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V. ShpytkoWEYL-TYPE QUANTIZATION RULESANDN-PARTICLE CANONICAL REALIZATIONOF THE POINCAR�E ALGEBRA IN THE TWO-DIMENSIONALSPACE-TIME
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õäë: 531/533; 530.12: 531.18PACS: 03.30.+p, 03.65.-w, 03.65.Geë×ÁÎÔÕ×ÁÎÎÑ ÷ÁÊÌ�×ÓØËÏÇÏ ÔÉ�Õ ÔÁ N-ÞÁÓÔÉÎËÏ×Á ÒÅÁÌ�ÚÁ��Ñ ÁÇÅ-ÂÒÉ ðÕÁÎËÁÒÅ Õ Ä×Ï×ÉÍ�ÒÎÏÍÕ �ÒÏÓÔÏÒ�-ÞÁÓ�÷. û�ÉÔËÏáÎÏÔÁ��Ñ. õ ÒÁÍÁÈ ÆÒÏÎÔÁÌØÎÏ§ ÆÏÒÍÉ ÄÉÎÁÍ�ËÉ Õ Ä×Ï×ÉÍ�ÒÎÏÍÕ�ÒÏÓÔÏÒ�-ÞÁÓ� ÒÏÚÇÌÑÄÁ¤ÔØÓÑ Ë×ÁÎÔÕ×ÁÎÎÑ ËÁÎÏÎ�ÞÎÏ§ ÒÅÁÌ�ÚÁ��§ ÁÇÅÂÒÉ ðÕ-ÁÎËÁÒÅ, ÝÏ ×�Ä�Ï×�ÄÁ¤ ÓÉÓÔÅÍ� N ×ÚÁ¤ÍÏÄ�ÀÞÉÈ ÞÁÓÔÉÎÏË. úÁ ÄÏ�ÏÍÏ-ÇÏÀ �ÒÁ×ÉÌ Ë×ÁÎÔÕ×ÁÎÎÑ ÷ÁÊÌ�×ÓØËÏÇÏ ÔÉ�Õ �ÏÂÕÄÏ×ÁÎÏ ÕÎ�ÔÁÒÎ� �ÒÅÄ-ÓÔÁ×ÌÅÎÎÑ ÇÒÕ�É P(1; 1). ðÏËÁÚÁÎÏ, ÝÏ ×ÉÍÏÇÁ ÚÂÅÒÅÖÅÎÎÑ ÁÌÇÅÂÒÉ ì���¤§ ÇÒÕ�É ÏÂÍÅÖÕ¤ ÍÎÏÖÉÎÕ �ÒÁ×ÉÌ Ë×ÁÎÔÕ×ÁÎÎÑ, ÁÌÅ ÎÅ ÕÓÕ×Á¤ ÓÁÍÁÓÏÂÏÀ ÎÅÏÄÎÏÚÎÁÞÎÏÓÔ� �ÒÏ�ÅÄÕÒÉ Ë×ÁÎÔÕ×ÁÎÎÑ. íÎÏÖÉÎÁ �ÒÁ×ÉÌ Ë×ÁÎ-ÔÕ×ÁÎÎÑ ÒÏÚÂÉ×Á¤ÔØÓÑ ÎÁ ËÌÁÓÉ ÅË×�×ÁÌÅÎÔÎÏÓÔÉ. ðÒÁ×ÉÌÁ Ë×ÁÎÔÕ×ÁÎÎÑ �ÚÔÏÇÏ Ö ÓÁÍÏÇÏ ËÌÁÓÕ �ÒÉ×ÏÄÑÔØ ÄÏ ÔÏÇÏ Ö ÓÁÍÏÇÏ Ó�ÅËÔÒÕ ÍÁÓ ÔÁ Å×ÏÌÀ��§Ë×ÁÎÔÏ×ÁÎÏ§ ÓÉÓÔÅÍÉ i ÄÁÀÔØ ÕÎ�ÔÁÒÎÏ ÅË×�×ÁÌÅÎÔÎ� �ÒÅÄÓÔÁ×ÌÅÎÎÑ ÇÒÕ�ÉP(1; 1). ðÒÁ×ÉÌÁ Ë×ÁÎÔÕ×ÁÎÎÑ �Ú Ò�ÚÎÉÈ ËÌÁÓ�× ÄÁÀÔØ ÕÎ�ÔÁÒÎÏ ÎÅÅË×�×Á-ÌÅÎÔÎ� �ÒÅÄÓÔÁ×ÌÅÎÎÑ ÔÁ �ÒÉ×ÏÄÑÔØ ÄÏ Ò�ÚÎÉÈ ×ÉÒÁÚ�× ÄÌÑ Ó�ÏÓÔÅÒÅÖÕ×Á-ÎÉÈ ×ÅÌÉÞÉÎ.Weyl-type quantization rules and N-partile anonial realization ofthe Poinar�e algebra in the two-dimensional spae-timeV. ShpytkoAbstrat. The quantization of anonial realization of Poinar�e algebra orre-sponding to N -partile interating system in the two-dimensional spae-timeM 2 in the front form of dynamis is onsidered. Unitary realizations of thegroup P(1; 1) are obtained by means of a set of Weyl-type quantization rules.We demonstrate that the requirement of preservation of Lie algebra of thisgroup restrits the set of quantization rules but does not by itself remove theambiguity of quantization proedure. The set of quantization rules fall apartinto equivalene lasses. The quantization rules from the same equivalenelass give the same mass spetrum, evolution of the quantized system and leadto equivalent unitary representations of the group P(1; 1). The quantizationswhih belong to di�erent lasses lead to non-equivalent unitary representationsand may result in di�erent values for observable quantities.ðÏÄÁ¤ÔØÓÑ × Journal of Mathematial PhysisSubmitted to Journal of Mathematial Physis ¶ÎÓÔÉÔÕÔ Æ�ÚÉËÉ ËÏÎÄÅÎÓÏ×ÁÎÉÈ ÓÉÓÔÅÍ 1999Institute for Condensed Matter Physis 1999



1 ðÒÅ�ÒÉÎÔI. IntrodutionThe problem of quantization of lassial theory oupies a prominentplae in the theoretial physis in 20-th entury. Sine the very begin-ning of appearane of the quantum mehanis it has been known aboutthe deep di�erene between the lassial and the quantum desription {the deterministi harater of the lassial mehanis ontrasts with theprobabilisti interpretation of the quantum mehanis.At the same time it has been realized that the quantum and lassi-al mehanis are only di�erent levels of the desription of the physialreality and therefore they must have some ommon features. Variousattempts to oordinate this two ontrary fats and onstrut quantumdesription the struture of whih "remembers" some essential featuresof the lassial mehanis have led to various treatments in quantizationproblem [1{6℄.The basi struture of the lassial Hamiltonian mehanis for anunonstrained system is a 2N-dimensional phase spae P ' R2N (ingeneral ase a sympleti manifold) with sympleti form !. Phase spaean be (loally) parametrized by anonial variables qa; pa; a = 1; N .The state of the lassial system is desribed by a point in P. Observablequantities are identi�ed with smooth funtions on P. They form thespae C1(P). Sympleti form determines on C1(P) the struture ofLie algebra (whih is alled Poisson algebra) by means of the Poissonbraket [7℄.In the quantum mehanis a state is desribed by a vetor j i insome Hilbert spae H and physial observables are self-adjoint operatorsin H. Correspondene between the lassial and quantum pitures is es-tablished within the framework of ertain quantization proedure whihis meant as a linear map Q : f 7! ^f of the Poisson algebra into the setof self-adjoint operators in the Hilbert spae H.The maximal group of automorphisms of the phase spae whihpreserve the sympleti struture is the in�nite dimensional groupSymp(P; !) of anonial transformations (sympletomorphisms). Quan-tum ounterpart of suh transformation is the group U(H) of unitarytransformations. It is well known that not every anonial transforma-tion of a lassial system leads after quantization to a unitary transfor-mation in the quantum ase. This shows that these two groups are notisomorphi [2℄.For every symmetry group, whih is some Lie group G, the lassialHamiltonian desription provides a anonial realization of this group.The symmetry group of a lassial system generates anonial transfor-
