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The paper is aimed at presenting some main ideas and results of
the modern statistical theory of macroscopic open systems.

We begin from the demonstration of the necessity and the possi-
bility of the unified description of kinetic, hydrodynamic and diffusion
processes in nonlinear macroscopic open systems on the base of a gen-
eralized kinetic equations.

A derivation of the generalized kinetic equations is based on the
concrete physical definition of continuous media. A”point” of a con-
tinuous medium is determined by definition of physically infinitesimal .
scales. On the same base the definition of the Gibbs ensemble is given.
Thcii Boltzman gas and a fully ionized plasma as the test systems are
used.

For the transition from the reversible Hamilton equations to the
generalized kinetic equations the dynamic instability of the motion of
particles plays the constructive role.

The kinetic equation for the Boltzman gas consists of the two dis-
sipative terms: 1. The ” collision integral” is defined by processes in a
velocity space; 2. The additional dissipative term of the diffusion type
in the coordinate space. Owing to the later the unified description of
the kinetic, hydrodynamic and diffusion processes for all values of the
Knudsen number becomes possible.

The H-theorem for he generalized kinetic equation is proved. An
entropy production is defined by the sum of two independent positive
terms corresponding to redistribution of the particles in velocity and
coordinate space respectively.

An entropy flux also consists of two parts. The one is proportional
to the entropy, and other one is proportional to the gradient of entropy.
The existence of second term allows to give the general definition of the
heat flux for any values of the Knudsen number which is proportional
to the gradient of entropy. This general definition for small Knudsen
number and a constant pressure leads to the Fourier law.

The equations of gas dynamic for special class of distribution func-
tions follow from the generalized kinetic equation without the pertur-
bation theory for the Knudsen number. These equations differ from
the traditional ones by taking the self- diffusion processes into account.

The generalized kinetic equation for description the Brownian mo-
tion and of autowave processes in active media are considered. The
connection with reaction diffusion equations - the Fisher-Kolmogorov-
Petrovski-Piscunov and Ginzburg-Landau equations, are established.
We discuss the connection between the diffusion of particles in a re-
stricted system with the natural flicker (1/f) noise in passive and
active systems.
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1. The Transition from Reversible Equations of Mechanics
to Irreversible Equations of the Statistical Theory

1.1. Physical Definition of Continuous Medium

In order to describe the transition to irreversible equations of the statistical
theory it is necessary to take into account the structure of the ”continuous
medinum”. In other words, it is necessary to give the concrete definition
of the infinitesimal scales — to give the physical definition of the notion
"point” [1-5].

Obviously, it is impossible to give a unified definition of the physical-
ly infinitesimal scales for all systems. We shall introduce these scales for
two simplest cases: the Boltzman gas, and a fully ionized plasma. Such
definitions are different for the kinetic and hydrodynamic regions of scales.

The kinetic region. A rarefied (Boltzman) gas and a rarefied fully ionized
plasma are characterized respectively by the dimensionless small density and
plasma parameters

€ = nry, p=1/nr3. (1.1)
rg is the diameter of atoms, rp is the Debye radius, n is the mean density
of the number of particles. These parameters determine the connection
between the infinitesimal scales 7,4, [, and the corresponding ”collision”
parameters T, [ of the Boltzman gas and Debye plasma.

We denote by N,r = nVp, the number of particles in the physically
infinitesimal volume and define the physically infinitesimal time as

T/Nph = Tph, Nph = 'anh ~ nlgh, Tph = lph/'UT- (12)

Thus defined 1, is the time within which any particle out of the number
Npp in the volume V,;, undergoes a collision.

The physically infinitesimal scales for the Boltzman gas follow from the
expressions (1.2) (Klimontovich [1-5]).

1
Tth\/ET<<T, lth\/El<<l, Nth $>> 1. (1.3)

The corresponding kinetic characteristics for a rarefied plasma are (a = e,1)

)~ uray, 1)~ rp ~ ey > ), New~1/u>» 1. (14)

We see that for the Boltzman gas and a rarefied plasmas the general
conditions imposed on the physically infinitesimal scales are satisfied.

The gas dynamic region. In this case the relaxation time is defined by
the characteristic scale of the system L : 7p = L?/D. The role D is played
by viscosity v, thermal conductivity x, and the self-diffusion coefficient D.
Here D = v = x. The physically infinitesimal characteristics are defined
now by relations

L

G G 2/5
lph ~ *]m, Nph ~ N / . (15)

Here N = nlL3,

The definition of physically infinitesimal scales allows to use the notion
of the ”continuous medium”, respectively, for the kinetic and hydrodynamic
description. In order to illustrate the importance of this notion, we consider
the following example.
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The maximum of the Reynolds number in the Kolmogorov
theory.

In the Kolmogorov theory of a developed turbulence the number of col-
lective (turbulent) degree of freedom Nyy,; = (L/Lg)® is connected with the
Reynolds number by the relation [7,8,4]

Ny ~ Re®4. (1.6)

Here L, and Ly are, respectively, the largest and the smallest scales of the
developed turbulent motion.

From the definition Ny, follows that the maximum value of the Rey-
nolds number in the Kolmogorov theory is restricted by the condition Ly >

lgh and, as a result

(R€)maz ~ N5, N =nI?. (1.7)

- We see that, as consequence, the limit Re — oo, which is used frequent-
ly in the theory of turbulent motion, cannot be realized for the "physical
continuous medium”.

1.2, The Gibbs Ensemble for Nonequilibrium Processes

The statistical ensemble was introduced for describing the equilibrium state.
In this case the number of controllable degrees of freedom is very small,
and hence the indeterminacy in the microscopic states of the system is
extremely high. This way of defining of statistical ensemble of arbitrary
nonequilibrium states is not suitable. What can be done?

Assume that we have chosen the concrete definition of the physically
infinitesimal scales. We can then assume that the indeterminacy of defining
the microscopic states of systems in the Gibbs ensemble is governed by the
indeterminacy in the states of particles confined within the volume V. This
allows us to carry out the operation of averaging, or smoothing of dynamic
distributions over a physically infinitesimal volume.

1.3. The Unified Definition of ” Continuous Medium”. Averaging
over Physically Infinitesimal Volume [27,28]

In order to develop the unified description of the kinetic and hydrodynamic
processes, it'is necessary to use the equation (Vpc}i)m,-n = Vi to express the

minimal physically infinitesimal volume (V.3 )min = L3, via small density
parameter e.

Linin ~ (Nph)l/zlph ~ 1/(Nph)1/2, Nmin ~ nL?m'n ~ €81, (1.8)

Thus, for example, at atmospheric pressure the density parameter ¢ =2 1074

and therefore the number of particles in the "point” n,,;, is of order 10°.
Let us consider a local random functionN(r,p,t) — the microscopic

phase density in the six-dimensional space of coordinate and momenta

N(rpt)= Y 6(r=r(®)s(p - m(t)) (1.9)

1<i<N :
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and introduce the new function smoothed over the distribution

F(p) = (2r Lzmm)—s/z expv( — ﬁ),
(1.10)

N(r,p,t) = [N(r—p,p,t)F(p)dp.

As initial we shall use the following dynamic reversible equations for the
microscopical function (1.9) [1-6,9]

B +odi+ ()5 =0,
(1.11)
Fr(rt)= Iy — & [®(|r = '[)N (', p', t)dr'dp'.

Here F™ is the microscopic force.

In order to obtain the generalized kinetic equation on the basis of this
dynamic reversible equation, it is necessary, on the first step to the irre-
versible equation, to take into account the dynamic instability of the motion
of atoms.

