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The %eperalized collective mode approach proposed for the investi-
ﬁgtlon of time correlation functions of a dense fluid is now extended to
igher-order approximations. The generalized collective mode spectra
of a Lennard-Jones fluid have been calculated for longitudinal fluctua-
tions up to the nine-mode description and also for transverse fluctua-
tions up to the four-mode description using molecular dynamics. The
results are obtained as functions of wave vector. For longitudinal fluc-
tuations four new kinetic modes are found in addition to five modes
known previously. For transverse fluctuations we found the general-
ized hydrodynamic and three kinetic modes. A comparison of previous
works with the results of lower-order approximations has been made.

1. Introduction

Recently, a conception of generalized collective modes for the investigation
of time correlation functions (TCFs) of a dense fluid has been proposed by
Cohen, de Schepper et al [1,2] and developed in computer-adapted form [3].
The generalized mode description can be considered as a generalization of
the hydrodynamic models of a fluid [4-9] with the intent of constructing
a generalized hydrodynamic theory which is exact in the hydrodynamic
limit (the small values of wave-vector k and frequency w) and a reasonable
approximation for large k and w. The proposed approach appears to be
particularly promising in the context of developing methods of computer
simulations as it enables one to obtain the self-consistent description of
dynamical properties, using computer experiment data for lower-order TCFs
or, as an alternative, for static correlation functions (SCF's).

In the generalized mode approach the TCFs are represented as the sum
of partial terms, each being associated with the corresponding collective
excitation may be simply written via the eigenvector and eigenvalue of
a generalized operator of evolution. Certain of the generalized collective
modes can be considered as extensions of the usual hydrodynamic modes
[7,8] and tend to the well-known results in the hydrodynamic limit. In
particular, it was shown [2] that for longitudinal fluctuations three gener-
alized collective modes corresponding to the lowest eigenvalues reduce to
the heat and two sound modes, the eigenvalues of which vanish when k
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goes to zero. The other (nonhydrodynamic) ones are kinetic modes and
lead to the finite damping coefficients in the hydrodynamic limit. In addi-
tion to three generalized hydrodynamic modes, two kinetic ones have been
found [2] with the use of five-mode description by molecular dynamics (MD)
simulations. These results were obtained for a Lennard-Jones (LJ) liquid .
as the solution of the equations for TCFs in a Markovian approximation.
The higher-order SCFs were calculated by numerical differentiation of the
MD time correlation functions. The density-density, energy-energy, density-
energy and longitudinal momentum-momentum TCFs have been obtained
by MD simulations. From a weighted least-squares-fitting procedure the
memory functions (or the transport coefficients) that gave the best fit to
the MD correlation functions have been evaluated. The 5 x 5 TCFs were
found [2] in terms of the SCFs and the matrix of the generalized evolution
each element of which depends upon & but not upon t.

Thereafter, the natural question about influence of the next approxima-
tions on the generalized mode spectrum and the results for TCF's arises. As-
follows from mathematical treatment, the full spectrum of the generalized
evolution operator have to describe the TCFs exactly. This makes the in-
vestigation of the generalized modes in higher approximations all the more
important. In [3] we developed the previous approach [2] and as a result
the generalized collective mode spectra have been calculated for longitudinal
Auctuations in the seven-mode description and for transverse fluctuations
up to the three-mode description. It was shown that seven- (instead of five-)
mode approximation led to calculation of dynamical structure factor with
more accuracy. It must be emphasized that our method (3] of calculations
differs from [2] in two main points. First, the all SCFs functions were cal-
culated at once by MD simulations with the aim to avoid the additional
errors from the numerical differentiation. Second, the memory functions
in Markovian approximation could be presented via the hydrodynamic cor-
relation times and the SCFs for arbitrary set of dynamic variables. The
hydrodynamic correlation times were also found by MD simulations. This
means our scheme is free of any adjustable parameters and for studying
of the next approximation it is necessary only to find the corresponding
higher-order SCFs.

Moreover, it is interesting to apply the generalized mode approach for
the investigation of the transverse fluctuations and to consider the question
of the propagating excitation existence discussed previously in the literature
[7,8,15]. It is the goal of this paper to solve some problems stated above.

In this article, developing the method proposed in [3], we made a next
step in the investigation of high-mode approximations and considered nine-
and four- mode descriptions for longitudinal and transverse fluctuations,
respectively. It was shown that such high-mode approximations provide
an excellent agreement with MD data for TCFs and generalized transport
coefficients. The generalized collective modes are evaluated using our MD
data for the SCFs and hydrodynamic correlation times.

The outline of this paper is as follows., In Sec. 2 the set of dynamic
variables, the general properties of the TCFs, and MD experiment are de-
scribed. The equations for the longitudinal and transverse TCFs as well as
the results for the collective mode spectra are presented in Sec. 3. Results
of calculation for the TCFs, dynamic structure factor and the generalized
transport coefficients are given in Sec. 4.
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2. Time correlation functions

2.1. General properties

Let us consider a spatially homogeneous, isotropic system of N identical
point classical particles of mass m in volume V. We introduce operators of
densities of particles’ number n, momentum J and energy e

N
a(r,t) = Zé(r - (), (2.1)
i=1
N
J(r,t) = Z mo(1)8(r — ri(1)) (2.2)
N .
&(r,1) = 3 ei(t)8(r —ri(t)) , (2:3)
=1
where
Cei(t) = m"2(t) Z Bi5(t) | (2.4)
J =1(j#4)

7;(t) and v,(t) denote the posmon and velocity, respectively, of particle ¢
at time ¢. ®;;(t) = ®(r;;(t)) is a potential of interparticle interaction and
ri;(t) = |ri(t) — r;(t)|. For a closed system in the microcanonical ensemble
the total number of particles, the total momentum and the total energy
remain constants, i.e.

/ a(r,t)dr = N | (2.5)
J |

/ J(r,)dr = T | (2.6)
14

/ é(r,)dr = E . (2.7)

|4

By performing the spatial Fourier transformation, one can obtain the
following set of hydrodynamic microscopic variables in k-representation

A(k,t) = {n(k,1), J(k,1),e(k,t)} = {Ai(k, 1)}, (2.8)
where
1 N
n(k,) = / ii(r, 1) exp(ikr)dr = 7_— > exp(ikri(t)) , (2.9)

J(k,t) = \/Lﬁ/j(r,t) exp(ikr)dr = \/_val (t)exp(ikri(t)) , (2.10)

e(k,t) = r,t)exp(ikr)dr = —Ze,(t) exp(tkr(t)) . (2.11)

7w ]
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We also define the higher order kinetic microscopic variables A(P)(k,t) as
p-fold time derivatives of the corresponding hydrodynamic variables

APk, t) = 2 Ak
t)= — .
(k,1) = 5 Ak, 1) (2.12)
and consider the equilibrium time correlation functions
8 — (AP (s) - s
T U, t) = (AP (k1) A7) (=K, 0)) = (AP (k, 0) A (=R, ~1)) ,  (2.13)

where 4,5 = n,J,e and () denotes an equilibrium average.