ICMP{99{10E 2mations and as we have mentioned above, after quantization suh las-sial transformations do not neessarily lead to unitary transformationson the quantum level of desription. Besides, they may violate ommu-tation relations of the Lie algebra of G. Thus, we annot a priori be surethat any lassial symmetry leads after quantization to the quantumone. Moreover, di�erent quantization rules may preserve some types ofsymmetries and break out other ones. It is natural to demand the preser-vation of physially important symmetries. Therefore, we shall requirefor a quantization proedure the ful�lment of onditionQ(ff; gg) = i[ ^f; ^g℄ (1.1)only for some subalgebra of the Poisson algebra. It is lear that anonialgenerators orresponding to physially important symmetries have tobelong to this subalgebra. This means that after quantization we ometo a unitary representation of the symmetry groupG ating in the Hilbertspae H.On the other hand, it is well known that there exist a lot of di�erenttreatments to the quantization problem. Starting from some lassialsystem di�erent quantization proedures may result in non-equivalentquantum systems. From this point of view it is very important to un-derstand whether there exists suh a subalgebra of the Poisson algebrawhih minimizes the ambiguities of the quantization proedure.In the relativisti mehanis of interating partiles the main alge-brai struture is Lie algebra p(1; 3) of Poinar�e group P(1; 3) and thedesription of a system of N interating partiles must be Poinar�e invari-ant in the lassial ase as well as in the quantum one. The Hamiltonianformalism leads to a anonial realization of p(1; 3). Therefore, the quan-tization proedure must preserve the struture of the Poinar�e algebra,i.e. anonial generators of the Poinar�e group have to be transformedinto Hermitian operators whih satisfy ommutation relations of thisalgebra. In the relativisti ase, the quantization problem is of speialinterest beause Poinar�e invariane onditions lead to the ompliateddependene of interation potentials on anonial oordinates and mo-menta. In most ases lassial relativisti Hamiltonians depend on theproduts of non-ommutative (in terms the of the Poisson braket) quan-tities. This raises the question of symmetrization of non-ommutativeoperators in the quantum desription. Di�erent ordering methods mayresult in di�erent expressions for physial observable quantities [8℄.The ten generators of the Poinar�e group are realized in terms ofanonial oordinates and momenta. As a rule, anonial oordinatesdo not oinide with the ovariant partile oordinates owing to the no-



3 ðÒÅ�ÒÉÎÔinteration theorem [9℄. Poinar�e group is split into two parts { kinemat-ial and dynamial. The kinematial part ontains the generators inde-pendent of interation and is alled stability group G�. It determines theHamiltonian form of relativisti dynamis and is automorphism groupof simultaneity hypersurfae � [10℄. The hypersurfae � determines ge-ometrial form of dynamis [11℄. The generators whih onstitute thedynamial part depend on interation. Dira alled them Hamiltonians[10℄. Di�erent forms of dynamis for N-partile system lead to di�er-ent numbers of generators independent of interation. The front formof dynamis [10,12,13℄ has the largest possible stability group G� forN-partile system { only three generators are Hamiltonians.To onstrut the relativisti desription whih ontains only oneHamiltonian it is neessary to hoose in the four-dimensional Minkowskyspae M 4 a Poinar�e-invariant hypersurfae �. Unfortunately suh a hy-persurfae does not exist. In other words, G� 6= P(1; 3) [11℄. This fatmeans that Lagrangian of N-partile system with an interation must bea funtion L : J1� ! R de�ned on the in�nite order jet spae of �brebundle � : F ! R; (t; xia ) 7! t [14℄. The last statement is the Lagrangianvariant of no-interation theorem [15℄. To avoid the diÆulty related withthe presene of time derivatives of in�nite order in Lagrangian funtionwe have to go beyond the lass of geometrial forms of dynamis. De-termining simultaneity onditions only for points of partile world lines(not for the whole spae-time) we ome to isotropi forms of dynamis[16℄.In the two-dimensional spae-time M 2 the hypersurfae � whih de-termines the front form of dynamis for arbitrary N-partile system be-omes isotropi [17℄. The front form orresponds to the foliation of M 2by isotropi hyperplanes �F :x0 + x = t: (1.2)The Poinar�e group P(1; 1) is the automorphism group of the foliation(1.2). In this form of dynamis Poinar�e-invariane onditions for N -partile system allow the existene of interation Lagrangians whih donot ontain derivatives higher than the �rst order. Only one generatorof p(1; 1) ontains an interation and mehanial desription is in somesense similar to the nonrelativisti one. The two-dimensional variant ofthe front form permits the onstrution of the number of exatly solvablelassial and quantum relativisti models [18℄-[21℄.Due to the ertain simpliity of the relativisti desription in the frontform in M 2 , we are able to eluidate the peuliarities of the quantizationproedure in the relativisti ase [18℄-[20℄ and to understand how the
ICMP{99{10E 4Poinar�e invariane redues the quantization ambiguities.The aim of this artile is the quantization of the anonial realizationof the Poinar�e algebra orresponding to N -partile relativisti systemwith an interation (Se. II) within the framework of the two-dimensionalvariant of the front form of dynamis. Using the set of Weyl-type quanti-zation rules we onstrut in Se. III unitary representations of the groupP(1; 1). We study the inuene of di�erent quantization rules on quan-tized system and propose some lassi�ation method of non-equivalentquantizations of the anonial realization of the Lie algebra of P(1; 1).In Se.IV we apply the obtained results to N-partile relativisti systemwith osillator-like interation.II. Hamiltonian desription of N-partile system in the front formof dynamis in M 2The lassial Hamiltonian desription of the system of N struturelesspartiles with masses ma (a = 1; N) in the two-dimensional Minkowskyspae M 2 in the framework of the front form of dynamis (1.2) leads tothe anonial realization of the Lie algebra of the Poinar�e group P(1; 1)with generators H;P;K [17℄. They orrespond to energy, momentum,and boost integral. Due to the positiveness of the momentum variables(pa > 0) [12,17℄ in the front form of dynamis, the phase spae of N-partile Hamiltonian system is P = RN+ � RN with standard Poissonbraketff; gg = NXa=1� �f�xa �g�pa � �g�xa �f�pa� : (2.1)We use more onvenient in the front form quantities P� = H�P withthe following Poisson braket relations of the Poinar�e algebra p(1; 1)fP+; P�g = 0; fK;P�g = �P�: (2.2)The generators are determined in terms of partile anonial variablesxa; pa [17℄ as follows:P+ = NXa=1 pa; K = NXa=1xapa; (2.3)P� = NXa=1 m2apa + 1P+V (rpb; r1=r) (2.4)



5 ðÒÅ�ÒÉÎÔand we an see that only one generator, namely P�, depends on intera-tion. The Poinar�e-invariant funtion V desribes the partiles intera-tion and depends on 2N�1 indiated arguments, where ra = xa�x; r =r12; a; b = 1; N;  = 2; N . In this ase, the partile anonial oordinatesoinide with ovariant ones and we an pass to the Lagrangian de-sription by means of the inverse of usual Legendre transformation. Inontrast to the nonrelativisti mehanis, this transformation is nonlin-ear and, therefore, purely paired interations in one formalism do notorrespond to suh ones in the other formalism [17℄.Generators (2.3), (2.4) determine the square of the mass funtion ofthe systemM2 = P+P� = P+ NXa=1 m2apa + V (rpb; r1=r): (2.5)The �rst terms in Eqs. (2.4), (2.5) orresponds to the free-partile sys-tem.The desription of motion of the system as a whole may be per-formed by hoosing P+ and Q = K=P+ as new (external) variables.There exist a lot of possibilities of the hoie of inner variables. If(�; q) = (�1; ::::; �N�1; q1; :::; qN�1) determine the set of inner anonialvariables,fqa; �bg = Æab; fQ;P+g = 1; a; b = 1; N � 1;fqa; Qg = f�a; P+g = 0; (2.6)suh that the inner momenta �b do not depend on the partile anonialoordinates, thenM2 =M2f (�) + F (q; �); F (q; �) = V (rpb; r1=r) (2.7)and Hamiltonian equations of motion take the form_Q = 1=2� M22P+ ; _P+ = 0; (2.8)_qa = 12P+ �M2��a ; _�a = � 12P+ �M2�qa : (2.9)One of the possible hoies of inner variables is [19℄:�a = Pa+ � pa+12P(a+1)+ ; qa = P(a+1)+(Qa � xa+1); (2.10)