1.4. The Constructive Role of the Dynamic Instability of the
Motion of Atoms

The kinetic theory of gases is traditionally constructed (the Bogolubov-
Born-Green-Kirkwood-Yvon theory, for example) without using the prin-
cipal ideas of the dynamic theory — the concepts of dynamic instability,
dynamic chaos, K -entropy, mixing. Let us show that these enable us to elu-
cidate more fully the causes of irreversibility and to obtain the generalized
kinetic equation.

The first steps in this direction were made by N.S.Krylov in 1950 [10]
dealing with the substantiation of statistical physics. The importance of
the dynamic instability of motion in justifying the irreversible equations of
the statistical physics is discussed elsewhere Prigogine [1], and in [13,14].

Let us make some elementary quantitative estimates that will connect
the time interval ¢, introduced here by way of the physically infinitesimal
time scale, with the minimum time of development of dynamic instability .

The motion of atom spheres in a Boltzman gas, like the motion of balls
in the Sinai billiards, is dynamically unstable. For a single atom the time
of development of instability — or, in other words, the characteristic time
of exponential divergence of initially close trajectories of two atoms — is of
the order of the free path time [13,14]:

Tinst ~ T (1.12)

This estimate relates to the path of a single chosen atom. We take into
account that in the process of smoothing over the physically infinitesimal
volume Vyp, all Ny, particles contained therein are indistinguishable. We can
therefore introduce, along with 7,4 ,the characteristic time of development
of instability for any one particle within V5 . Let us denote the new quantity
by (Tinst )min. This time it is Npj times shorter than 7., and hence, given
the definition (1.12), we come to the following estimate for the minimum
characteristic time of development of dynamic instability in the motion of
atoms in a Boltzman gas:

(Tinst)min ~ Tph- (113)
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Thus, the characteristic time for the development of instability of motion
per particle within N, is of the order of the physically infinitesimal time
scale 7,5. This is another argument in favour of our method of defining 5.

The dynamic instability of motion of atoms in the Boltzman gas leads to
mixing and thus facilitates the transition from the reversible Hamiltonian
equations to the much simpler Boltzman kinetic equation. This we see as
the constructive role of the dynamic instability of motion in the formulation
of the statistical theory of nonequilibrium processes.

Macroscopic characteristics, for instance, the distribution function can
be termed the functions of order, insofar as they single out and describe a
more ordered motion against the background of molecular chaotic motion.
In other words, they reveal the statistical laws.

This illustration, drawn for a Boltzman gas, in no way exhausts the
constructive role of dynamic instability.

In fact, in statistical theory the dynamic instability can be associated
not only with the atoms, but also with the macroscopic characteristics of the
system. The latter kind of instability was first discovered with the model
equations of thermal convection in a fluid, with the Lorenz equations [13].

An example of a physically feasible system, in which a large amount of
feedback gives rise to dynamic instability of the macroscopic characteristics,
is the lasers and electrical devices [15-18,5,6].

In connection with the above view concerning the constructive role of
dynamic instability of motion of atoms in a Boltzman gas, some questions
inevitably arise. Can the dynamic instability of motion of the macroscopic
characteristics also play a constructive role? Will this kind of instability
lead to more sophisticated dissipative structures, or to "dynamic chaos”?
In what relation does physical chaos stand to dynamic chaos?

To answer these questions, we need criteria for the relative degree of or-
der or organization (or, alternatively, chaoticity) the nonequilibrium states
of open systems. We shall use the Boltzman-Gibbs-Shannon entropy, renor-
malized to a given mean effective energy — the effective Hamiltonian func-
tion of the open system.

The quantitative assessment of the relative order will be based on the
S-Theorem.

The S-theorem will be used to check on the proper choice of the con-
trolling parameters, and then to assess the relative degree of order. It is
possible also to organize the optimization of the search for the most ordered
states in the space of the controlling parameters of the open systems.

Basing our reasoning on the criteria of the relative degree of order, we
shall use some examples to demonstrate that the processes of self-organiza-
tion are also possible in the presence of the dynamic instability of motion
of the macroscopic characteristics of open systems. However, we shall first
continue to discuss the question about the generalized kinetic equation.

2. The Unified Description of Kinetic and Hydrodynamic
Motion. The Generalized Kinetic Equation [5,27,28]

In order to take into account the existence of the dynamic instability of the
motion of atoms, we can introduce in the reversible dynamic equation (1.11)
the following term

- ;i;(N(T,p,t) - N(T,p,t))- (2.1)
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which describe the relaxation from the dynamic microscopic phase density

N(r,p,t) to the smoothed distribution N(r,p,t). After the averaging over
the Gibbs ensemble we can obtain the equation for the distribution function
f(r,p,t) = (N(r,p,t))/n with the additional relaxation term

% + v%% + F(’I",t)%% = _%ﬂ%l - 'I—(f('rvpvt) - f(T’pat))v

Tph

(2.2)
Fir,ty=Fy—nf Mg;ln-f(r’,p',t)dr’dp’.

In the right side of this equation now there are two dissipative terms.
The first one describes the dissipation by processes in the velocity space —
by ”collisions” [1~6,8]. This term can be presented as the Boltzman collision
integral for a rarefied gas, as the Landau or the Balescu-Lenard ”collision
integral” for a fully ionized plasmas.

In order to obtain the generalized kinetic equation for the unified de-
scription of kinetic and hydrodynamic processes it is naturally to use the
most simple form for this ”collision integral. Indeed, we saw that number of
particle Nmin ~ €~5/% and for a rarefied gas much more unity (Nmin = 10°

at atmospheric pressure), therefore it is possible to use not the Boltzman
form but the nonlinear Fokker-Planck form for the ”collision integral”

18(§F6N)
n Jp

_ _ 0 of 011

— = I(v)(’l',p, t) = 5; [D(_v)(r, t)'é;] + % [; (’U - U('l", t))f] .

(2.3)

The diffusion coefficient in the velocity space is defined by the local tem-
perature

Diuy(r,t) = %nT(r,t) -2 / (v - u(r,0)) f(r,p, O)do,  (2.4)

u{r,t) is a local hydrodynamic velocity, T is a ”collision” time.
In order to obtain the final form for the second ”collision integral”, we
can use the expansion on the ”physical Knudsen number”

(Kn)pp = l%h, Here lyp = Lmin. (2.5)

If the mean force F'(r,t) is not zero, then it is necessary to change the defi-
nition (1.10) for the smoothing function: the mean value (p) = (b/m)F1pp.
Here b is the mobility of atoms.

By the expansion of the additional dissipative term in the equation (2.3)

on the "physical Knudsen parameter” (2.5), we have the following expression
for the new "collision integral”

Loin Of

Tpn OT

—T%h(f—- f)EIr(T,p,t)=%( )—%(%Ff)- (2.6)

In order to obtain the final form for the new "collision integral”, we must
take into account the definitions (1.3), (1.8) for the scales Tpp, Lmin. In
result we have: : '
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2 12
Lmin o, & _ p 5T (2.7)
Tph T m

Here D is the space self-diffusion coefficient which is connected with the
mobility coefficient by the Einstein relation. For nonequilibrium states the
Einstein relation connects local characteristics, therefore the final form for
the new "collision” integral is

I (r,p,t) = -g; [D(T, t)

It is useful to remind that D is one of the three kinetic coefficients:
kinematic viscosity v, temperature conductivity x, and self-diffusion D. For
our model these three coefficients are equal, D = v = y. The distinc-
tion between D, v, x it is possible to take into account in the equation of
hydrodynamics.