Restricting an order of derivatives in (2.13) by the condition p+ s <
Qmaz, Where p,s = 0,1,2..., and taking into account that J(k,t) is a vector
with three scalar components, we can find that the [5(gmnqs + 1)]? scalar
combinations of functions ff:*(k,t) are in all. Most of these functions may
be expressed via other ones from this set. Therefore, it is convenient to
separate a base set of functions in such a way that all others can be obtained
from this set using a minimum of numerical operations. In order to do this
we have to describe some properties of TCFs under consideration. The first
group of properties is immediately evident from the definitions of dynamic
variables (2.8)-(2.12) and the TCFs (2.13). It is easy to show that

f5o(k,t) = fiF(—k,—t), (2.14)
Ref°(k,t) + ilm ff2°(k,t) = Refl*(=k,t) = dmfF°(~k,t),  (2.15)

s ’Lk -1,
w e, t) = — fIh (k1) (2.16)

Furthermore, from (2.13) and properties of differential operations we obtain

]
P
O ps

ffj+pl’s(k’t) = W 7 (kvt) ’ (217)
0 (ke V)lpys=q = (-1)lr—7'l 53 (k) t)|pr4st=q - (2.18)

The second group of properties follows from the fact that equations of
motion and the equilibrium average are invariant with respect to time and

coordinate inversions. Under time inversion the dynamic variables Agp)(k, t)
transform to ui(—l)pAgp)(k, —1), where y; =T 1, namely, g, = pte = 1 and
ug = —1. Hence we have that

D0k, t) = papi(=1)P+e fE7 (R, 1) (2.19)

Using coordinate inversion one can find that the dynamic variables Afp )(k, t)
change to mAg”)(—lc,t). Then we obtain

7 (k1) = pop 20 (k1) (2.20)

As evident from the properties (2.15) and (2.20), the functions ff°(k, 1) are
purely real for p;p; = +1 or purely imaginary for p;u; = —1. From the
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properties (2.19) it is apparent that the TCFs are even or odd with respect
to time depending on whether the sign of the factor p;u;(—1)P** is plus or
minus. Obviously, in the last case the corresponding SCF's are equal to zero.
The property (2.18) gives the possibility to consider arbitrary one TCF only
from the set of TCFs ff’}’s('k,t) for which p + s = ¢. Combining the prop-

erties (2.14), (2.19), (2.202 and taking into account that u? = 1 always we
find fF°(k,t) = (=1)P+* f3iP(k,1), i.e. TCFs is symmetric or antisymmetric
functions with respect to permutations of indexes.

Yet another group of properties for f7:°(k,) is connected with a sepa-
ration of the longitudinal and transverse components of dynamic variables
in an isotropic system. Let us direct for definiteness vector k along the Z-
axis in the Cartesian system of coordinates. Since equations of motion are
invariant with respect to particular coordinate inversion along one or two
axis, it can easily be shown that among the TCFs constructed on the binary
combinations of the components of vector quantities, nonzero elements will
have only diagonal components. In our case we have (A%(k,t)A*(—k,0)) =
(AY(k,t)AY(—k,0)). If the TCF is constructed as the binary combination
of a vector quantity and a scalar one, the nonzero result appears only for
the Z-component. Finally, owing isotropy of the system time correlation

functions do not depend on orientation of k-vector and depend only on
magnitude k = |k| , i.e. f2*(k,t) = fI°(k,1).

Using all properties mentioned above, we can separate a minimum num-
ber of the TCFs, so that the rest of TCFs for which p + 8 < gmar are
expressed according to (2.14)-(2.20) in terms of this base set by some sim-
ple manipulations. The choice of the base set TCFs is determined by the
kinds of acceptable numerical manipulations. If we allow the differentiation

in any order, the set of four TCFs can be used as the base set. For instance,

using the set of TCFs fan, fre, fee and f_(,?;) = fjagz = fyugy, the rest of
ones can be expressed in terms of these functions as at most (g + 2)-fold
time derivatives. However, an additional complication is the functions are
unknown in an explicit analytic form. Hereafter, we should determine these
functions numerically by the MD method. Since in simulations the TCFs
are commonly calculated with an accuracy, as a rule, no better than 1%,
the numerical differentiation of approximately calculated functions leads to
an appreciable increase of the error. For example, the computations showed
the error may be as an order of magnitude or even worse, the four-fold time
derivatives having been used. From this reason, if we want to have a reliable
data for all functions, an extended base set of the directly calculating TCFs
such that the rest of ones can be expressed in terms of this extended base
set not using any differentiations for TCFs which are non-zero in the static
limit or using only one-fold time derivatives for TCFs which are equal to
zero in static limit is more preferable. Such extended base set in the case
of gmazr = 4 may be chosen as follows

Fun(ks8), Fre(kst), fuelkst), £550(k,1), 139k t) = iFS0 (ks ),
FED k), fualk,0), F2 (k1) = iFD k1), 1§57k, 0), faslh, 1)

and includes the 13 TCFs, each of them is even with respect to time (non-
zero in static limit). Among these functions, the 11 TCFs are pure real and



Generalized collective modes of LJ fluid . .. 133

the 2 ones are pure imaginary. In such a way all [5(¢mqez + 1)]* functions
can been determined (see Table 1). The TCFs which are equal to zero in
the static limit are displayed in Table 1 as proportional to one-fold time
derivatives of corresponding functions from the base set.

Table 1. The time correlation functions ff°(k,t) for p+s < 4.

