameters to determine. We use again the shear viscosity in or-
der to find these parameters, but one has to keep in mind that the accuracy
of the flow found depends on fine details of the shear viscosity data. The
thermal conductivity is most sensitive to the flow of w and would be the
primary experimental quantity to be fitted in order to find w(t,). Unfortu-
nately no such data are available and we therefore use the shear viscosity for

the determination of all three initial parameters, T'9)(t,), f(t,) and w(ty)-

Comparison with aniline-cyclohexane We use the shear viscosity data
of [48] and the mass diffusion from [47]. No correction has been made for
the regular temperature dependence. In the background the shear viscosity
is decreasing since we approach the phase transition from above T,. The
correction procedure would lead to an increase of the shear viscosity values.
This may lead to smaller w values in the background predicting a smaller
critical enhancement of the thermal conductivity.

Comparison with butoxyethanol-water. We use the data of the shear
viscosity, the mass diffusion (represented by D = 5.68107¢¢7992) and the
correlation length (the asymptotic fit) measured in [49]. We have performed
fits of the shear viscosity with and without correction of the regular tem-
perature behaviour (see Table 3). In the background the shear viscosity is
increasing since we approach T, from below. This leads to a decrease for
the corrected data. The interesting point is that the best fit of the corrected
data leads to a nonzero background value of the parameter w indicating a
critical enhancement of the thermal conductivity.

Systems | &[A] | T[K] | 10102 | t,10* | T1D10¥[em? /5] f w
3He 2.7 | 3.3086 10 1 2.105 0.345 -
‘He 2.0 | 5.1895 10 1 0.833 0.495 -

CoHg 1.9 | 305.33 10 ) 3.867 0.576 -
A-C 24 303 3 1 0.05352 1.075 | 0.897
2B-W 4.2 | 32253 | 0.7 0.1 0.2051 1.015 0
2B-W 4.2 | 32253 | 0.7 0.1 0.17 1.124 | 0.399
2B-W 4.2 | 322.53 1 0.1 0.1375 1.124 | 0.402

Table 3. Parameters used and found for pure fluids and mix-
tures
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Figure 3. Comparison of theory with ethane data (see text for
the Refs.). We show the flow of f found from a fit of
the shear viscosity 7 and compare with the prediction
of the thermal diffusivity Dy. We also compare with
the Kawasaki amplitude R.

6. Outlook

There seems to be a remarkable difference between the behaviour of the
renormalized mode coupling constant f(t¢) in pure fluids and mixtures at
the consolute point. Whereas in pure fluids f(107?) is clearly smaller than
its fixed point value, this is not the case at the consolute point (we have seen
this also from fits of the shear viscosity of other mixtures). In consequence
the mass diffusion shows almost the asymptotic behaviour. A crucial point
however is the flow of the parameter w(t), which determines the behaviour
of the thermal conductivity at zero mass flow. The size of it’s critical en-
hancement is an important test of the w-flow found from the shear viscosity
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alone. The larger the enhancement the larger the background value of w.
Unfortunately we do not know any quantitative or even qualitative mea-
surements of the thermal conductivity in mixtures at the consolute point.

]
g /
. R R T
el d ]
X h ]
L 1 1 1 1 1 1 1 1 1 ]
E 1 1 1 1 1 1 1 1 1
o F E
ios L ] o /
L o L L L L 1 1 1 1 1 ] L o L L L L 1 1 1 1 1 ]
20f E
w15 E o 10 -/—//\
10 p

05 L 05 L
10° 10® 107 10° 10° 10 10 102 107 10° 10 10° 10® 107 10° 10° 10 10 102 107 10° 10
t t

Figure 4. Temperature dependence of (a) the mode-coupling f
and ratio w according to the flow equation (4.30), and
(4.31) (b) the correlation length ¢ and the order pa-
rameter diffusion rate I' according to the flow equation
(4.32), (c) the shear viscosity 7 according to equation
(4.37), (d) the thermal diffusivity D according to equa-
tion (4.34), and the (e) Kawasaki amplitude ratio R
according to equation (4.42) in one loop order (Ap-
pendix A). All quantities reach temperature indepen-
dent background values, f, w and R reach at T, their
one loop fixed point values f*, w* = 0 and R* = 1.056.

Our analysis might be applicable in other system too e.g. (i) ionic fluids
and mixtures [50] and/or (ii) polymeric blends [51].