The inclusion of self-diffusion into the equations of hydrodynamics has
been suggested more than once [see in 5,6]. It was argued that, in the
first, self-diffusion distorts the conventional structure of the equations of
hydrodynamics, and, in the second, from the kinetic Boltzman equation it
follows that self-diffusion is absent from the equations of hydrodynamics,
since the transfer of matter is completely determined by the convective flow
pr. (Landau and Lifshits [8], p. 274 of the Russian edition) observed that
the inclusion of self-diffusion into the hydrodynamic equations may result in
the violation of the condition that the entropy production in a closed system
should be positive, thus violating the second law of thermodynamics.

Of course, the last two arguments cannot be dismissed, and in the next
sections we shall discuss them.

At this point we just note the following.

In the equilibrium state the kinetic equation (2.2) is satisfied by the
Maxwell-Boltzman distribution. The left-hand side, determined by the
nondissipative terms, goes to zero independently of the dissipative terms
on the right-hand side, each of which also goes to zero.

The first of the latter, which is either the Boltzman collision integral or
more simple ”collision integral” (2.3) through cancelling out the collisions
of two types, forms the Maxwell distribution.

The second dissipative term on the right-hand side also describes the
balance of two dissipative flows. One of these is caused by the external
force and is proportional to the mobility, while the second is the flow of
matter due to self-diffusion. In this way the existence of the equilibrium
Boltzman distribution can be regarded as a manifestation of self-diffusion.

kT

) bFf], D(r,t) = b= (2.8)

ar m

3. The Equation of Entropy Balance. The Heat Flow

The local Boltzman entropy is defined by the expression

S(ryt) = p(r,t)s(r,t) = —nn/ln (nf(r, p,t))f(r, p,1)dp. (3.1)

At the condition #’ = const the equation of entropy balance for the gener-
alized kinetic equation (2.2) it is possible to present in the following elegant
form

dps O dp b 7] 0s
a0 T aplleu=Dam 4 —F)s| = —(Dp5) + o(r1). (3.2)
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The full entropy production is defined by the expression

f1f> drdp + m/Df(g;ln}%fdrdp >0. (3.3)

Here fy is the Maxwell distribution, and the fi,. is the local one.

We see that the entropy production is the sum of two positive terms
are defined, respectively, by the changing of the distribution function in the
velocity and coordinate spaces.

The entropy flow jg consists of two parts:

jS(T, t) = jcon + jdif- (34)
The convective part j.., is proportional to the full flow of matter and the
entropy s(r,t) but the diffusion part jgy is proportional to the gradient
of entropy s(r,t). It is naturally to define the heat flow by the expression
[27,28]

t)_m/Df I n

. o
q(r,t) = T(r, )jaig = —T(T,t)ngf—:. (3.5)

For the region of small values of the Knudsen number, when exists the
local equilibrium, the heat flow is defined by the gradients of density and
temperature:

dp 10T 3k

q(r,t) = Do —epxpgs 6= (3.6)

2m

Ouly for slow processes, when the pressure p = const, and the gradient of
density is proportional to the temperature gradient, the heat flow is defined
by the Fourier law

oT

S K
ort)=-Ags, A=6px, =g (3.7)

Here cp 15 a heat capacity at constant pressure.

4. Equations of Hydrodynamics with Self-Diffusion

The representation of the ”collision integral” I, s ,py1) in the form (2.3)
based on the fact that the number of the particles in a ”point” Ny, ~
¢=3/1 > 1. By same reason it is possible to restrict the class of distribution
functions f(r,p,t) by condition

f(r,p,t) = f(r,m | v —u(r,1) |,1). (4.1)
Then the closed system of equations for the gas-dynamic functions fol-
lows from the generalized kinetic equation (2.2), with "collision integrals”
(2.3), and (2.7), without the perturbation theory for the Knudsen number.
In order to obtain the gas-dynamic equations for the functions p(r,t),
u(r,t), and T(r,t), we substitute distribution (4.1) into kinetic equation
(2.2) and go over to equations in the relevant moments of the distribution

(4.1) As a result, we come to the set of equations of hydrodynamics with
due ‘account for self-diffusion:
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Op 0 . _ . dp b
524'51(?,0—0, J —PU—DE“*' ~Fp, (4.2)
Opvi 0. _ Op  ui  p _r
ot + (')r(hul) T or v or? * mF’ P= mKT’ (4.3)

2 . ’U.2 . ”
(% + €(r, t))+3% [Jz-(%— +€) + uip — puUjg—T—]% - cvpxg%} = L [Fu,

S

e(r,t) = £3kT. (4.4)

From the equation of continuity it follows that the transfer of matter is
now determined by three flows: convective transfer, self-diffusion and the
flow defined by the mobility of atoms. If we take the external force into
account, the equation of takes the form

dp 0 Op b

51 + Ee (pu Dar + me) 0. (4.5)

Equations (4.2)-(4.5) take into account the fact that the kinetic coeffi-

cients D, v, x may be not all the same. Observe also that in this approxima-

tion the tensor of viscous stress has a different form from the conventional
representation. Namely. here m;; = —ndu;/8r;,n = pv .

In the approximation of incompressible fluid, when p = const and

F = const, and the temperature (the variance of the velocity) is zero, the

distribution function f(r,p,t) takes the form

f(r,v,t) = 6[v — u(r,t)], (4.6)

and the equations of hydrodynamics coincide with the Navier- Stokes equa-
tions '

‘?9—‘: +(uViu= —%Vp-l»l/Au—i- Lp
(4.7)

divu=0, Ap= —pg—;‘ﬁ%.
The equation for the pressure follows from the equation of continuity.

We can remark here that the Navier-Stokes equations, although extreme-
ly efficient, are intrinsically contradictory, because in this approximation the
entropy in a closed system does not change, and at the same time the pro-
duction of entropy(3.3) is not zero.

For the class of distribution functions (4.1) in order to calculate the
entropy production the solution of kinetic equation it is necessary to know.
Only for the local Maxwell distribution the entropy production completely
by functions p(r,t), u(r,t), and T'(r,t) is defined:

o(r,t) = %[DP(_V;_P)Q + VP%((;:;Y + gx'o(g)?] > 0. (4.8)

Thus, the production of entropy is non-negative also when self-diffusion
is taken into account, in full compliance with the second law of thermody-
namics.
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Observe finally that in the incompressible fluid approximation, from
(4.1),(4.8) it follows that the entropy production is nonzero while the en-
tropy itself remains constant. Therefore, for describing thermal processes we
must go beyond the incompressible fluid approximation, for instance, to the
Boussinesq approximation: to solve the Navier-Stokes equations together
with the heat transfer equation

orT 0’T  2mv (Ou;\2
ST =X+ (a_ﬁ) :

5 3 % (4.9)

We’d like to underline that the Boussinesq approximation only for the
local Maxwell distribution is valid. In more general case the generalised
kinetic equation it is necessary to use.

5. Effect of Self-Diffusion on the Spectra of Hydrodynamic
Fluctuations

To calculate equilibrium hydrodynamic fluctuations we use the linearized
equations of hydrodynamics (4.2)-(4.4). In the linear approximation the
velocity field for the Fourier components is represented as a sum of the
transverse (with respect to the wave vector k) and the longitudinal parts.
The inclusion of self-diffusion has no effect on the fluctuations of the trans-
verse field of velocity, so the width of the spectrum of fluctuations is again
determined by vk?, where v is the kinematic viscosity.