ICMP{99{10E 6where a; b = 1; N � 1 and we use the following notationsPa+ = aXi=1 pi; Qa = P�1a+ aXi=1 xipi;PN+ = P+; QN = Q: (2.11)Variables (2.10) satisfy (2.6) and the free-partile squared mass funtionin Eq. (2.7) has the formM2f (�) = NXa=1 m2a1=2� �a�1 NYi=a(1=2 + �i)�1: (2.12)In the two-partile ase variables (2.10) oinide with the variables pro-posed in Ref.[12℄.III. Quantization of N-partile anonial realization of thePoinar�e algebra in M 2To perform the quantization proedure, we have to determine �rstlyquantum operators orresponding to the partiular anonial variablesxa; pa. Then for a given set of lassial observables a = a(x; p) we on-strut orresponding quantum operators ^A. Let ^xa; ^pa be Hermitian op-erators orresponding to the lassial partile oordinates and momentawith the following ommutation relations[^xa; ^pb℄ = iÆab: (3.1)The original Weyl appliation [22℄ is a basis for the whole set of quan-tization rules WF : a 7! ^A, whih map bijetively a family of lassialreal funtions a(x; p) 2 C1(P) to a family of Hermitian operators ^A insome Hilbert spae H. For P � R2N , the formal de�nition is given in theexpliit form [5,23℄ as follows^A = Z (dk)(ds)~a(k; s)F(k; s) exp"iXa (ka^xa + sa^pa)# ; (3.2)where a(k; s) is Fourier transform of the funtion a(p; q). FuntionF(k; s) determines the type of quantization. Di�erent hoies of F(k; s)orrespond to di�erent ordering onventions. We shall all the elementsof the family of quantizations (3.2) Weyl-type quantization rules. Forthe original Weyl quantization F(k; s) = 1. Let us restrit ourselves to



7 ðÒÅ�ÒÉÎÔreal funtions F(k; s) 2 C1(R2N ), i.e. F(k; s) = F�(k; s). Every quan-tization rule must obey the following ondition:Q(1) = ^1; (3.3)where the unity means funtion on P and in r.-h. side ^1 is the unitoperator. As a result, for the family of quantizations (3.2) we obtainF(0; 0) = 1 : (3.4)Hermitiity ondition means:F(k; s) = F(�k;�s): (3.5)For a system of N spinless partiles we shall work with a momentumspae basis given byjpi = jp1i 
 jp2i 
 � � � 
 jpNi ; (3.6)where jpai is eigenvetor of operator ^pa : ^pajpai = pajpai. The wavefuntions  (p) = hpj i desribing the physial (normalized) states in thefront form of dynamis onstitute the Hilbert spae HFN = L2(RN+ ; d�FN )with the inner produt [18℄( 1;  ) = Z d�FN (p) �1(p) (p); (3.7)whered�FN (p) = NYa=1 dpa2pa�(pa) (3.8)is the Poinar�e-invariant measure and �(pa) is Heaviside step funtion.Operators at on wave funtions  (p) 2 HFN as integral operators:( ^A )(p) = Z d�FN (p0) eA(p; p0) (p0): (3.9)The kernel orresponding to operator (3.2) has the formeA(p; p0) = 1(2�)N Z (dx)(dz) exp(i NXa=1�p0a�pa)xa�� (3.10) NYa=1 Æ�za � pa+p0a2 �2ppap0a!F �i ��x ; i ��z� a(x; z) ;
ICMP{99{10E 8where we take into aount Eq.(3.5). We understand the expressionF (i�=x; i�=z) as a formal series:F �i ��x ; i ��z� = 1Xi1;:::;iNj1;:::;jN �i1+:::+iN+j1+:::+jNF(0; 0)�i1k1 : : : �iN kN�j1s1 : : : �jN sN �� NYa=1 1ia!ja! �i ��xa�ia �i ��za�ja : (3.11)Condition (3.5) leads to the equalities�F(0; 0)�ka = �F(0; 0)�sa = 0; a = 1; N : (3.12)Now let us onsider the quantization proedure of lassial anon-ial generators (2.3), (2.4) of p(1; 1). Substituting expressions (2.3) ofthe generators K, P+ into (3.10) and using (3.4), (3.12) we obtain thefollowing operators^P+ = P+ ; ^K = i NXa=1 pa ��pa � NXa=1 �2F(0; 0)�ka�sa : (3.13)The Weyl-type quantization rules transform the generator P� into inte-gral operator (3.9) with the kerneleP�(p; p0) = 1(2�)N Z (dx)(dz) exp(i NXa=1�p0a � pa)xa�� NYa=1 Æ�za�pa+p0a2 �2ppap0a!� (3.14)F �i ��x; i ��z�0BB� NXa=1 m2aza +V (rzb; r1=r)NPa=1 za 1CCA :After quantization we want to obtain a unitary realization of the groupP(1; 1). Therefore Hermitian operators (3.13), (3.14) have to satisfy thequantum ommutation relations of the Poinar�e algebra p(1; 1)[ ^P+; ^P�℄ = 0 ; [ ^K; ^P�℄ = �i ^P�: (3.15)The last term in the expression (3.13) of the boost operator ^K has noinuene on ommutation relations (3.15). Thus, the quantization prob-lem redues in fat to the onstrution of Hermitian operator ^P�. Thatin its turn determines the form of the funtion F .