Non—

zero | 1j/q ] 1 2 3 4
part

Re | nn | fan(k) | ~fan(b0) | ~f5 00| ~ Pk |~ 155G

m | nd |~ fanlk) | ~ SR |~ FREG | ~ IR |~ D0

Re | ne | fae(kt) | ~faelkst) | ~FRKkD) | ~ DK |~ £

Re | 77 | FET (k1) | ~ 5700 | 15T (00 | ~ 1557 (Y FED (k1)

Im | Je | ~fre(kt) | FE(k1) ~ Sk, 1) £ (k) ~ (k1)

Re | co | folbt) | ~felkst) | ki) | ~fulkn) | fu(ht)

The explicit expressions for the derivatives of dynamic variables (2.1)-
(2.3) are

. N
J(k,1) = %J(k, t)= 71: Z{ai(t)-{—i(kvi(t))vi(t)}mexp(ikm(t)), (2.21)

é(k,t) = d (kt E{el(t)—{—-z(kvz(t))et(t}exp(zkrz(t)) (2.22)

\/—

j(k,t):%J(k,t) \/_Z{a,(t) (kv(1))*v; (6) +

+ i[2(kvi(t))ai(t) + (kai(t))vi(t)]}m exp(tkr;(t)) , (2.23)

(k1) = re(k,t) = E{e,(t) (kvi()Pei(t) +

z—l

d?
TN

T if2(kui(0)é(t) + (ka0))et)]} exp(ikri(t)) (2.24)
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where
a;(t) = i*v(t) = Z a; _ <I> 7'11
p PTRAAY tjy Qi = —— ( tJ) (2'25)
J=1(j#1)
. 1 X o
e,‘(t) = 2 Z m[v,-(t) + vj(t)]a,,-]- R (2.26).
J=1(j#i)

N
at)= ) %;{_szng'”hu (nﬁ——@Tmﬂﬁlig#ZQ},

§=1(j#1) N i
(2.27)
1 ¥ (v? - o3)
Gi)=3 X {m(“i+%’)au‘ - 5 (i) = [r5@"(r)-
J=1(3#4) Y
Vi + v;)7i{7ivi;
() 22Ty ’)} (2.28)
ij
and
d®(r - d2P(r
¥(r)= T a2 20D o

The microscopical expressions (2.21)-(2.24) and (2.25)-(2.28) were used for
the MD simulations.

2.2. Molecular dynamics simulations

We have studied a system composed of N = 256 particles interacting
through a cut-off Lennard-Jones potential &(r) = &, ,(r,7) at constant

volume V = L3, where

&, (r,r.) = { ®.,(r) 0 @, (re) ;”;: f : (2.29a)
and
®, ,(r)= 4€LJ[(0LJ/1')12 - (O'LJ/T)G] (2.29b)

is the exact LJ potential. The simulations have been performed at nearly
the same thermodynamic point as considered in [2,3] for a reduced density

n* = VO' = 0.845 and areduced temperature T* = kgT /¢, , = 1.706 with
the aim to compare our results with the previous ones. We used r. = L/2,
where L = ULJ(N/n*)l/3 = 6.7160 , is the length of the simulation box
edge, so that @, ,(r,7,) was very close to the exact LJ potential.

In our MD experiment the toroidal boundary conditions were applied
and the equations of motion were integrated using the Verlet algorithm .
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in velocity form with a time increment of At = 0. 0057,, where 7, =
LJ(m/eLJ)l/z' In order to ensure a stability of the full energy E of the

system, where E/(Ne¢, ;) = 3T* + w* and w* =(U)/(Ne¢,,) = —4.765is a
reduced potential energy per partlcle velocities of partlcles were moderately
adjusted by rescaling of the kinetic energy after every 100 time steps, so that
deviations of £ from the constant level did not exceed 0.14%. The simu-
lations were started from fixed configuration of positions in the form of a
face-centered cubic lattice and random velocities with the Maxwell distribu-
tion. The system was allowed to achieve equilibrium for 2 x 10*At = 1007,
time steps. The observation time over equilibrium state of the system was
2 x 10°At = 10007,. Every 8-th configuration was taken into account in
computation of equilibrium averages. The 13 basic TCFs were calculated
directly by definition (2.13) with time step 2At = 0.017, in the interval
7 € [0,275] for k = [1,2, ..., 25]kmin, Where kmin = 21/L = 0.936/0 ,
The reduced static correlation functions

" (k) = f°(k) 757 [wiz;

from the base set p + s < 4, where z, = 1, z; = (meLJ)l/z, Te = €,
and f5°(k) = fF°(k,t = 0), are presented as depending on wave-vector in
Fig. 1 and Fig. 2 (a)-(c). These functions were calculated directly in MD
simulations from definition (2.13). Static correlation function momentum-

momentum is evaluated analytically
FETD (kY = mkpT
Additional static correlation functions
. 3L LT
f(.sz_(k) =if Q) fralh), 1Dk

for which p+ s = 6 (Fig. 2 (d)-(f)), were calculated as two-fold time deriva-
tives at ¢t = 0 of the corresponding lower-order basic TCFs using the prop-
erty (2.17):

f(JfZ_(k)— hm (L)(k t),

-0 8t2
Fy o (k) = —lim O fek,)
(LT (L T)
FD(k) = - limg at2 (k1) .

As was mentioned above wave-vector-dependent quantities were calcu-
lated for the discrete set of k-vectors accessible in the simulating. The
values for investigated quantities in these grid points are shown in Figs. 1,
2 by circles. Solid lines represent an interpolation data for intermediate
values between the grid points and extrapolation to k = 0. We reduced all
SCF's presented in Figs. 1, 2 (except Fig. 1 (d)) in such a way that they are
even functions with respect to wave-vector and accept finite non-zero values
when £ — 0.
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Fig. 1. MD results for the reduced static correlation functions versus
wave-vector: (a) density-density; (b) density-energy; (c) energy-energy;
(d) momentum-energy (p = 1,3 = 0); (e) energy-energy (p = s = 1); (f)
momentum-momentum (p=s=1) longitudinal (upper curve) and transverse
(lower curve).
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Fig. 2. MD results for the reduced static correlation functions versus
wave-vector: (a) momentum-energy (p=2,8=1); (b) energy-energy (p=
$=2); (¢) momentum-momentum (p=s=2) longitudinal (upper curve) and
transverse (lower curve); (d) momentum- energy (p=3,s=2); (e) energy-
energy (p = s = 3); (f) momentum-momentum (p = s = 3) longitudinal
(upper curve) and transverse (lower curve).



138 . | I. P. Omelyan, I. M. Mryglod

The MD data for the hydrodynamic correlation times are shown in
* Fig. 3. These quantities are defined by the following expressions:

Tan(k) = fnnl(k) me(k,t)dt , (2.30)
rue(k) = ﬁﬁjfm(k,t)dt, (2.31)
ree(k) = f—e;(—k—)jfee(k,t)dt , (2.32)
AD(k) = mjfg)(k,t)dt. (2.33)

T':;(’C) Ta/(kou)z

e

Fig. 3. The reciprocal of the hydrodynamic correlation times as func-
tions of wave-vector: density-density (circles), density-energy (squares),

energy-energy (triangles) and transverse momentum-momentum (open cir-
cles).