The set of equations for the Fourier components of the density, the
longitudinal velocity, the temperature and the pressure with due account
for self- diffusion now has the form

(—iw + Dk®)ép + pi(kéu) = 0,

(—iw + vk?)i(kbu)p = k26p,

- (5.1)
—iwép + pDk"’%’ = bxk?6T + 5pi(kéu),

p=LkT, &pii= Lp6T + Lép.

In calculations of fluctuations, two regions are usually distinguished: 1.
low frequencies, when (for D = v = x ) w, Dk* < kvspund, and 2. high

frequencies, when Dk? < w ~ kvgpynd.

Calculations of equilibrium hydrodynamic fluctuations on the basis of
equations of hydrodynamics can be found elsewhere [19], [4]. Here we shall
only indicate the basic changes in the spectra which occur when self-diffusion
is taken into account.

For low frequencies, the spectra of fluctuations of density, temperature
and entropy are now given by

2Dk*  kp

_ 2xk? KTz_
w? 4+ (Dk?)2 ¢’

o+ (k)2 pey

(608p)u i = (6T6T), s = (5.2)
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(5.3)

cu) 2Dk? . c, 2xk? ]c K
w? + (Dk?)? " c,w? + (xk2)27

(6868)up = [(1-

Cp

When self-diffusion is neglected, the widths of all these spectra are the
same, and are determined by the temperature conductivity x. This results
in a rigid correlation between the fluctuations of density and temperature at
all temperatures [6p(w,k)/p = 6T(w, k)/T]. When self-diffusion is included,
this condition is removed: the width of the spectrum of density fluctuations
is determined by the coefficient of self-diffusion, and that of the temperature
fluctuations depends on the coefficient of temperature conduction .

Total correlation is only observed for characteristics which are integral
with respect to #iw. This correlation is dictated by the condition of local
thermodynamic equilibrium.

The spectrum of fluctuations of the entropy is represented as a sum of
two spectral lines, the relative contributions of which depend on the ratio
between the heat capacities ¢, and Cp-

Self-diffusion also affects the spectra of fluctuations at high frequencies.
The linewidth is now determined by the combination of the three dissipative
characteristics D, v, x:

1 Cy Cy 9
= — — 1— —|x|k“. 5.4
Y 2u+CpD+[ c,,]X] (5.4)

Thus, the old problem - whether to include the contribution of self-
diffusion into the equations of hydrodynamics - can also be resolved by
analyzing experimental data on the spectra of molecular scattering in lig-
uids.

The kinetic approach to the description of hydrodynamic motion de-
scribed here can be extended to the case of turbulent motion.

6. The Kinetic Approach in the Theory of Self-Organiza-
tion. Synergetics. Basic Mathematical Models

Van der Pol generators, along with the more complicated oscillators, can
serve as elements of active (excitable) media. The first mathematical models
of active media were proposed four decades ago in the well-known works of
Wiener and Rosenbluth; Gelfand and Tsetlin (see in [13]). Landau’s work
(1944) on the origins of turbulence made also a fundamental contribution
to the theory of excitable media.

Currently the theory of active media relies mainly on the equations of
reaction-diffusion type [20-28,47]:

OX(R,1) 0 X

o = FXR+ 5 (Ds(X5E).

Here X(R,t) is a set of macroscopic functions characterizing the system -

for instance, the concentrations of chemical reactants; (X ) are nonlinear

functions determined by the structure of the system and the nature of the

processes; I);; are the coefficients of spatial diffusion of the elements of the
system. Here and bellow r = R.

Specific examples of equations like (6.1) have been proposed and ana-

lyzed by Fisher (see [24]), Kolmogorov, Petrovsky, Piscunov (1937), Zel’-

dovich, Turing. To the same type also belong the various modifications of

(6.1)
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the Ginzburg-Landau equation, which is widely employed in the theory of
equilibrium and nonequilibrium phase transitions.

Equations of reaction-diffusion type describe a broad class of physical,
chemical and biological phenomena. We begin with an example of the spa-
tial diffusion of the independent Van der Pol oscillators (generators).

Ifin the description of the generators we restrict ourselves to information
concerning the energy of oscillations E(R,t), then appropriate Kolmogorov-
Petrovsky-Piskunov (KPP) equation for this function with the constant
coefficient of space diffusion D has the form

AE(R,1)
ot

Here v, and b are linear and nonlinear friction coefficients, respectively. ay
is the feedback parameter.

This equation, however, is not by itself sufficient to give a complete
statistical description of the distributed system of generators, since, apart
from the spatial diffusion, there is another cause that disturbs the dynamic
regime of generation. This due to the effects of noise on the internal degrees
of freedom of the generators with the intensity Dg. The combined influence
of both factors is taken into account in the equation for the distribution

function f(E, R,t)(fdE4Ef =1) [5,6,26]

of 0 of o*f
o0 = 98 PwEgp) + 3 R
In the special case only, when the noise acting on the internal degrees of

freedom of the generator is negligibly small (Dg = 0), then the equation
(6.3) has a particular solution

= (a-bE(R,1))E(R, t)+Da b

agi 4= 7 (6.2)

[( a+bE)Ef]+ Dot (6.3)

f(E,R,1)= 6(E - E(R,)); /Ede E(R,1),  (6.4)

i

which corresponds to the one-moment approximation. The function E(R,t)
satisfies the FKPP equation (6.2).

7. Kinetic and Hydrodynamic Description of the Heat Tran-
sfer in Active Medium [27,28]

Now we shall go back the generalized kinetic equation (2.2) with the col-
lision integrals (2.3), (2.7). Let us the mean u(r,t) = 0 and therefore the
distribution function f = f(r,| v |,t) (see (4.1)), from the kinetic equation .
the heat transfer equation follows

(L) d*(E) 3

= E)= =gT(r,t). . 7.1
From the kinetic equation follows and the corresponding equation for the
dispersion of temperature

S 6EY) = 2 (2B~ () i e p o (BEN (7
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We see that the source of the temperature fluctuations is defined by
the gradient of the mean temperature T(r,t). Therefore, for the complete
description of the heat transfer, it is necessary to use the kinetic equation
for the distribution f(R,|v |,?).

Let us now exists nonlinear source of the heat, then the constant L is
replaced by nonlinear dissipative coefficient y(E). We shall be to suppose
(for the illustration only) that

Y(E)= —as + % + bE, and D,(F) = (% + bE)KTo. (7.3)

Here the coefficient a, characterizes the source of heat, and T is the ther-
mostat’s temperature. In the equilibrium state the Maxwell distribution is
with the temperature Ty.

Now we can represent the generalized kinetic equation (2.2) in the form

Of(R,|v|,t) of 0 of d *f
e + Py i %[D(u)(E)%] + 5—5(7(1‘3)”) + Xgge

In one-moment approximation we have the equation of the nonlinear heat
transfer equation

B = o Zmoen —v(m))m) 42 (7.5)

(7.4)

Thus, in this approximation we obtain the reaction diffusion equation
type (6.1d). Here, however, not only the space diffusion D, but also the
internal diffusion Dy, is taken into account. It is possible, therefore, to
obtain solution for all values of the bifurcation parameter a;.

In the two-moment approximation from the kinetic equation (7.4) follows
the system of corresponding reaction diffusion equations.

In order to illustrate the effectiveness of the kinetic approach for descrip-
tion of processes in active medium it is useful to consider the stationary
solution. If the function y(E) and D(F) one are defined by the expressions
(7.3), then the stationary solution we can represent in the form

2

f(v)=Cexp [_ my o, G ln(l + %mTvz)] (7.6)

v
26Ty wKIph

It describes the velocity distribution for all values of the rule parameter a,.
At ag = 0 it coincides with the Maxwell distribution.