From the flow of w and f (see Figure 6) one may calculate according to
equation (4.40) the critical enhancement of the thermal conductivity of the
2-Butoyethanol-Water-mixture. We find over the interval of t = 1072 to t =
1072 an increase of the thermal conductivity of 15%. This compares quite
well with measurements made by H. Mensah-Brown and W. A. Wakeham
(we estimate a 6.5% increase from their experimental results). See the
Refs. H. Mensah-Brown and W. A. Wakeham, Thermal Conductivity of
a Liquid Mixture Showing a Lower Critical Solution Temperature, Int. J.
Thermophys. 15, 647 (1994) and Thermal Conductivity of Water and 2-n-
Butoxyethanol and Their Mixture in the Temperature Range 305-350 K at
Pressures up to 150 MPa, Int. J. Thermophys. 16, 237 (1995). We thank
J. V. Sengers for pointing to this reference.
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Figure 5. Comparison of theory with Aniline-Cyclohexane data
(see text for the Refs.). We show the flow of f and w
found from a fit of the shear viscosity n and compare
our prediction with the mass diffusivity Dy. We also
compare with the Kawasaki amplitude R.
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Figure 6. Comparison of theory with 2-Butoxyethanol-Water
data (see text for the Refs.). We show the flow of
f and w found from a fit of the shear viscosity 1 and
compare our prediction with the mass diffusivity Dr.
The solid curves result of a fit of the uncorrected shear
viscosity data (open squares) and the dashed curves
from the shear viscosity data corrected for the regular
temperature dependence (open diamonds). We also
compare with the respective Kawasaki amplitudes R.
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Appendices

A Explicit results in one loop order for pure fluids

The static {-functions in one loop order are

1 3
Ccﬁ =0 3 Cr - EU ) Cu - Eu (Al)
and the dynamical (-functions
(d) _ _ 3 — 1o A9
T 4f I C)\t 24f . ( . )

The static vertex function is f‘¢¢ = 1. The dynamic vertex functions in this order
are found to be

02

o(d) 0 f sin” #

fos = F(I—T/ 5 ), (A.3)
T Jr T k2

02

old) o sin? 4 sin? @ cos? @ k'

ftszt{1+f—[/07—2/ : (1+ )]} @9
6 L/ (F +k2)2 L k)2 r k2

The e-expanded amplitude functions G and E are in one loop order

1 2 _ 1 2
G=-35 0 E=-2f(0) (A.5)

B Solutions of flow equations for pure fluids

The one loop flow equations (2.22),(2.33) may be solved analytically. We find for
the dimensionless mode coupling constant

ro-ale G e
and for T(9)
ro=r (RS [ G (5 )) T e

with the initial values fo < 2% and F(()d) at to.

C One loop (-functions for mixtures

The static {-functions are the same as above and the dynamical (-functions read

1 f?
241 —w?’

@W=-27 o= (o)

The static vertex function is Tys = 1. The dynamic vertex functions in this order
are found to be

o(d) 0 o(d) old)
02

o(d) 0 f sin” §
f z == F ]. - / o y C3
o0 ( r Jrr +k’2) (©9)
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P b {1 i [ i —ap ea (1 ) oy

6(1—w) T4k2)2 (T4k'2)2 Tk2

The e-expanded amplitude functions G and E are in one loop order

N _ 1
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KOE®DIMNIECHTU IIEPEHOCY B UMCTHUX PINVMHAX
TA CYMIIIAX IIOBJIN3Y KPUTNYHOI TOUKWN:
IIOPIBHAAHHSA PE3YJIBTATIB OJHOIIETJIEBOI'O

HABJIM>XKEHHSA 3 EKCIIEPUMEHTOM

P.®oak, I'"Moszep

IIpoBoguTLCST OTJIsAN 3aJI€3KHOCTI Bil HEACUMITOTUYHOI KPUTHY-
HOI TemmepaTypu KOe(illi€HTiB MepeHOCy B UNCTUX PITUHAX MOOIIM-
3y TOUYKN ()a30BOTO IIEPEXOAY Ta B CyMimax noOau3y TOUKU PO3-
IIapPyBAHHA PO3PAXOBAHUX Y HANHUKYOMY HETPUBIAJILHOMY HAOIM-
KeHHI peHopMaJizaniitaoi Teopii rpyn. [IBa muHamiuHMX (HOHOBUX
napameTpu Teopii (BimmosimHo Tpu masa cywimi) dikcyeTncs mpum
OTPUMAaHHI OHOTO 3 KOEe(iieHTiB nepeHocy (TyT B3ATO 3CyBHY B’s3-
kictp). Toni immi xoedinienTu nepenocy 3asbauaiorncs 6e3 Kom-
HUX TOTOHOUHUX HAapaMeTpiB. 3ampONOHOBAHUI AHAJI3 MOKA3YeE
moOpY Y3TOMKEHICTh 3 ACUMITOTAYHUM OTHOIETIEBUM 3HAUEHHIM
ammiitynu Kasacaki R = 1,056. Binxunenns xoeginieHTiB mepe-
HOCY B aCUMNOTOTUYHIN 061acTi BinOyBaeThLCSA 13-32 ONHONETIEBOTO
HADJIMKEHHS [T ACUMITOTUYHUX €KCIOHEHT.



