Goldstone mode singularities in O(n) models

J. Kaupužs^{a,b}, R.V.N. Melnik^c and J. Rimšāns^{a,b}

Monte Carlo (MC) analysis of the Goldstone mode singularities for the transverse and the longitudinal correlation functions, behaving as $G_{\perp}(\mathbf{k}) \simeq ak^{-\lambda_{\perp}}$ and $G_{\parallel}(\mathbf{k}) \simeq bk^{-\lambda_{\parallel}}$ in the ordered phase at $k \to 0$, is performed in the threedimensional O(n) models with n = 2, 4, 10. Our aim is to test the predictions of [1], according to which the exponents λ_{\perp} and λ_{\parallel} are non-trivial $(3/2 < \lambda_{\perp} < 2)$ and $0 < \lambda_{\parallel} < 1$ in three dimensions) and the ratio bM^2/a^2 (where M is the spontaneous magnetization) is universal. The trivial standard-theoretical values are $\lambda_{\perp} = 2$ and $\lambda_{\parallel} = 1$. The MC analysis of [2] gives $\lambda_{\perp} = 1.955 \pm 0.020$ for the O(4) model. The MC estimation of λ_{\parallel} , assuming corrections to scaling of the standard theory, yields $\lambda_{\parallel} = 0.69 \pm 0.10$ for the O(2) model [3]. This result clearly disagrees with λ_{\parallel} = 1. Currently, we have performed a similar MC estimation for the O(10) model, yielding $\lambda_{\perp} = 1.9723(90)$ and $\lambda_{\parallel} = 0.85 \pm 0.06$. We have observed that the plot of the effective transverse exponent for the O(4)model is systematically shifted down with respect to the same plot for the O(10)model by $\Delta \lambda_{\perp} = 0.0121(52)$. It is consistent with the idea that $2 - \lambda_{\perp}$ decreases for large *n* and tends to zero at $n \to \infty$. We have also verified and confirmed the expected universality of bM^2/a^2 for the O(4) model, where simulations at two different temperatures (couplings) have been performed.

References

- [1] J. Kaupužs, Progress of Theoretical Physics 124, 613–643 (2010)
- [2] J. Kaupužs, R.V.N. Melnik, J. Rimšāns, Phys. Lett. A 374, 1943–1950 (2010)
- [3] J. Kaupužs, Can. J. Phys., doi:10.1139/p2012-028.

^a Institute of Mathematics and Computer Science, University of Latvia 29 Raiņa Boulevard, LV-1459 Riga, Latvia E-mail: kaupuzs@latnet.lv ^b Institute of Mathematical Sciences and Information Technologies, University of Liepaja, 14 Liela Street, Liepaja LV-3401, Latvia ^c Wilfrid Laurier University, Waterloo, Ontario, Canada, N2L 3C5