8. Kinetic Equation for Active Medium of Bistable Ele-
ments

We have considered some examples of the kinetic equations for active media
taking into account both the spatial diffusion and the diffusion with respect
to the internal variables of the elements of the medium.

Let us suppose that the nonlinear force is defined by the expression

F(z) = —mwl(l - af + bz?)z (8.1)

Here ay, and wp are the "feedback” parameter and eigenfrequency of the
linear oscillator respectively.
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Let us suppose also that f(z,v, R,t) is the distribution function of the
internal variables z, v, and a space position R of the bistable element, then
we can present the generalized Fokker-Planck equation in the following form:

S orogl+ B0 = 2(D)8) + &(wh)+

m Jdv -

+& | Dyt - B2 f + DI (82)

We see that here are two internal diffusion coefficients:

KT _ 2 _ EZ
Pw=170 Dw=Dell+b%) (Do==)  (83)

and the diffusion coefficient D of elements in space R. For the equilibri-
um state the Maxwell-Boltzman distribution is the solution of the kinetic
equation (8.2).

If we restrict the class of the distribution functions (like in (4.1)) by

condition
f(zyv,t) = f(z,] v |,1), (8.4)

then we can obtain by integration on v, the corresponding generalized
Einstein-Smoluchowsky equation for the function f(z, R,t)

of 8 2W0f1 B 2 9*f

It is useful to remind that in the theory of stochastic processes the
transition from the Fokker-Planck (the Kramers) equation to the Einstein-
Smoluchowsky one is making by the using of the perturbation theory on
the small parameter F’/m~y? (or wd/y% < 1) [29-31,6)). This method cor-
responds to the Hilbert, Chapman-Enskog, and Grad perturbation theory
for the Boltzman equation on small Knudsen number.

We see that and in the stochastic theory it is possible to avoid the using
of the perturbation theory on the corresponding small "Knudsen parame-
ter”,

It is interesting to consider some limiting cases.

1) The distribution function for the stationary homogeneous state

~ Uess(2) _ MW s oy 2
fsewCexp[—T], Uepys = T[z — —b—ln(1+bx )]. (8.6)
At ag = 0 it coincides with the Boltzman distribution for U = mwi /2.

2) The space distribution function f(R,t). From (8.5) the self-diffusion
equation follows:

*f

of _ - /f(R,t)iVI—% =1 (8.7)

8t_D

3)The one-moment approximation for incompressible medium. If D) =
0, then the distribution function have the form

fe, Bty = 8(x - 2(R,0)), a(R,1)= (). (8.8)
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For the "field function” z(r,t) from the generalized Einstein-Smoluchowsky
equation follows the FKPP type equation:

(R, 1
.8_%%};’_)_ = ’y[af -1+ bzz(R,t)](L‘(R,t)+ D

%z(r,t) wi
—_—y = — 8.9
are T (8.9)

In this approximation the internal diffusion coefficient D(,;) = 0. The
diffusion D(,) can play, however, the important role.

Let us suppose that the space diffusion is one-dimensional, in the direc-
tion ¢, then there exists the following well-known stationary solution of the
equation (8.9)

T
z(C):(afb_l)l/zth[(—Qiﬁ) . (8.10)

The relative width of the front is determined by the expression , /G—i—gﬁ. We

see that this result does not valid in the region near the bifurcation point
as = 1.

In order to obtain a more general solution for all values of the bifurcation
parameter, it is necessary to use the kinetic equation [26].

9. Kinetic fluctuations in active media

9.1. The Langevin source in the kinetic equation

The ”collision integrals” are defined by the small-scale (kinetic) fluctuations.
We shall now consider the large-scale (kinetic) fluctuations, whose dynamics
is determined by the kinetic equations themselves.

There are two well-known methods of calculating the kinetic fluctuations
[1-6,19,29,32-35]. One of them is based on the approximative solution of
the set of equations for the moments of random (pulsating) distribution
functions. The second one is based on solving the corresponding Langevin
equations for the random distribution function f(z, R,t) and this is what
we are going to use here.

In first, for example, we introduce a Langevin source y(r,z,t) into the
kinetic equation (8.5) for the active medium of bistable elements. In the
Gaussian approximation the two moments of the Langevin source are given
by the following expressions [5,26]:

(y(z,R,1)) =0, (y(z, R, )y(z', B, 1)) =

= 2[ Do) 5257 + Do 6(z — o) 26(R — B) f(z, R, 1)5(t — /). (9.1)

The distribution function f = (f) is defined by the equation (8.5).

These general expressions gives possibility to find the Langevin sources
in the diffusion equation for the space distribution f(R,t) = [ f(z, R,t)dz
and in the FKPP equation (8.9).
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9.2. Spatial Diffusion. ?Tails” in the Time Correlations

From the kinetic equation (8.5) with the Langevin source (9.1) follows the

equation for the fluctuations of space distribution i = nf(R,t) (n = N/V,
n(R,t) = (A(R,1)))

% -8 1uRD,  RO)=0

(9.2)
(y(R,O)y(R, ) = 2D 5idmm(R — R'n(R, 1)8(t — t').

In this way, we have come to the well-known equation of spatial diffusion
with the random source. The distribution n(R,t) is the solution of the
diffusion equation (8.7).

In the equilibrium state the spectral density of fluctuation is defined by
the well-known expression

2Dk?
(6n6n)w,k = mn (93)

Using the Fourier transformation over w and k we find the expression
for the space-time correlation on the fluctuations én:

n r? '
<6n61‘l,>7-’¢ = Wexp(—zj)—m), (94)

r=r—r, T=t-1t.
"~ We see that at r = 0 the time correlations fall off by according to a power
law: o< 1/ | 7 |3/2. _

It is necessary to underline, that the results presented here were obtained
without taking into account the boundary conditions. In other words, they

are valid only for an infinite medium. If the size of system L is finite, then
these results is valid only at conditions

w> rp!, T< 1p=1L*D. (9.5)
The role of the boundaries will be dealt in the section 10.

9.3. The Langevin Source in Reaction Diffusion (FKPP) Equa-
tion

For the incompressible medium the integral [ f(z, R,t) = const, therefore
the correlator of the source y(R,t) in the diffusion equation - the correlator
(9.2), now is zero, but the moment of the Langevin source y(;)(R,t) =
[ zy(z, R,t)dz are not zero and are defined by the expressions

<y(z)(Rat)> =0, (y(z)(R’t)y(z)(Rlat,)) = (96)
(9.7)

2[Dio) (14 8(22)(gy) + Dflsm (3% (1| 26(R — R)8(t ~ ¢').

In order to obtain the closed expression for this correlator it is necessary to
use the solution of the generalized Einstein-Smoluchowsky equation (8.5).
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The situation is much more simple when it is possible to use the stationary

solution (8.6). In this case i\xg) in (9.6) is defined for all values of the
bifurcation parameter ay by the following expression:

(2%) = C/a:2 exp[——n;z—;g(zz - (%fln(l + bzz))]dz. (9.8)

Thus, in the stationary state (9.9) the intensity of noise is defined by
the mean-square value (z?), therefore for the calculation of the fluctuation
6z(R,t)it is possible to use the self-consistent approximation on (x?) [3,4,26]

06z(R,1) 06z(R,1)

at + 'yzﬁm(R,t) - D——E}P_ = y(R,t). (99)

With help of this equation and the definition (9.7) for the intensity of
noise we obtain the following expression for the spectral density of fluctua-

tions ( N
2(v. + Dk x
bxédzr), i = . 1
(6zéz)y 1 W+ (7, DEIE (9.10)
We introduced here the special definition for the halfwidth of the spectral
line is determined by the internal diffusion D(g) in any bistable element:

Dq
= ——(1 + b(z?)). 11
Y ($2>( +b(z%)) (9.11)
This definition is valid for all values of the bifurcation parameter a;.
It is necessary to underline that the results are presented in this section,
as and the corresponding results of the previous section, are valid only for
an infinite medium-the condition (9.5).