The hydrodynamic correlation times density-density (2,30), density-energy
(2.31) and energy-energy (2.32) are connected with longitudinal fluctua-
tions, while momentum-momentum (2.33) corresponds to transverse fluctu-
ations.
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The generalized thermodynamic quantities, namely, the generalized en-
thalpy per particle h(k), the generalized thermal expansion coefficient a(k),
the generalized specific heat at constant volume per particle C'y (k) and the
ratio of specific heats y(k) at constant pressure and constant volume, are
shown in Fig. 4. An analytic representation for these quantities via the
SCPFs are the following (see, for instance, [2,5])

(k) = kBlTk Bk, (2:34)
Culk) = 1o Ueelk) = LK)/ FunlB)] (2.33)
k)T = 5 [A(k) fan(k) = fre(R)] (2.36)

ot

v(k) = Cv (k) Cp(k) = Cy(k) + kT2 a*(k)/ fan(k) . (2.37)

3
[
X 2
< &
= g
0.0 .
0 5 10 15
kUu
1.8
(c) (d)
22t 1.6
-3
N
—
E NREE:
S o
L 20
1.2
1.8 —
0 5 10 15 04 5 10 15
ko, ko,

Fig. 4. Generalized thermodynamic quantities as functions of wave-
vector: (a) enthalpy per particle; (b) linear-expansion coefficient; (¢) spe-
cific heat at constant volume per particle; (d) the ratio of spec1ﬁc heats.
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Practically, the results presented in Figs. 1, 2 and 3 give the full in-
formation needed for the subsequent calculations of the generalized mode
spectrum and the 9 X 9 longitudinal and 4 x 4 transverse TCFs, as we
shall see later. Moreover, four SCFs and four hydrodynamic correlation
times, namely, density-density, density-energy, energy-energy and transverse
momentum-momentum, completely determine wave-vector-dependent gen-
eralized transport coefficients. In [2] these coefficients and some higher-order
SCFs were considered as adjustable parameters for each value of wave-vector
using a so-called weighted-squares-fitting procedure to ensure the best fit
to MD hydrodynamic TCFs. Obviously, this procedure may lead to unpre-
dictable results that depend on many external factors, such as, for example,
choice of set MD TCFS to which the best fit are apphed In our article
these quantities are evaluated directly from definitions and free from any
external noise.

3. Generalized collective modes and time correlation func-
tions in a markovian approximation

3.1. General theoretic framework

Let us define Fy(k,t) as a M X M square matrix, each element of which is
a TCF. Taking into account the fact that the longitudinal and transverse
fluctuations can be studied independently of one another, we should keep
in mind that the matrix Fy(k,t) in each specific case is formed by the set
of longitudinal or transverse dynamic variables A(k,t) (2.9)-(2.11). These
variables satisfy the equation of motion

942’:;” = iLA(K, 1) (3.1a)
with a formal solution
A(k,t) = elPtA(k,0) = et A(k) (3.1b)
where
8<I>,, 0 o
- — 3.1
L= ;m ; Z or; (6’0,- a'l’j) (3.1¢c)

is the Liouville operator.
For longitudinal components the corresponding set is

B(k) = B (k) = col
{n(k), JO(k), e(k); iLI)(k), iLe(k); (:L)*J P (k), (iL)?e(k); ...}, (3.2a)

where BU)(k) is a vector-column with M = M) components and J{#) (k)
is Z-component of J(k) in the Cartesian system of coordinates. In case of
transverse components the vector-colimn B)(k) is

Bk) = BU(k) = col{7®¥) (k),iLT=¥)(k), (GLY2JEY(k),..}  (3.2b)

and has M = M) components, where J(®¥) (k) is X- or Y-component of
J(k). In expressions (3.2) we used that k = (0,0, k).
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Then, for the matrix of TCFs

Fo(k,t) = (B(k)e™ "t BT (k)) | ©(3.3) B

the following equation

%Fo(k,t) — (k) Fo(k, 1) + / Sk, T Folk,t — )dr =0 (3.4)
0

could be derived by different methods. In (3.4) iQ(k) and ¢(k,7) are the
frequency matrix and the matrix of the memory functions, respectively. One
way of deriving (3.4) is based on the Mori projection operator method which
was used, for instance, in paper [2]. An alternative method is the method of
Zubarev’s nonequilibrium statistical operator (NSO) [10,11]. By the NSO .
method, the matrix equation (3.4) has been derived for the set of dynamic
variables (3.2a) in [12]. For the matrices iQ2(k) and ¢(k, ) we have

(k) = (LB B E)NBE B )™ = o Folk, OlicoFs™ (£,0), (3.5)

#(k,7) = (1 = P)iLB(k)exp{—(1 — P)iLT}(1 - P)iLB*(k))x
x (BRBHR)Y,  (36)

where P is the Mori projection operator defined as follows

P...= S (... BH(K) (B()BY(K))™ B(K) (3.7)
kl
and Fo(k,0) = (B(k)B* (k) (3.8)

is the matrix of the SCFs. It should be stressed that according to (3.6) the
memory functions have to be calculated with the generalized operator of
evolution exp{—(1 — P)iL7}. The alternative representation can be found
for ¢(k, 7) in which the time depending part is described by usual operator

of evolution exp{—iL7}. In this case the derivatives Fi(k,?) = £ Fy(k, 1)
and Fy(k,t) = %Fl(k,t) appear. By the NSO method, such representation

has been obtained, for example, in Ref.[13]. Then for the Laplace transform
of ¢(k,t) we could write

Bk, z) = / e~ gk, t)dt =
0
= {Fl(k, Z)Fo_l(k, Z)Fl(k, Z) - Fz(k, z)}Fo_l(k, 0) ’ (3.9)

where z = 0 + w, ¢ > 0 and
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Folk,z) = / e~ Fo(k, 1)dt (3.10)
0

Fu(k,2) = / e~ Fy(k,0)dt = 2Eo(k, 2) — Fo(k,0),  (3.11)
0

Fy(k,z) = /e‘“Fg(lc,t)dt = 2Fi(k,z) - Fy(k,0).  (3.12)
0

In terms of the Laplace transform Fy(k, z), the matrix equation (3.4) is
[2] — iQ(k) + ¢(k, 2)] Fo(k,z) = Fo(k,0) . (3.13)

In view of (3.10)-(3.12) and taking into account the explicit expressions (3.5)
and (3.9), it can easily be shown that the matrix equation (3.13) is indeed
the exact relation.