9 ðÒÅ�ÒÉÎÔProposition 1. So that the Weyl-type quantizations ould lead to uni-tary realizations of the group P(1; 1), the funtion F has to be of thefollowing form:F = F(ks) ; (3.16)where the funtion F on the right-hand side depends on the all possibleproduts of arguments: k1s1; :::; k1sN ; k2s1; :::; k2sN ; ::: .Proof: In order to satisfy relations (3.15) the kernel (3.14) must obeythe following onditions:NXa=1�pa ��pa + p0a ��p0a� eP�(p; p0) = � eP�(p; p0) ; (3.17)NXa=1(pa � p0a) eP�(p; p0) = 0 : (3.18)Equation (3.18) is obtained as a result of ommutation of the operators^P+ and ^P�. It holds if the kernel eP�(p; p0) is proportional to Æ-funtionÆ(P+ � P 0+). The lassial expression for P� is translational invariantfuntion. Therefore equation (3.18) holds for arbitrary Weyl-type quan-tization rule.Equation (3.17) is the onsequene of ommutation of the operators^K and ^P�. It means that the kernel eP�(p; p0) must be homogeneousfuntion of the order -1. To satisfy this ondition the funtion F mustobey the following homogeneity equationF(�k; ��1s) = F(k; s) : (3.19)The only possibility to satisfy this equation is (3.16).Thus, we see that not every Weyl-type quantization rule preservesommutation relations (3.15) of the Lie algebra of the Poinar�e groupP(1; 1). The set of quantization rules with the funtion F of the form(3.16) transforms arbitrary lassial funtion depending only on momen-tum variables (A = A(p1; :::; pN )) into operator whih ats on wave fun-tions of momentum representation (3.7) as multipliation operator andhas the lassial form: A(^p1; :::; ^pN) = A(p1; :::; pN ). Suh quantizationrules transform the interation funtion V from (2.4) into operator whihommutes with ^K and ^P+;h ^K; ^V i = h ^P+; ^V i = 0 : (3.20)
ICMP{99{10E 10It should be noted that the set of Weyl-type quantization rules withthe funtion F of the form (3.16) does not inlude normal rule of orderingof nonommuting operators (see [23℄).Let us introdue the following variablesy1 = x1 ; y2 = P+ = NXa=1 pa ;{a = rpa ; yb = r1br ; b = 3; N : (3.21)In terms of variables (3.21) the di�erential operators �=�xa, �=�pa takethe form��xb = �P+{+ ��yb ; b = 3; N ; ��pa = {+P+ ��{a + ��P+ ;��x2 = �P+{+  NXa=1{a ��{a � NXd=3 yd ��yd! ; (3.22)��x1 = ��y1 + P+{+  NXa=1{a ��{a + NXd=3(1� yd) ��yd! ;where {+ = NPa=1{a. As a result of translational invariane of the lassialgenerator P�, it does not depend on y1:P� = {+P+ NXa=1 m2a{a + 1P+ V ({1; :::;{N ; y3; :::; yN ) : (3.23)As it follows from (3.11), (3.22) formal series F (�i�=x;�i�=z) ex-pressed in terms of variables (3.21) ontains di�erentiations with re-spet to P+. Therefore not every Weyl-type quantization rule with thearbitrary funtion F of the form (3.16) will transform the produtP+P� = M2 (fP+; P�g = 0) of lassial funtions into the orrespond-ing produt of quantum (ommutating) operators ^P+ ^P� = ^M2. Thismeans that not every quantization rule WF , preserving the struture ofLie algebra of the group P(1; 1), preserves ommutability of the followingdiagramP+; P� M2=P+P�- M2?WF ?WF (3.24)^P+; ^P� ^M2= ^P+ ^P�- ^M2 :



11 ðÒÅ�ÒÉÎÔIn the lassial ase the squared total mass funtion M2 is an invariantof the group P(1; 1). Thus, to obtain in the quantum ase the algebraistruture whih is most losely related to the lassial one, the quantumKasimir operator ^M2 = ^P+ ^P� should be a quantization result of thelassial funtion M2 = P+P�.Proposition 2. If the funtion F has the following formF = F(�1;�2) ; (3.25)where�1 = NXa=1 kasa ; �2 = NXa=1 NXb=1a6=b kasb; (3.26)then diagram (3.24) is ommutative.Proof: If F = F(�1;�2), then kernel (3.10) takes the form:eA(p; p0) = 1(2�)N Z (dx)(dz) exp(i NXa=1�p0a � pa)xa�� NYa=1 Æ�za � pa + p0a2 �2ppap0a!F � ^�1; ^�2� a(x; z) ; (3.27)whereF( ^�1; ^�2) = 1Xi=1 1Xj=1 �i+jF(0; 0)(��1)i(��2)j 1i!j! ( ^�1)i( ^�2)j (3.28)and ^�1 = � NXa=1 �2�xa�za ; ^�2 = � NXa=1 NXb=1a6=b �2�xa�zb : (3.29)Let us onsider the ation of the sum of partial derivativesNPa=1 �2=(�xa�pa) on a translation-invariant funtionNXa=1 �2f(P+;{; y3; :::; yN )�xa�pa =