10. Natural Flicker Noise (”1/f Noise”)

10.1. Natural Flicker Noise for Diffusion Processes [4,5,36—38]

For a fluctuative diffusion process we can distinguish two domains: 7., <
TD; Teor > Tp. For the first region the size of system has little effect on
the fluctuations. The spectrum in this case practically coincides with the
spectrum (9.3). '

Natural flicker noise exists in the low-frequency region

L wK 1 D
[ = = .
Tobs max D L?

(10.1)

Thus, the upper limit of the region is determined by the diffusion time The
minimum frequency is determined by the time of observation 1,4, which is
limited only by the lifetime of the device.

From (10.1) it follows that the actual volume of diffusion V,, = L2 =
depends upon the frequency and is much larger than the volume V of the
sample,

V, =L = (D/w)* > V. (10.2)

Under this condition the size of the system is not important, and in the
limit the sample can be treated as a point (dimension zero).
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In order to find the spectral density of the Langevin source, it is nec-
essary to take into account that the diffusion volume V,, for the region of
flicker noise is V,,/V times larger than the volume of the sample V. Accord-
i[ng]ly, the mean concentration n is replaced by the effective concentration
36

N — Neff = AVw<6’nvﬁnv). . (10.3)

Here we have used ény to denote the one-point correlator of fluctuations,
smoothed over the volume of the sample V. The constant A will be defined
below. As a result, the expression for the spectral density of the Langevin
source now takes the form

Lik?
(¥, Ywk = 2Dk2neff exp(— “é ) (10.4)
The corresponding expression for the spectral density of én: -
2Dk? L2 k?
(6n6n)u i = mT)QAVw(énan) exp(- . )- (10.5)

From these expressions, the variance of the distribution of wave vector is

((6k)?) = LZ? = w/2D and tends to zero as w — 0. In this way, we come
to the coherent distribution in the space of wave numbers.

After integrating over k, we find the expression for the temporal spectral
density of natural flicker noise

T (bnyény)
In(Tops/ D) w

(6nén), = , T <wg gt (10.6)

The constant A in (10.5) is defined here from the condition

1/1p d
/ (4ndn), =2 = (bny dny). (10.7)
1/7obs

Thus we assume that the main contribution to the integral over w comes
from the region of flicker noise. This expression can be written in the form

(6nén), 27a 1 (6nyény)

n? Nw’ “= 2In(7os/TD) nJV

Here we have introduced the notation a for Hoog’s constant [39)].
The time correlator for the region of natural flicker noise is given by the
expression [36]

(6nén), = [C = In(r/7D)/ In(Tobs/TD)|{6ny ény);

(10.8)

(10.9)
D L T Tops, C =1—7/In(res/mp), 7 =0.577.
We see that the dependence on 7 in the region of flicker noise is very weak

(logarithmic with a large argument), and therefore we may speak of the
residual time correlations. '
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The Langevin equations for the function én the region of flicker noise.
The Langevin equation for the Fourier component én(w, k) can be presented
in the form

(—iw + Dk®)én(w, k) = y(w, k). (10.10)

The spectral density of the source is given by (10.4).
Since the distribution over the wave numbers in the region of flicker .
noise is very narrow, in (10.10) we may replace

k2 (k=L =w/D (10.11)
and use a simpler equation for the fluctuations én(w):
(—iw + 7, )0n(w) = y(w); Yo =|w . (10.12)

The expression for the spectral density of the Langevin source:

s
(y?/)w = 27ww—‘“‘(5nv5nv>; Yo =|w ] - (10.13)

Tobs /TD)

Thus, for the region of natural flicker noise the dissipative coefficient 7, =
|w|, and tends to zero as w = 0. This expression relates the spectral density
to the dissipative coefficient and one-time correlator, and is therefore an
FDR for the region of natural flicker noise.

In this way, we have formulated the principal results of the author’s
theory of flicker noise [36-38,4,5]. The natural flicker noise arises whenever
the final stage of relaxation towards the equilibrium state is associated with
spatial diffusion.

The dependence on the actual structure of the system only enters via
two parameters: the time of diffusion 7p and the one- time correlator
(6nydny). Recall that we are considering the diffusion of a physical entity
of any kind.

This theory has been employed elsewhere to explain the existence of
natural flicker noise in music, as observed by Voos and Clark [40]. We
considered the possible connection between natural flicker noise and super-
conductivity [38,5]. So far these two fundamental phenomena have been
treated independently. We demonstrated, however, that the existence of
low-frequency natural flicker noise in a system of charged Bose particles
results in the vanishing of electrical resistance and thus facilitates the ex-
istence of a permanent superconducting current and the Meissner-Oxenfeld
effect.

The transition from the normal to the superconducting state is a well-
known example of a phase transition of the second kind, which results in
the appearance of a macroscopic quantity of charged Bose particles (Cooper
pairs). In order to understand the important role of natural flicker noise in
a system of Cooper pairs for the existence of permanent superconductivity
electrical current, it is necessary to take into account that the appearance
of natural flicker noise, according to this theory,implies the creation of a
coherent state in the space of wave numbers at w => 0. In this way, we are
talking about the linkage between two coherent processes.

We can remark that the natural flicker noise exists not only in a system
of Cooper’s pairs. In a system of neutral Bose particles (He*) the existence
of natural flicker noise makes superfluidity in narrow gaps possible. The
coefficient of diffusion is then of the order of Planck’s constant A.

Naturally, there are also “technical ” noise with 1/f spectrum, which
are associated, for example, with mobile defects.
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It is very interesting also to remark that after integrating over w (not’
over k!), from (10.5) we find the spatial natural flicker noise ”1/k”. Thus,
it exists not only the temporal, but also and the spatial natural flicker noise
— the noise "1/ | k |”. ’

10.2. Natural Flicker Noise for Reaction-Diffusion Processes

We saw that for statistical description of processes in active media more
naturally to use, instead of the reaction-diffusion equation (6.1), the cor-
responding generalized kinetic equations. We saw also that such approach
gives possibility for the description kinetic fluctuations. The one of the
methods of description of kinetic fluctuations is based on the solving the cor-
responding Langevin equations. For example, the moments of the Langevin
source in the Einstein-Smoluchowsky equation for active media of bistable
elements are defined by the expressions (9.1).

We used this general expressions in order to define the Langevin source
in the generalized reaction- diffusion equation for the "field” variable z( R, t).
As result, we obtained the expression (9.9) for the spectral density of fluc-
tuations. This result is valid for all values of the bifurcation parameter
af' t
As and for the diffusion processes (see (9.3)), this result was obtained
without taking the boundary conditions into account, therefore it is valid
only for an infinite medium: for the region of frequencies w > 7'51 = D/L%.

For the diffusion systems the natural flicker noise exists in the low-
frequency region (10.1). For the reaction-diffusion systems exists not only
dissipation is determined by diffusion, but also the additional internal dis-
sipation. If the corresponding coefficient ;) « 7p, then exists the low-

frequency region of the flicker noise
Y(z) = Wmin € W € Wmax = 1/7p = D/L? (10.14)

but by the friction coefficient ).