This is evident from expression (3.6) that, if we choose for B(k) the most
slowly variables, the elements of the matrix of memory functions constructed
on projected variables have to fall faster with time than the elements of
matrix Fo(k,t). For example, the hydrodynamic variables (2.9)-(2.11) in the
limit k& — 0, according to the conservation laws in microcanonical ensemble
(2.5)-(2.7), do not depend on time and remain constants, i.e. vVNn(k =
0,t) = N, VNJ(k = 0,t) = J and v Ne(k = 0,t) = E. This means that
Markovian approximation ¢(k,z) ~ ¢(k,0) for the memory functions can
be used as good zero-order approximation. In this case we have

/ B(k, ) Fo(k,t — 7)dr o= / $(k, ) Folk, )dr = $(k, z = 0)Fo(k,t) -
0 . 1}

(3.14)
In a Markovian approximation the equation (3.13) takes the form
(2] + T(k)] Fp(k,2) = Fo(k,t =0), (3.15)
where i )
T(k) = —iQ(k) + $(k,0) = Fo(k, 0)F5 " (k,0) (3.16)

and I is the unit matrix. From the structure of Eqs. (3.13), (3.15) and
the form of matrix 7'(k) it is immediately evident two consequences for

Fu(k, 2), namely,
Fu(k,z2=0) = Fo(k,2=0), (3.17)

Far(k, 2)| 200 = Folk, 2)]5m00 - (3.18)
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The first equality (3.17) states about the coincidence of zero-order moments
in t-space for genuine and approximated TCFs, i.e.

o0 oQ
/ Fa(k, t)dt = / Folk, t)dt . (3.19)
0 0
From (3.18) we have
Fur(k,t = 0) = Fy(k,t = 0) (3.20)

ie. Fp(k,t) in the static limit (¢ = 0) leads directly to exact results.
The equalities (3.19) and (3.20) are very important from the view-point
of the sum rules. For instance, if the dynamic variable of (sL)'J()(k) ~
(iL)"*'a(k) is included in the set of (3.2a), one follows from (3.19), (3.20)
that the sum rules for TCF of density-density have to be satisfied up to
(21 + 2)-th order. Furthermore, the first moments in time space of the
genuine and approximated TCF are equal in magnitude. This statement is
valid only in the case when the matrix ¢(k,0) is calculated exactly, or, in
other words, the equality (3.19) is satisfied exactly. .

Equation (3.15) may be solved analytically in terms of eigenvalues z,

and eigenvectors X, = || X; ol of the T(k)-matrix

M
Y Tii(k)Xja = 2a(k) Xia » (3.21)
j=1

where ¢ = 1,2,..., M. Hence we obtain

M .
s Gii(k)
y =y —F— 3.22
FM(k,z) ;Z—{an(k) ’ ( )
where
.. M ~ -~ .
Gi(k) =3 XioX 1 (k,0) (3.23)
=1
and matrix X~ is the inverse of X = | X4|l. In time-representation the
solution (3.22) has the form
M
Fy(k,t)= Z G (k) exp{—2a(k)t} , (3.24)
a=1

i.e. function F’ i}(k, t) can be expressed as a sum of M exponential terms, and
each term is connected with effective collective mode z,(k). The amplitude
Gi(k) describes a partial contribution of mode z,(k) in the time correlation
function Fyj(k,t). Tt is important to note that all quantities in the right-
hand side of (3.24) depend only upon k. The expression (3.24) is valid for
any M and can be considered as more general formulation of the result
obtained previously [2] for M(E) = 3,5.



144 I P. Omelyan, I. M. Mryglod

Therefore, in order to find the analytic solutions of (3.24) for TCF's in
Markovian approximation, it is necessary to calculate the elements of T'(k)-
matrix. For calculation of i2(k), according to definition (3.5), it is quite
sufficient to know the corresponding SCF's, whereas for calculation of the
matrix of memory functions ¢(k,z) (or ¢(k,t)) some additional informa-
tion is required. There exist many successful descriptions in the literature
(see, for instance, [5-8,14]), which use so-called k- and {-dependent memory
functions. The main idea of such method is to find approximate expressions
for memory functions using the properties of TCFs, or, alternatively, as ap-
proximate solutions of the equations for memory functions and TCFs. Every
so often some parameters of approximate memory functions are considered
as adjustable parameters to have been found from a fitting procedure for
TCFs. In particular, such approach has been applied in paper [2] where
the memory functions in Markovian approximation were obtained using a
weighted-squares-fitting procedure ensured the best fit to the hydrodynamic
TCFs. As mentioned above, the equality (3.19) can be broken in this case,
with a consequent violation of higher-order sum rules.

Considering the zero-order moments (3.19) in time space as obtained
directly by MD simulations, an alternative method for calculation of the
generalized collective mode spectrum and the TCFs can be proposed. In
this case, using the properties of the TCFs discussed above, it is easy to
show that for description of longitudinal (transverse) fluctuations of a sim-
ple fluid it is quite sufficient to calculate the first three (one) zero-order
moments Fy’(k,0) of the TCFs in time space or so-called hydrodynamic
correlation times for arbitrary M(F) > 3 (M (T) > 1). Following the T'(k)
matrix can be found from (3.16) and the equation (3.21) for the eigenvalues
24(k) and eigenvectors X, can be solved. Such approach gives the self-
consistent description of the TCFs and ensures the equalities (3.19) and
(3.20). Therefore, no adjustable parameters are needed for calculation of
T(k). For the investigation of the next approximation in generalized mode
description it will be necessary only to find the corresponding higher-order
SCF's.

Equations (3.15) and (3.16) together with (3.21)-(3.24) are the key re-
sults which will be used in our calculations. However, these equations
have yet to be complemented by explicit expressions for matrices (k) =
Fo(k,t = 0) and Fp(k,0) in order to be applicable to actual calculations.
Consider now the cases of longitudinal and transverse fluctuations in more
detail.

3.2. Generalized longitudinal collective modes

Choosing the set of initial microscopic variables in the form of (3.2a), we
obtain T(k) = TE)(k), where

T (k) = F§ (k, 0)[F§") (k, 0] (3.25)
and

FM(k,1) = (BO(k)e " B *(k)) . (3.26)

Taking into account the properties listed in Sec. 2, we can express all el-
ements of matrices FéL)(k) = FéL)(k,t = 0) and FéL)(k,O) via the SCFs
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and the hydrodynamic correlation times. Then the matrix FéL)(k) takes

the form
fo 0 fee =k 00 kD) 0
L : P F
0 Fars 0 0 i - 0 0 if$0
fae 0 fee  —ifS9 0 0 —fee D0
AR B B B L
. H(L) . s F(L)
0 if5, 0 0 fee —if3; 0 0 —fez
(L) F(L (L) ; fLE
0 £3 0 0 i) A5 0 o =it
1 fL) _f.. : F(L) - : F(L)
kfje 0 f:a zfjé 0 0 fCC —1f_']",‘; 0
—ikf 0 —iftD 0 0 if s g 0
. Jé JJ
- #(L) . : F(L)
\ 0 —'lfjé 0 0 _.fec ’f}é 0 0 fe & )

where M(F) = 9 and we put m = 1. FéL)(k) is a Hermitian matrix.
Similarly, FéL)(Ic, 0) has the form

Tanfnn ji‘fnn Tnefn.e 0 fng —lkf\(]{;) 0 0 —k‘fgle‘) \
£ fan 0 L 0 o —ifR g o
Tnefne %fne Teefee 0 fee “'.fgf) 0 0 _féé

. L AL
I A B S\ N i S L I 74
—fre 0 ~fee if_(j];) 0 0 fee —if(ji) 0
—ikfB 0 i D o 0 i o 0
0 —ifgi') 0 0 ~fie  if5D 0 0 fa
(L) F(LY  _ p(L) ; f(L)
0 i 0 0 —ify, f5; 0 0 i
F(L) .. ; 7(L) — fss  F(L)
k kfjc 0 fee _’fje' 0 0 f“ lf_';;, 0 /

Now we are in a position to perform the calculations using MD data for
the SCFs from the base set and for the hydrodynamic correlation times.