ICMP{99{10E 12" 1 + NX=1{ ��{!� ��{1 � ��{2�++ nXd=3 �(1� yd) ��{1+yd ��{2 � ��{d � ��yd� f(P+;{; y3; :::; yN ) : (3.30)As follows from the last equation, suh an ation does not ontain dif-ferentiations with respet to P+. MoreoverNXa=1 �2f(P+;{; y3; :::; yN )�xa�pa =� NXa=1 NXb=1a6=b �2f(P+;{; y3; :::; yN )�xa�pa : (3.31)Thus, the proposition follows from the translation-invariane of P�.We shall also onsider partial ases withF = F(�1; 0) = F1(�1) ; (3.32)F = F(0;�2) = F2(�2) : (3.33)Quantization rule with F = F1 has been onsidered, for example, in Ref.[24℄.If F = F(�0) = F0 ; �0 = �1 +�2 (3.34)then, as it follows from (3.31), (3.26), (3.28)F( ^�0)f(P+;{1; :::;{N ; y3; :::; yN ) =f(P+;{1; :::;{N ; y3; :::; yN ) : (3.35)Thus, the quantization rule WF0 leads to the same operators ^P�; ^P+as well as the original Weyl quantization does. The operator ^K takes theform ^K = i NXa=1 pa ��pa � dF0(0)d�0 : (3.36)



13 ðÒÅ�ÒÉÎÔIf F = F0 anddF0(0)d�0 = 0 ; (3.37)then we obtain the same operators ^K; ^P� as in the ase of the orig-inal Weyl quantization. This means that quantization rules onnetedwith the lasses of funtions F(�1;�2) and F(�1;�2)F0, where F0 hasproperty (3.37), lead exatly to the same unitary realization of the groupP(1; 1).If ondition (3.37) is not satis�ed, then quantization rules WF andWFF0 give us di�erent expressions for ^K but they lead to the samerealization of ommutative ideal h = ( ^P+; ^P�).In the front form of dynamis the evolution of the quantum systemis desribed by the Shr�odinger-type equationi�	�t = ^H	; (3.38)where 	 2 HFN and^H = 12( ^P+ + ^P�) = 12( ^P+ + ^M2= ^P+): (3.39)Putting 	 = �(t; P+) , where  is a funtion of some Poinar�e-invariantinner variables, we obtain the stationary eigenvalue problem for the op-erator ^M2:^M2 = ^P+ ^P� =M2n;� : (3.40)The ideal h generates by means of the Eqs (3.38), (3.40) the evolutionof the system and the mass spetrum.Boost operator (3.13) obtained from lassial expression (2.3) bymeans of arbitrary Weyl-type quantization rule WF preserving ommu-tation relation of the Poinar�e algebra p(1; 1) generates Lorentz trans-formation�e�i� ^K � (p) = exp i NXa=1 �2F(0; 0)�ka�sa ! (e��p): (3.41)We see that di�erent quantization rulesWF ; WF 0 preserving ommu-tation relation of p(1; 1) lead to boost transformations whih distinguishon phase fator:�e�i� ^K0 � (p) = ei� �e�i� ^K � (p); (3.42)
ICMP{99{10E 14where� = NXa=1��2F(0; 0)�ka�sa � �2F 0(0; 0)�ka�sa � : (3.43)These Lorentz transformations are physially equivalent, beauseexp (�i� ^K 0) (p) and exp (�i� ^K) (p) belong to the some ray. Thus,quantizations whih lead to the same realization of the ideal h give equiv-alent unitary representations of the group P(1; 1). Therefore, it is naturalto introdue the followingDe�nition 1. Quantizations WF , WF 0 whih lead to the same realiza-tion of the ideal h are alled equivalent:WF 'WF 0 : (3.44)Proposition 3. Quantization rules WF , WF 0 preserving the ommu-tation relations of p(1; 1), where F = F(ks;�0); F 0 = F(ks; 0), areequivalent:WF(ks;�0) 'WF(ks;0): (3.45)Proof: This follows immediately from (3.35) and (3.23).Corollary 1.WF(ks)F0 'WF(ks): (3.46)For the speial lass of quantization rules whih preserve in additionto the ommutation relation of p(1; 1) the ommutability of the diagram(3.24), we haveWF1(�1) 'WF2(��2); WF2(�2) 'WF1(��1): (3.47)Hene, we see that the Weyl-type quantization rules whih preservethe ommutation relation of the Poinar�e algebra p(1; 1) fall apart intoequivalene lasses. Rules from di�erent lasses give non-equivalent uni-tary representations of the group P(1; 1) and may result in di�erentexpressions for suh important observable quantity as the mass spe-trum of the system. We shall demonstrate this fat by the example ofN-partile system with osillator-like interation in the next setion.