In order to find the corresponding spectral function, it is necessary to
change the second term (9.6) in correspondence with the definition (10.4).
After integration over k we again obtain the expression for the temporal
spectral density for the low-frequency region (10.14)

2(Va)t | w])
W+ (Yt lw )

(bzéz)y, i = s A(bz,bz,). | (10.15)

The constant A is defined by the expression:

2
A:4/7r/ Oyt [« 1) —dw. (10.16)
e @ (1wt [w])

The dissipative coefficient v(;) = wmin is defined by the expression (9.12)
for all values of the bifurcation parameter aj. Lo



110 ‘ Yu. L. Klimontovich

11. Criteria of Self-Organization

11.1. Evolution in the Space of Controlling parameters. S-The-
orem

Assume that we have made choice of controlling (rule) parameters a, and
shall be consider the evolution of the sequence of stationary states corre-
sponding to different values of the rule parameters.

We single out a state corresponding to ¢ = ag, and another with a =
ap + Aa. The state with the distribution function fy(z,ap) we take as the
state of physical chaos (the correctness of this assumption will have to be
verified). We also introduce the distribution function f(z,ao + Aa) and
represent it as a effective ”canonical Gibbs distribution”

f(.’t, ao + Aa) = exp F—H{z,a0+Aa ;

fO = f(x,a0+Aa)'Aa=0- (111)

The distribution functions f, fy are normalized in the same way:

/fd:r = /fodm = 1. (11.2)

In order to find the actual form of the distribution (11.1) we need a mathe-
matical model of our system. However, since in many cases it is difficult to
construct a mathematical model, in the next section we shall give a modi-
fied formulation of the criterion of the self-organization, which allows us to
define the effective Hamiltonian function directly from experimental data,
without using a mathematical model.

For accessing the relative orderliness of states with different values of a
according to the entropy values, we must renormalize it to the given value
of the energy [41-44,5,6].

We shall formulate the S-Theorem in two steps.

1) As an additional condition we fix the mean energy (H(z,ap)) for

the state of physical chaos and renormalize fo = fo. The function fy is
presented as

folz, a0, Aa) = exp E(_)_:E_(I_{A(aw),_ao)’ /fo dz = 1. (11.3)

The additional condition has the form
/H(z,ao)fo(m,ao,Aa) de = /H(w,ao)f(x,a0+Aa) de.  (11.4)

From solution of this equation, we find the effective temperature D as a
function of Aa:

D =D(Aa);  D(Aa)|pe=o = D. (11.5)

By S, we denote the entropy for the state with the distribution fo. Then,

subject to the conditions (11.2), (11.4), the difference between=Sy and S is
given by
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So—s:/mfifdzzo. - (11.6)
0

So we have obtained two results, (11.5), (11.6). The change in the degre.e
of order upon the transition ap = ag + Aa is accessed from the solution
(11.5). If the inequality : ‘

D(Aa)>D (11.7)

is satisfied (that is, if the effective temperature in the state with a = aqg
must be increased in order to make (11.4) valid), then a = ag + Aa is
the transition from a less ordered state (physical chaos) to a more ordered
state. The difference in the entropies (11.6) is a quantitative measure of the
increase in the degree of order.

2) If the inequality (11.7) is not satisfied, then the change in a is not a
controlling one. This is an indication that we have to look for new controlling
parameters. Thus, the S-Theorem serves as a tool for checking of the correct
choice of the controlling parameters.

If there are several controlling parameters, the search for the most or-
dered states can be optimized (see ref. in [4,5]) The above statement was
termed the S-Theorem, ”5” standing for ”self-organization”, to emphasize
that the S-Theorem is a criterion of self-organization.

11.2. The Comparison of the Relative Degree of Order of States
on the Basis of the S-Theorem Using Experimental Data

Practical applications of the criterion of the relative degree of order based on
the S-Theorem, as outlined above, they require a knowledge of the structure
of the effective Hamiltonian function. It is very important to have criteria
which could use the experimental data directly.

Such criteria can be based on K-entropy, Lyapunov indices, fractal di-
mensions which can be obtained from the realizations of the processes con-
cerned. Let us show that the relative degree of order can be accessed directly
from experimental data using the S-Theorem criterion [43].

As above, we start by choosing the controlling parameter a. The state
with @ = g is taken as that of physical chaos, with which the state for
a = ag + Aa will be compared. ,

We use the experimental realizations (¢, ap), z(t, a0 + Aa) as the cho-
sen set of internal parameters z of our process. The realizations must be
sufficiently long, so that they could be used for obtaining the distribution
functions ‘

folz,a0), (2,00 + Aa); /f0 dz :/fdz: L (118)

Using the distribution fy, which by our assumption corresponds to the state
of physical chaos, we find the function

Heps = —1n fo, (fo = eXP(—'Heff)), .(11.9)

which in the renormalized distribution fy will serve as the effective Hamil-
tonian function. From (11.8), (11.9) it follows that we need no extra infor-
mation in order to find Hcyy, except the known realization z(t,ap). The
mean value of the effective energy for the distributions (11.8) in general
will depend onAa. Let us now renormalize to the preset value of (H.sy).
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We introduce the renormalized distribution fy; which we represent as the
canonical distribution

fo(z, a0, Aa) = exp £D) ;)(}f;;g(x’ao), /fo dz = 1. (11.10)

The effective free energy F as a function of the temperature D is found from

the normalization condition of the function fy. The effective temperature
D as function of Aa is derived by solving the equation

/Heff(m,ao)fo(z,ao,Aa) dr = /Hefff(:v,ag + Aa) dz, (11.11)

that is, by requiring that the mean effective Hamiltonian function H.;s be
constant. Using the solution of this equation, we find the required function

D(Aa); D(Aa)|ag=0 =1, Aa > 0. (11.12)

Now we use again the distributions fo, f to find the difference between the
entropies:

So-85= /ln f-{if dz >0 at (Heps(z,a0)) = const. (11.13)
0

If the solution of (11.12) is such that
D(Aa) > 1; D(Aa)|pq=0 = 1. (11.14)

then the state with a = ag + Aa is more ordered than the state with a =
ag, which we took for the state of physical chaos. This conclusion must,
however, be verified (see [4,5]).

It is useful now to remark the following.

During the time evolution to the equilibrium state we were dealing with
degradation processes.

Dealing with the evolution of stationary states in the space of control-
ling parameters we encounter a new possibility. The fact is that the con-
trolling parameters can be found among the parameters which characterize
the stationary state. Changes in the latter may lead to the reduction of the
entropy, thus resulting in self-organization. In this way, the formulation of
the second law of thermodynamics is extended: the evolution of stationary
states in the space of controlling parameters may be associated with both
increasing and decreasing entropy. In the latter case the set of parameters
which define the stationary state includes the controlling parameters.

These two types of evolution represent in a sense the two extremes. It
would be interesting to investigate a more general case, when the parameters
change during the time evolution.

12. Conclusion. Associative Memory and Pattern Recog-
nition ‘

Since the well-known work by Hopfield (1982) the problems of associative
memory and pattern recognition occupy an important place in statistical
physics, in particular, in the theory of spin glasses, in optical systems.
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The models considered in the theory of associative memory and pattern
recognition are mostly based on discrete neural networks, each neuron. pos-
sessing a number of discrete states. Haken (1988) proposed treating the
recognition of patterns as a process similar to the formation of dissipative
structures in synergetic systems. In the proposed models the dynamics of
the system is determined by a potential function which depends on the
parameters. This dependence may be used for storing the information con-
cerning the pattern to be recognized. The test patterns are introduced via
the initial components of the vector of the dynamic system. Systems of this
kind exhibit the phenomenon of associative memory since they are capable -
of restoring the complete pattern in the process-of evolution towards the
stationary state, starting with the incomplete information contained in the
initial conditions {45,46].