The obtained results for the generalized longitudinal collective modes
in five-, seven- and nine-mode approximations are presented in Figs. 5, 6.
Using the terminology proposed in [1,2], we see that there are two types
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o_f generalized collective modes. Of all the eigenvalues of TL)(k), three
eigenvalues vanish when k goes to zero. They reduce to three hydrodynamic
modes independently of M (L) and have the same asymptotic behavior in this
limit.

The three generalized hydrodynamic modes are the following;:

(a) two propagating sound modes with the eigenvalues

202(k) = a,(k) + iws(k) (3.27)
for which in the hydrodynamic limit £ — 0 we have the well-known result
o,(k) >~ Tk? , ws(k)~Ck, (3.28)

where T is the sound-damping coefficient and C is the adiabatic velocity of
sound as given by linear hydrodynamics. The results of calculations for the
sound propagation w,(k) and the sound damping o,(k) as functions of wave
vector k are shown in Fig. 5a and Fig. 5b, respectively.

(b) @ heat mode with pure real eigenvalue

zi(k) = on(k) (3.29)
for which in the hydrodynamic limit we have
on(k) ~ Drk?* | (3.30)

where D7 is the thermal diffusivity. The obtained results for op(k) are
shown in Fig. 5c.

We see in Figs. 5a, 5b, and 5c¢ that the results for eigenvalues of the
generalized hydrodynamic modes have the tendency to convergence with
increasing of M(L).

It is necessary also to note that as pointed out in [2] the results for eigen-
value of generalized heat mode are practically the same for any considered
M) around ko, ; ~ 6 where the static structure factor S(k) = faun(k) has
the first maximum. The reason is that the coupling of density and energy
fluctuations (proportional to [y(k) — 1]) is weak at this range, as is seen in
Fig. 4d, and hence the viscoelastic theory approach can be used.

All other eigenvalues of TI)(k) approach finite, real values when k goes
to zero (see Figs. 5d, 5f and 6b). They correspond to so-called kinetic modes
which give the finite damping coefficients for small k and are irrelevant in

hydrodynamic limit. Just as in [2], for M (L) = 5 we found two kinetic modes

zgﬂ)(k). These modes with dispersion wg (k) and the dampings 01(,\.1-’2)(k)

are complex-conjugate for ko, ; > 1 (U%)(k) = a)(,\.?)(k)) and pure real for

ko, < 1 (wk(k) =0 and ag)(k) # of‘?)(k)). In contrary to the previous
results [2] where the kinetic modes were observed as real up ko, , = 3.5
as well as in the regions 5.5 < ko, ; < 6.0 and 10.5 < ko, , < 11.0, we
found a pure diffusive behavior of kinetic modes only for ko, , < 1. For
ML) = 7 we obtained additionally two new kinetic modes and behavior of
the previously discussed kinetic modes slightly changed. The corresponding
results are given in Figs. 5e and 5f. For M (L) = 9 we have six kinetic modes.
They are presented in Figs. 6a, 6b. We note that the kinetic modes change
with ML) in a seemingly arbitrary and nonconvergent way, much like as
observed in hard-sphere fluids [1].
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Fig. 5. Generalized longitudinal mode spectrum of a LJ fluid at n* =
0.845 and T* = 1.706: (a) sound dispersion; (b) sound damping; (c) heat
mode (results of five-, seven- and nine-mode approximations are shown as
squares, triangles and circles, respectively); (d) dampings of kinetic modes
for five-modes; (e) dispersions of kinetic modes for five-(squares) and seven-
(circles) modes; (f) dampings of kinetic modes for seven-modes.
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Fig. 8. Generalized longitudinal mode spectrum of a LJ fluid at n* =
0.845 and T* = 1.706: (a) dispersions and (b) dampings of kinetic modes
for nine-mode approximation.

It should be particularly emphasized that the real parts of the hydro-
dynamic eigenvalues are less than the real parts of all kinetic eigenvalues
and remain well separated from them as long as ka,; < 3. Thereafter
the generalized sound modes mix with kinetic modes and the last ones mix
each other in complicated way. Such result is also closely similar to that in
hard-sphere fluids [1].

The results presented in this article for collective mode spectra in the
cases ML) = 5 7 and M) = 2,3 coincide with the corresponding ones
of paper [3] in grid points for wave-vector. But for intermediate values
between the grid points and extrapolation to k — 0 we used here somewhat
advanced procedure which allows to identify modes between themselves with
more accuracy. As a result in the case of M (L) = 7 some modes for medium
and large values of wave-vector are classified here more correctly than in (3]

3.3. Generalized transverse collective modes

For investigation of the generalized transverse modes the initial set of mi-
croscopic variables can be taken in form (3.2b). Then we obtain for T(k) =

T (k)
TO(k) = Ok, 0)[FO k071, (3.31)
where |

FD (k1) = (BD(k)e= T BD +(k)) . (3.32)

The matrices FéT)(k) = FéT)(k,O) and F’éT)(k,O), using the properties of
TCFs, can be written in the following forms
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w0 SR 0 )

T By o -

-Dwy o Dm0

\ 0 f(T)(k) 0 f(.T?..(k)

and

R OYa O 1 O R ‘”(k) \'

ﬁéT)(k,o); A I
0 Dy o k)
A 0 "”(k) 0o/

where M) = 4, Tt is easy to see that F(T)(k) is a real symmetric matrix

and F( )(k 0) is a real anti-symmetric matrix. '

The obtained results for the generalized transverse collective modes in
two-, three- and four-mode approximations are shown in Fig. 7.