15 ðÒÅ�ÒÉÎÔIV. Ambiguities of quantization of N-partile system withosillator-like interationIn the ase of the free partile system (V = 0), arbitrary quantiza-tion rule of the type (3.16) transforms the lassial anonial generatorsP+; P� into the quantum operators whih in momentum representation(3.7) have the same form as the orresponding lassial quantities. Theexpression for the boost operator ^K depends on the lass of quantiza-tion rules WF , but di�erent Weyl-type quantizations (3.16) of the freepartile anonial realization of the Lie algebra p(1; 1) give equivalentunitary representations of the Poinar�e group P(1; 1).Let us onsider an example of N-partile system with interation. Letus hoose the interation funtion V in the following formV = !2XXa<b r2abpapb; !2 > 0: (4.1)The funtion (4.1) desribes N-partile osillator-like interation [19℄. Inthe nonrelativisti limit suh a system is redued to the nonrelativistiosillator system. In terms of the variables (2.10) the interation funtionV takes the formV = F (q; �) = !2 N�1Xa=1 (1=4� �2a)q2a NYj=a+1(1=2 + �j)�1: (4.2)The system with interation (4.1) has N � 2 additional integrals ofmotion �j , whih mutually ommutef�i; �kg = 0; i; k = 2; N � 1: (4.3)In terms of the variables (2.10) they have the form�2j+1 = jXd=1 m2d1=2��d�1 jYi=d(1=2+�i)�1 + m2j+11=2��j ++!2 j�1Xd=1(1=4��2d)q2d jYi=d+1(1=2 + �i)�1 + !2(1=4��2j )q2j ; (4.4)where �2N =M2; j = 1; N � 1. They an be represented by means of thereursive relations�2j+1 = �2j1=2 + �j + m2j+11=2� �j + !2(1=4� �2j )q2j ; (4.5)
ICMP{99{10E 16where we denote �21 = m21.Quantum mehanial desription for this system have been on-struted by means of the ordinary Weyl quantization in Ref. [19℄. Herewe shall onsider the Weyl-type quantization rules onneted with thefuntion F1 (see (3.32)). The Weyl-type quantization rules di�er fromthe ordinary Weyl quantization in the presene of the nontrivial operatorF( ^�1) ating on the lassial generator P� in the expression for kernel(3.14). We onsider in this setion quantization rules whih preserve theommutability of diagram (3.20). Therefore the quantization problemof the anonial generators redues to the onstrution of quantum in-teration operator ^V . This gives us immediately the expression for theoperator ^P�:^P� = ^M2= ^P+: (4.6)Hene, �rst of all, we have to �nd the ation of F( ^�1) on lassial inter-ation funtion (4.1). In terms of the variables (2.10) this gives us thefollowing resultF( ^�1)V = F1V = !2P+ N�1Xa=1 � (1=4� �2a)q2aP(a+1)+ +2F 01(0)qa�(a� 1)=2� (a+ 1)�a�P(a+1)+ +F 001 (0)a�(a� 3)=2� (a+ 1)�a�Pa+ ! ; (4.7)where F 01(0) = dF1(0)=d�1; Pa+ = P+QNj=a(1=2 + �j). Moreover,hanging every lassial funtions Zk by FZk we redue the quanti-zation proedure to the quantization of the lassial problem with thenew set of \lassial observables" FZk via the original Weyl rule andwe an immediately use the results of Ref. [19℄. Using equality (4.7),expressions (4.4), for integrals of motion �j , we obtainF1�2j= m2j1=2� �j�1 + j�1Xk=1 m2k1=2� �k�1 j�1Yi=k(1=2 + �i)�1 ++ j�2Xk=1 !2j�1Qi=k+1(1=2+�i)"(1=4��2k)q2k �2F 01(0)qk�1�k2 +(k+1)�k�+F 001 (0)�k(k�1)1=2+�k�k(k+1)�#+



17 ðÒÅ�ÒÉÎÔ+!2"(1=4��2j�1)q2j�1�2F 01(0)qj�1�2�j2 +j�j�1�++F 001 (0)� (j�1)(j�2)1=2+�j�1 � j(j�1)�#; (4.8)where F1�2N = F1M2 . Reurrene relations (4.5) are transformed intoF1�2j + !2j(j � 1)F 001 (0) =F1�2j�1 + !2(j � 1)(j � 2)F 001 (0)1=2 + �j�1 + m2j1=2� �j�1 ++!2�(1=4��2j�1)q2j�1�2F 01(0)[(2�j)=2+j�j�1℄qj�1�: (4.9)The separation of motion of the system as a whole by means of anon-ial variables (2.10) leads on the quantum level to the deomposition ofthe Hilbert spae HFN into the tensor produt HFN = hint 
Hext, where"inner" and "external" spaes are realized, orrespondingly, by funtions (�), and f(P+) with the inner produts(f1; f) = 12 1Z0 dP+P+ f�1 (P+)f(P+); (4.10)( 1;  ) = 1=2Z�1=2  N�1Yk=1 d�k1=2� 2�2k! �1(�) (�): (4.11)All the operators ^�j at only in hint. When we pass from the funtions with inner produt (4.11) to the funtions'(�) =  (�)N�1Yb=1 (1=2� 2�2b )�1=2 (4.12)with the inner produt('1; ') = 1=2Z�1=2 '�(�)'(�)N�1Ya=1 d�a ; (4.13)then lassial funtions F1Zk depending only on the inner variables aretransformed into the following integral operators [19℄( ^Z')(�) = 1=2Z�1=2 W (�; �0)'(�0)N�1Yn=1 d�n; (4.14)