Let us demonstrate that the simplest medium capable of associative
memory can be constructed from active elements, which are VanderPol
generators interacting via common feedback. Such a system is practical-
ly feasible.

Consider the following set of equations [26]:

axX; 1 N 1
T+§Zl(_aj+bjEj)zj=‘/i, 1=1,2,..., N,
J:
(12.1)

N
&+ P L (-0 +GEV, tefai =0, Eo= (VP +wlXD).

The generators are linked with each other via the common feedback. In
the general case all the coefficients a;,b; are different. Observe that the
excitation of all generators in the system only requires that Xg;, Vo; should
be nonzero for at least one generator.

Introducing the ”dissipative potential” of a system of generators

U= U, U= %(E - Z—)z (12.2)

we may write these equations in the form

dX; 1 ouv 1 dv; 10U 2w _
'EZ—+'2- j 'a—X—Jj;?—Vz ~dt+2§;—:3Vj+win_O' (12.3)

In the stationary state the dissipative potential (5.9.2) goes to zero. The
stationary solution with fixed initial phases ¢g; depends on N parameters
a;/b;. This dependence can be used for storing information about a pattern
of N points. For restoring the pattern it is sufficient to introduce into the
initial parameters the information about at least one point of the pattern.
Then in the process of evolution towards the stationary state the system will
restore complete information about the pattern, installed into the stationary
state via the values of the parameters a;/b;. Obviously, this model is just a
very simple illustration. Possible generalizations may proceed in various di-
rections. Of interest, for instance, is the statistical generalization, when the
state of the system in the general case is characterized by the ” N-particles”
distribution function fy. We then enter the domain of the statistical theory
of "nonideal” active systems with interaction of different ”particles” ,which
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can simulate the processes of associative memory and pattern recognition
with due associative account fluctuative processes involving both the inter-
nal variables of the system’s macroscopic elements and the variables which
describe the motion of each element as a whole [5,6].
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BIJ TAMIJILTOHOBOT MEXAHIKH 11O
HEIIEPEPBHOI'O CEPETOBUIIIA.
OIVUCUIATHUBHI CTPYKTYPH,,
KPUTEPII CAMOOPTAHI3AIIIL

10.J1. KnaiMorTOoBMY

Lsa poboTa 3aniyMana HK MpeIcTaBJleHHA NEAKUX TOJOBHUX ineil
Ta pe3yJbTaTIB CYYaCHOl CTATUCTHYHOI Teopil MaKpocKOmIUHUX
BIOIKPUTUX cUcTeM.
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Mu nnounHaemMo 3 neMOHCTpa.uii HeO6XiI1HOCTi 1 MOXKJIMBOCTI 06’—
6MHAHOTO ONMMUCY KIHETHKH, TIIPOMUHAMIKY U MU y3IAHUX IpoleciB
B HEJIHIMHMX MAKPOCKOIMIYHMX BIIKPUTHX CUCTEMaX Ha OCHOBI y3a-
raJIcHEHMX KIHETUYHMUX DIBHAHL.

BuBeneHHA y3arajJbHeHUMX KIHETWUHUX DPIBHAHB 06a3yeThcA Ha
KOHKpPeTHOMY (I3MYHOMY O3HAUeHH] HellepepBHOI'0 CepeloBULIA.
“Touka” HellepepBHOI'0 CepelOBHIIA BU3HAUYAETLCA 33 O3HAYECHHAM
dizmuno iHdiHiTezeManLHoro Macmraby. Ha mift camiit ocHoBI na-
eThcA oanavenda ancambmio Ti6Gca. SIK TecToBI CUCTEMH BUKODH-
CTOBYIOThCHA GOJIBLUMAHIBCBKMIT I'a3 Ta IIOBHICTIO 10HI30BaHa Ma3-
Ma.

ITpu nepexoni Bin o6opoTHix piBHAHL ['aMinLToHA MO y3arab-
HEHUX KIHETUYHMX PIBHAHb IMHAMIYHa HECTIAKICTL PYyXYy YacTHHOK
rpa& KOHCTPYKTUBHY POJh.

Kinetnyne piBHAHHA GoJBIMaHIBCbKOI0 a3y CKJaJag8ThCA 3
OBOX AMICUIIATMBHUX nomaHkin: 1. “IHTerpan 3iTkHeHL” BH3HAuUa-
€ThCA MpollecaMu B mnpocTopl mBugkocTel; 2. JomaTkoBuit nucu-
[ATUBHMM JOJAHOK 01 y3IAHOrO TUILY B IPOCTOPL KOOPUMUHAT. 3aB-
IAKWA OCTAHHEOMY CTa€ MOXKJIUBUM 06’@MHAHMIN OMUC KIHETUUHUX,
CIOpPOIMHAMIYHMX Ta AU y31HHMAX POLECIB IUIA BC1X 3HaYeHb YUCen
Kuyncena.

Noseneno H-TeopeMy MJIA y3arajibHEHOrO KIHETMYHOTO PIBHAH-
aa. BupobHuurBO €HTpOHII O3HAYeHEe AK CyMa OBOX HEe3aJIeXKHMX
HONATHIX AONAHKH, INO BINIOBINAIOTH IIEPEPO3NOLITY YaCTMHOK B
MpOCTOpP] WBUAKOCTEN T3 KOOPOIUHAT BiAMIOBIIHO.

IToTik eHTpoOTii TAKOXK CKAANAETHCA 3 TBOX YyacTUH. OoHa 3 HUX
TpOTOPIifHA [0 €HTPOMil, iHIa — Ko 11 rpagienTa. [cHyBaHHA OCTaH-
HBLOI'O JOJAHKY HO3BOJIAE€ JATH 3araljibHe 03HAUEHHA [IOTOKY Temja
IJA OOBINBHUX 3HayeHb unces Knyncena. lle saranbie o3HaueHHA
np¥ Manux ynciiax KHyncena i mocTitHOMY Tncxy MPUBOJMUTL OO
3akonis Pyp’s.

PiBHAHHA ra3oBol OUHAMIKM IJIA 0COBJAMBOro KJacy §yHKULA
PO3MOMILY CAIAYIOTE 3 y3araJbHEHOro KIHeTUYHOT O PIBHAHHA B pam-
Kax Teopil 36ypeHn nas uucen Kuyncena. Ili piBuaAHHSA Bigp13HA-
I0THCA B TPAAMUIHHMX BPaXyBaHHAM NpolLeciB caMomud y3ii.

PosrasasayTo y3arajibHeHe KIHETMUYHE PIBHAHHA NJA onucy Gpo-
YHIBCBKOI'0 PYXYy 1 aBTOXBMJIbOBUX MPOIleCiB B aKTMBHOMY cepe-
mosumi. BcTaHoBNEeHO 3B’A30K 3 peaKMiHO-IMQy3iHUM DIBHAH-
am Pimepa-Konamoroposa-IlerpoBchkoro- chxynoea Ta piBHAH-
uam ['ina6ypra-Jlanpay. O6rosoplosThca 3B’A30K MiX nudysisio
YacTUHOK B oBMexXeHill cucTeMi 3 mpuponHiM myMoM 1/f B macus-
HUX Ta AKTUBHUX CUCTEMAX.

IIpencraBiieHo CHIBCTABJIEHHA TMILY: KpUTepid BIIHOCHOI cTe-
[eHl [IOPANKY CTaHy BIIKPHUIOI CUCTEMM — KPWUTEPLA CaMoOpraHi-
3anil.



