Exact solution for the spin-chain model of alternating Ising and Heisenberg spins in arbitrary magnetic field

J. Strečka a, M. Hagiwara ${ }^{b}$, Y. Han b, T. Kida ${ }^{b}$, Z. Honda ${ }^{\text {c }}$
${ }^{a}$ Department of Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9, 04001 Košice, Slovakia
${ }^{b}$ KYOKUGEN (Center for Quantum Science and Technology under Extreme Conditions), Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
${ }^{c}$ Graduate School of Science and Engineering, Saitama University, 255 Simookubo Saitama, Saitama 338-8570, Japan

The spin-chain model of alternating Ising and Heisenberg spins in arbitrary magnetic field is exactly solved by making use of the transfer-matrix method. The proposed model brings a deeper insight into the ferrimagnetism of bimetallic spin chains, which constitute two different but regularly alternating magnetic ions with unequal Landé factors. It is demonstrated that the low-temperature magnetization process depends basically on a spatial orientantion of the applied magnetic field with respect to the easy-axis direction of the Ising spins. The sharp stepwise magnetization curve, which is characteristic for the magnetic field applied along the easy-axis direction of the Ising spins, becomes gradually smoother if the external field is tilted from the easy-axis direction of the Ising spins. The angular dependence of the low-temperature magnetization curve of a single-crystal sample is investigated in particular. In addition, the low-temperature magnetization curve for a polycrystalline sample is also exactly calculated by performing the powder averaging of the derived magnetization formulae. The presented theoretical results shed light on the high-field magnetization curve of $3 \mathrm{~d}-4 \mathrm{f}$ bimetallic chain $\left[\mathrm{Dy}\left(\mathrm{NO}_{3}\right)(\mathrm{DMSO})_{2} \mathrm{Cu}(\mathrm{opba})(\mathrm{DMSO})_{2}\right]$, which can be regarded as the experimental representative of the spin-chain model of alternating Ising and Heisenberg spins formed by the highly anisotropic dysprosium ($3+$) and almost isotropic copper($2+$) ions.

Acknowledgment: This work was partially supported under the grant VEGA 1/0234/12.

