Low-frequency electromagnetic field in Wigner crystal

A. Stupka

Oles' Honchar Dnipropetrovs'k National University, Faculty of physics, electronics and computing systems, 72 Gagarin Ave., 49010 Dnipropetrovs'k, Ukraine, E-mail: antonstupka@mail.ru

Lets consider low-frequency long-wave electromagnetic field in three-dimension Wigner (electron) crystal. It satisfies Maxwell equations with hydrodynamic currents. Equation for electron subsystem in continuum approximation in isotropic case is $\rho_{e} \dot{v}_{e \alpha}=(A+B) \partial^{2} u_{\chi} / \partial x_{\alpha} \partial x_{\chi}+B \partial^{2} u_{\alpha} / \partial x_{\chi} \partial x_{\chi}-e n_{e} E_{\alpha}$, here u_{α} is deformation vector. Ion subsystem has been considered in jelly approximation $\rho_{i} \dot{v}_{i \alpha}=Z e n_{i} E_{\alpha}$. We have such linearized Fourier-transformed equation system for wave-vector projections like $\mathbf{E k} / k=E^{\|}$in dimensionless variables $\left(E^{\|}, u^{\|}, v_{e}{ }^{\|}, v_{i}^{\|}\right) \leftrightarrow\left(\frac{e E^{\|}}{m s^{2} k}, u^{\|} k, \frac{v_{e}^{\|}}{s}, \frac{v_{i}^{\|} M}{s m Z}\right), t \leftrightarrow t k s$, where $s^{2}=(A+2 B) / \rho_{e 0}$: $\dot{E}^{\|}=\Omega_{e}^{2} v_{e}^{\|}-\Omega_{i}^{2} v_{i}^{\|}, \dot{u}^{\|}=v_{e}^{\|}, \dot{v}_{i}^{\|}=E^{\|}, \dot{v}_{e}^{\|}=-u^{\|}-E^{\|}$. Here Ω_{e} and Ω_{i} are electron and ion plasma frequencies. Low-frequency oscillation branch is $\Lambda=$ $\pm \frac{i}{2} \sqrt{\Omega_{e}^{2}+\Omega_{i}^{2}+1-\sqrt{\left(\Omega_{e}^{2}+\Omega_{i}^{2}+1\right)^{2}-4 \Omega_{i}^{2}}}$ that gives solution like ordinary ion sound in limit $\Omega_{e}^{2} \rightarrow \infty: \Lambda \approx \pm i \Omega_{i} / \Omega_{e}$. In the case of infinity heavy ions the sound disappears. For transversal oscillations like $\left(\delta_{\alpha \beta}-k_{\alpha} k_{\beta} / k^{2}\right) E_{\beta}=E_{\alpha}^{\perp}$ we denote $\mathbf{B} \rightarrow[\mathbf{k} / k, \mathbf{B}]=\mathbf{Z}$ and have $\left(\mathbf{E}^{\perp}, \mathbf{Z}, \mathbf{u}^{\perp}, \mathbf{v}_{e}^{\perp}, \mathbf{v}_{i}^{\perp}\right) \leftrightarrow\left(\frac{e \mathbf{E}^{\perp}}{m s^{2} k}, \frac{e \mathbf{Z}}{m s^{2} k}, \mathbf{u}^{\perp} k, \frac{\mathbf{v}_{e}^{\perp}}{s}, \frac{\mathbf{v}_{i}^{\perp} M}{s m Z}\right)$, $t \rightarrow t k s, c \leftrightarrow c / s$ where $s^{2}=B / \rho_{e 0}$. In this variables we have $\dot{\mathbf{E}}^{\perp}=i c \mathbf{Z}+$ $\Omega_{e}^{2} \mathbf{v}_{e}^{\perp}-\Omega_{i}^{2} \mathbf{v}_{i}^{\perp}, \dot{\mathbf{Z}}=i c \mathbf{E}^{\perp}, \dot{\mathbf{u}}^{\perp}=\mathbf{v}_{e}^{\perp}, \dot{\mathbf{v}}_{i}^{\perp}=\mathbf{E}^{\perp}, \dot{\mathbf{v}}_{e}^{\perp}=-\mathbf{u}^{\perp}-\mathbf{E}^{\perp}$. Solution branch $\Lambda= \pm \frac{i}{2} \sqrt{\Omega_{e}^{2}+\Omega_{i}^{2}+1+c^{2}-\sqrt{\left(\Omega_{e}^{2}+\Omega_{i}^{2}+1+c^{2}\right)^{2}-4\left(\Omega_{i}^{2}+c^{2}\right)}}$ gives lowfrequency oscillations that gives transversal sound in limit $\Omega_{e}^{2} \rightarrow \infty$ and condition $\Omega_{i} \gg k c: \Lambda \approx \pm i \Omega_{i} / \Omega_{e}$. But in the case of infinity heavy ions a new lowfrequency quadratic dispersion law appears $\Lambda \approx \pm i c / \Omega_{e}$. So resiliency modules of electron subsystem that are determined by short-acting potential enter in long wavelength oscillation frequencies: longitudinal $\omega^{2}=k^{2}(A+2 B) / \rho_{i 0}$ and transversal $\omega^{2}=k^{2} B / \rho_{i 0}+k^{4} c^{2} B / \rho_{e 0} \Omega_{e}^{2}$. This consideration can be applied to covalent bounded isotropic crystals also.

