Marginal dimensions for multicritical phase transitions

M. Dudka^a, R. Folk^b, Yu. Holovatch^a, G. Moser^c

The field-theoretical model with $O(n_{\parallel}) \oplus O(n_{\perp})$ symmetry is known to describe multicritical phase transitions in different physical systems like magnets, superconductors and ⁴He (see [1]). The phases are described by two order parameters (OPs), a n_{\parallel} -component one coupled to another one with n_{\perp} components. Within renormalization group (RG) approach scaling properties of the critical properties of the model are governed by one of three fixed points (FPs) (isotropic Heisenberg FP of $O(n_{\parallel}+n_{\perp})$ symmetry, decoupled FP at which OPs are ordering separately, and biconical FP). Their stability depend on the OPs dimensions n_{\parallel} , n_{\perp} and the space dimension d. We are interested in the surfaces in the $n_{\parallel}-n_{\perp}-d$ space that separate the stability regions of these FPs. Applying resummation techniques to the known two-loop RG functions for $O(n_{\parallel}) \oplus O(n_{\perp})$ model found in minimal subtraction scheme [2] we obtain these surfaces in n_{\parallel} – n_{\perp} – d space from the stability exponents. Special attention was paid to the stability surface $n_{\parallel}^{\mathcal{D}}(n_{\perp}, d)$, which we calculate as series in ϵ =4–d up to ϵ ⁴ and for the case d=3 as series in pseudo- ϵ parameter τ up to τ^5 using results for O(n)-symmetric model [3,4]. We analyze the obtained results by resummation methods. We also consider the dependence on the space dimension d of another stability surface $n_{\parallel}^{\mathcal{H}}(n_{\scriptscriptstyle
m L}\,d)$ as well as of the multicritical behavior for the $O(1) \oplus O(2)$ symmetric model relevant for anisotropic antiferromagnets in an external magnetic field.

- [1] A. Aharony, J. Stat. Phys. 110, 659 (2003); H. Matsuda, T. Tsuneto, Prog. Theor. Phys. 40, 411 (1970).
- [2] R. Folk, Yu. Holovatch, and G. Moser, Phys. Rev. E 78,041124 (2008).
- [3] H. Kleinert, J. Neu, V. Schulte-Frohlinde, K.G. Chetyrkin, and S.A. Larin, Phys. Lett. B 272, 39 (1991).
- [4] S. A. Antonenko, A. I. Sokolov, Phys.Rev. E 51, 1894 (1995).

^aInstitute for Condensed Matter Physics, Svientsitskii str. 1, UA-79011 Lviv ,Ukraine

^b Institut für theoretische Physik, Johannes Kepler Universität Linz, A–4040 Linz, Austria

^c Institut für Physik und Biophysik, Univerität Salzburg, A–5020 Salzburg, Austria