For M) =1 a pure diffusive mode

1
8= D

with the well-known asymptotic Dk? at k — 0 [7,8], where D is the kine-
matic shear viscosity, is found (see Fig. 3).
In two-mode description we have two complex-conjugate modes

2k = o{(k) £ iwy(k), (3.34)

(3.33)

for ko, > 1.5 (o m(k) =0 2)(Ic)) or two diffusive modes with pure real

exgenva,lues for ko, ; < 1.5 (o, 1)(l;:) #0 2)(k:), wq(k) = 0). In hydrodynamic
limit an elgenvalue one of them go to zero with asymptotic of Dk? and
another one gives finite damping coefficient that is typical for kinetic modes.

For M(T) = 3 the diffusive mode with pure real eigenvalue appears
again and two comple:c-conjugate kinetic modes are found everywhere over
the region of k. According to the terminology discussed before the first one
is so-called the generalized hydrodynamic mode and has the well-known
asymptotic behavior when k goes to zero.

Finally, for M{T) = 4 we have one hydrodynamic mode with asymptotic
of Dk? and three kinetic modes.
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Fig. 7. Generalized transverse mode spectrum of a LJ fluid at n* =
0.845 and T* = 1.706: (a) dispersions and (b) dampings for two-(squares)
and three-(circles) mode approximations; (¢) dispersions and (d) dampings
for four-mode approximations.

In view of its importance, we make a few remarks with reference to the
behavior of transverse collective modes. First, just as in the case of lon-
gitudinal fluctuations, the real part of the hydrodynamic eigenvalue is less
than the real parts of the kinetic eigenvalues at range of small k, namely,
for ko, ; < 1. Thereafter, the mixing with kinetic modes is observed. Sec-
ond, the question about the existence of propagating transverse modes,
discussed previously in literature [8,15], within the conception of general-
ized modes is solved as follows. The propagating transverse modes for a LJ
fluid can be observed as the damping generalized kinetic modes (M (1) = 3)
for ko, , > 1. For smaller values of k the corresponding collective excita-

tions are overdamped. This is consistent with earlier estimates [8,15] by
single-relaxation-time approximation and computer-experiments. We see in
Fig. 7b that in three-mode description the real part of kinetic eigenvalues is
less than the real part of hydrodynamic eigenvalue for ko, ; > 1.5, and there
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is good indirect evidence that the single-relaxation-time approximation can
be used for larger values of k as noted by Levesque et al [15]. In two-mode
approach the transverse fluctuations are described by two-time relaxation
for ko, , < 1 and by the propagating modes for ko, ; > 1. In some sense
this result is very close to the conclusion of Ref.[15], where it was found
that MD data could only be accounted for if one have introduced at finite
k’s the long-time tail which tends to disappear when k increases.

4. Discussion

In the present paper, the generalized collective mode approach is developed
in a form which is free from any adjustable parameters and convenient for
the study of higher-order approximations using MD simulations. For the
subsequent calculations of the TCFs and collective mode spectrum, one
needs only information about the SCFs and the four hydrodynamic corre-
lation times. For comparison with the previous results [2] we have consider
nearly the same thermodynamic point, namely, n* = 0.845 and T = 1.706,
at our MD simulations. The generalized collective mode spectrum have
been calculated for longitudinal fluctuations in the nine-mode description
and for transverse fluctuations in the four-mode description. We note that
the analysis of the obtained data enable us to make some important conclu-
sions about the dynamical properties of considering system. In particular,
as follows from behavior of transverse modes, the shear waves can be ob-
served for ko, ; > 1 and these propagating excitations are in fact the kinetic
modes.

A weighted least-squares-fitting procedure have been used to determine
the memory functions by de Schepper et al [2]. This means three transport
coefficients were considered as adjustable parameters for each value of k.
On the other side, it is necessary to use a fitting procedure for each set of
dynamic variables in order to compare five-, seven- and nine-mode approx-
imations. Moreover, a fitting procedure may give results which correlate
well with MD data for the lower-order TCFs known from MD experiment,
but not so good for the higher-order TCFs. In our approach the memory
functions could be determined by the set of the hydrodynamic correlation
times and the SCFs. All these quantities have been calculated by MD sim-

“ulations. The same set of the hydrodynamic correlation times have been
used for ML) = 5 7.9 and M(T) = 2,3,4. As far as we known, there are
no such data have been published for the cases M (L) = 9 and MT) = 4.

It should be particularly emphasized that the proposing approach is
closely connected with the memory-function formalism [5,7,8]. The results
obtained by this formalism, in particular, for MI) = 3 [5,7,8], ML) =5
[2,7,12], M) = 1 and MT) = 2 [7,8], can be reproduced using the set
of so-called orthogonal dynamic variables. The orthogonal variables and
the variables (3.2) are related to each other by linear transformation. This
means that the correct microscopic expressions for the memory functions in
a Markovian approximation via the SCFs and the hydrodynamic correlation
times can be derived.

The investigation of high-mode spectra gives the possibility to make
once more important conclusion. All hydrodynamic and the lowest kinetic
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modes converge with increasing of M anywhere in the domain of k-space.
In particular, at ¥ — 0 we found the same asymptotic coefficients T, C,
Dy for ML) = 3,5.7,9 and D for MD) = 1,2,3,4. The results for some
thermodynamic and transport quantities in the 11m1t k — 0 are given in
Table 2. These quantities were found by extrapolation of the MD data
computed at finite values of k to k = 0.

Table 2. The thermodynamic and transport properties of a LJ fluid at
reduced density n* = 0.845 and reduced temperature T* = 1.706.

Extrapolation

S(0) = 0.049 (0.048)
h(0)/¢,, = 4.96 (5.28)

a(0)T = 0.27 (0.25)
Cy(0)/kp = 2.31 (2.33)

7(0)= 1.65 (1.55)

Crofo,, = 7.60 (7.43)
I'ry/o? = 2.98 (2.88)
Drryfo? = 2.39 (2.35)
2 _
DT,/ULJ—- 2.73

Mo, ,lke = 7.69 [8.41]
N0, ,/m = 2.31 [2.28]
(o0, ;/m= 0.64 [0.58]

The results obtained by de Schepper et al [2] are given in round brackets.
Transport coefficients thermal conductivity A, shear 7 and bulk ( viscosities
calculated using Green-Kubo formulas are displayed in square brackets.

Using the results obtained for the generalized collective mode spectrum,
we can calculate the 9 x 9 longitudinal and 4 x 4 transverse TCFs. As
an illustration, we demonstrate here our calculations of the density-density
(Fig. 8) and transverse momentum-momentum (Fig. 9) normalized time
autocorrelation functions

B (B, 1) = frn(ks 1)/ fan(k) ,  ®ra(k, )T = FD k1) £ (k) (41)
fork =[1,3,5,7,10,15] kpmin, performed in MY = 5,7,9and M(T) = 2,34
ML) M(T)

fnlbyt) = Y GEr(k)e 5@ {0k )~ S G (ke B (4.2)

=1 a=1
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Fig. 8. Density-density normalized time autocorrelation function of a
LJ fluid at n* = 0.845 and T* = 1.706 as depending on time ¢ for six fixed
values of wave-vector k, namely, ko, ,=0.936 (a), 2.807 (b), 4.678 (c), 6.549
(d), 9.355 (e), and 14.033 (f). The results of the five-, seven- and nine-
mode approximations are plotted by the long dashed, short dashed and solid
curves, respectively. The MD data are shown as circles. For kaw=6.549

the curves are indistinguishable.
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Fig. 9. Momentum-momentum transverse normalized time autocorre-

lation function of a LJ fluid at n* = 0.845 and T* = 1.706 as depending on

time ¢ for six fixed values of wave-vector k, namely, ko, ;=0.936 (a), 2.807
(b), 4.678 (c), 6.549 (d), 9.355 (e), and 14.033 (f). The results of the two-,
three- and four-mode approximations are plotted by the long dashed, short

dashed and solid curves, respectively. The MD data are shown as circles.
For ko, ,=0.936 the curves are indistingnishable.
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The dynamic structure factor

S(k,w) = Re [ exp(=ict) fan(h, )t (4.3)

performed in five-, seven- and nine-mode approximations

Lpe 'S _Go(h)
S(k,(d) ™~ ;T—Re o‘z::l m (44)

is shown in Fig. 10.

As an example of calculations for the generalized transport coefficients,
we consider the wave-vector- and frequency-dependent shear viscosity which
is connected with transverse fluctuations

nm -~ .
n(k,w) = 857 (k7 = iw) (45)

where the memory function can be expressed in terms of time correlation
function as follows

o -1
B (k2 = iw) = [ / e—%u(k,t)’"dt] —iw . (4.6)
/e |

Wave-vector-dependent shear viscosity

nm 1

—_ 4.7
K i3 k) o

(k) = n(k,w=0)=

is directly connected with the transverse momentum-momentum hydrody-
namic correlation time (2.33) (Fig. 3). In the generalized mode approach
we have obtained

M(T) M(T) Gi'](k)

-1
n(k,w) ~ ?E’%’l— Z Gi-’(k) |:Z m:\ — 1w ‘(4.8)
a=1 «

a=1

for M(T) = 2.3,4. Real #/(k,w) and imaginary 7"(k,w) parts of the gen-
eralized shear viscosity n(k,w) = n/(k,w) — i""(k,w) are shown in Figs. 11
and 12, respectively.

As we can see in Figs. 8-12, the accuracy of calculations increases as the
order of M increases. In the range of the first maximum of the static struc-
ture factor (k =~ Tkumin), the results for the density-density time correlation
function (Fig. 8) and dynamic structure factor (Fig. 10) depend almost not
at all on the order M) of used approximation. This fact is consistent
with the previous results [2] and favours the view that a self-diffusion pro-
cess dominates the relaxation of density fluctuations for ko , ~ 27 where
S(k) has a sharp maximum. In the range of k = kpin the results for the
momentum-momentum transverse time correlation function (Fig. 9) depend
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Fig. 10. Dynamic structure factor of a LJ fluid at n* = 0.845 and T™ =
1.706 as a function of frequency w for six values of wave-vector k, namely,
ko, ,=0.936 (a), 2.807 (b), 4.678 (c), 6.549 (d), 9.355 (e), and 14.033 (f).
The results of the five-, seven- and nine-mode approximations are plotted
by the long dashed, short dashed and solid curves, respectively. The MD
data are shown as circles. For ko ;=6.549 the curves are indistinguishable.
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Fig. 11. Shear viscosity (real part) of a LJ fluid at n* = 0.845 and
T* — 1.706 as a function of frequency w for six values of wave-vector k. The
results of the two-, three- and four-mode approximations are plotted by the
long dashed, short dashed and solid curves, respectively. The MD data are
shown as circles.
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Fig. 12. Shear viscosity (imaginary part) of a LJ fluid at n* = 0.845
and T* = 1.706 as a function of frequency w for six values of wave-vector k.
The results of the two-, three- and four-mode approximations are plotted
by the long dashed, short dashed and solid curves, respectively. The MD
data are shown as circles.
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almost not at all on the order of M(T), However, the generalized shear
viscosity (Figs. 11, 12) exhibits more sensitive behavior with respect to the
order of used approximation.

A comparison between the results of the generalized mode approach
and MD data shows that in the nine-(four-) mode approximation investi-
gated quantities can be described with the higher degree of accuracy ev-
erywhere over the region of wave-vector k. Such high-order approximation
is already quite sufficient to describe dynamical properties of the system
because achieved precision is of order a few per cent just as in the direct
MD calculations.

Similar results are obtained for the all other TCFs as well as for the
generalized transport coefficients. The report about our studies of these
quantities will be given in a separate publication.
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Y3ATAJILHEHI KOJIEKTHBHI MO
JJEHAPO-I2KOHCIBCHLKOI PITVUHU.
BHUCOKOMOIOOBE HABJIM>KEHHSA

LII. Omensn, I.M. Mpuriaon

3anponoHOBaHM paHillle MAXi) y3arajbHEHHX KOJEKTUBHUX
MO [N TOCTIMKeHHA YaCOBUX KOPENAUIAHUX $YHKIIK CycTUX pi-
OVH NOIMPEHO N0 HabIMMXKeHb BUMOro MOpARKy. MeTomom Mone-
KYJAPHOI IMHAMIKH [IOPAXOBAHO CHEKTp y3araJbHEHUX KOJEeKTHB-
HUX MOJ IeHapI-NK OHCIBCLKOL PIIMHY NIPK JeB’ ATUMONOBOMY OMMCI
OJIA IOB3JOBXKHIX ¢IyKTyalliff Ta YOTMPMMOJOBOMY HabIyKeHHI
and nonepeynux ¢AyKTyauiii. Pesyanraru oTpuMano Ak ynkuil
XBUIIBOBOro BeKTopa. [[ys nopagonxuix ¢ rykTyamin sHafineHo go-
JATKOBO HI€ YOTMPM HOBUX KiHETHYHMX MOLM OO BiIOMHMX paHimie
n’aTA. [Ins nonepeunux $nyKTyauilf 3uaineHo y3araJbHeHY Tiapo-
IMHAMIUHY ! TP KiHeTH4H] Momu. IIpoBeneno nopiBHAHHA onepes-
HiX po6iT 3 pe3aynLTaTaMu HABJIMKEHb HMIXKYUOTO MOPANKY.