ICMP{99{10E 18with the kernelW (�; �0)= N�1Yd=1 [(1=2+�0d)(1=2+�d)℄(d�1)=2D�1d+1!�� 1Z�1 F1Zk (~q; ~�)exp iN�1Xa=1 ~qa(�a��0a)Ya!N�1Yb=1 d~qb� (4.15)whereDa = NYj=a(1=2 + �j) + NYj=a(1=2 + �0j); (4.16)Ya = 4D�2a+1 NYj=a+1(1=2 + �j)(1=2 + �0j): (4.17)The quantities ~q; ~� have the form~qa = Da+12Da  DaqaQN�1j=a+1(1=2 + �j)++ a�1X�=1(�0����)q� N�1Yj=�+1 1=2 + �0j1=2 + �j1A ; (4.18)~�a = D�1a+10��a NYj=a+1(1=2+�j) + �0a NYj=a+1(1=2+�0j)1A : (4.19)Substituting the expressions for the integrals F1�2j into kernel (4.15)we obtain expression for the operators ^�2j :^�2j= j�1Xk=1 m2k1=2��k�1 j�1Yi=k(1=2+�i)�1+ m2j1=2��j�1 �j�2Xk=1 !2j�1Qi=k+1(1=2+�i) "(14��2k) �2��2k� i(1�k)F 01(0)+2�i(1+k)F 01(0)+1��k! ���k�i(1+k)F 01(0)�14#�



19 ðÒÅ�ÒÉÎÔ�!2 "(1=4� �2j�1) �2��2j�1 � i(2� j)F 01(0)++2�iF 01(0)j + 1��j�1! ���j�1��iF 01(0)j � j4 + j(j � 1)F 001 (0)� (4.20)and boundary onditionslim�j!�1=2(1=4� �2j )�'j��j = lim�j!�1=2'j(�j) = 0; (4.21)whih ensure the hermitiity of (4.20). The operators ^�2j an be deter-mined by means of the following reursive relations^�2j + !2�j(j�1)F 001 (0)� j�14 � =^�2j�1+!2 �(j�1)(j�2)F 001 (0)� j�24 �1=2 + �j�1 ++ mj1=2��j � !2"(1=4��2j�1) �2��2j�1 � i(2�j)F 01(0)++2�iF 01(0)j + 1��j�1! ���j�1 � iF 01(0)j � 14# : (4.22)Putting j = N we have the expression of the total mass operator ^M2.Operators (4.20) mutually ommute[^�j ; ^�k℄ = 0 (4.23)and therefore they have a ommon set of eigenfuntions. Thus, we seethat the Weyl-type quantization rulesWF1 preserve additional (onern-ing to the Poinar�e-invariane) symmetries whih are responsible for theintegrability of the system.Let '(�) be an eigenfuntion of ^M2 = ^�2N . Putting '(�) =QN�1i=1 'i(�i) redues the eigenvalue problem for the operators ^�j to thesystem of N � 1 di�erential equation of the hypergeometri type(�2j�1 + !2 ((j�1)(j�2)F 001 (0)� (j � 2)=4)1=2 + �j�1 +

ICMP{99{10E 20+ mj1=2� �j � !2 "(14��2j�1) �2��2j�1�� i(2�j)F 01(0)+2�iF 01(0)j+1��j�1! ���j�1��iF 01(0)j � j4 + j(j�1)F 001 (0)� �2j!2#)'i(�i) = 0; (4.24)where Qj�1i=1 'i(�i) is an eigenfuntion and �2j is an eigenvalue of theoperator ^�2j and �2j�1 is an eigenvalue of ^�2j�1. Solving system (4.24) andtaking into aount boundary onditions (4.21) we �nd the funtions'nj (�j) = Cnj (1=2� �j)aj (1=2 + �j)bjP (2aj ;2bj)nj (2�j); (4.25)and the eigenvalues of the quantum integrals ^�j�2j = !2 a0 + jXk=1(ak + nk + 1=2)!2 +!2 �(j � 1)�14 � jF 001 (0)�+ (jF 01(0))2� : (4.26)Here aj =sm2j+1!2 � (F 01(0))2; (4.27)bj = a0 + j�1Xk=1(ak + nk + 1=2);nk are integers: nk = 0; 1; 2; :::, and P (2aj ;2bj)nj (2�j) are Jaobi polynomi-als. The onstants Cnj are determined by the equality:jCnj j2 = nj !(2nj+1+2aj+2bj)�(nj+1+2aj+2bj)�(nj + 1 + 2aj)�(nj + 1 + 2bj) : (4.28)Thus, the mass spetrum of the system isM2n = " NXa=1qm2a � (!F 01(0))2 + ! N�1Xb=1 (nb + 1=2)#2 ++!2 �(N � 1)�14 �NF 001 (0)�+ (NF 01(0))2� : (4.29)



21 ðÒÅ�ÒÉÎÔThe disrete spetrum exists only for real aj . This leads to the inequality!jF 01(0)j � minfmag; a = 1; N; (4.30)whih gives additional restrition for the type of quantization rulesWF1 .In the two-partile ase mass spetrum (4.29) oinides with the re-sult of Ref.[8℄ where the ambiguity in the quantization proedure of thetwo-partile osillator-like interation (4.1) have been onsidered withinframework of purely algebrai method and two lasses of ordering ruleswithout speifying any representation.We see that the mass spetrum depends essentially on the hoie ofquantization rule. In the ase F1 = 1 we ome to the spetrum of thesystem with the interation (4.1) whih has been obtained by the originalWeyl quantization in Ref.[19℄. In this work the generalization of the pureosillator-like interation has been onsidered too. This new interationfuntion ontains also the terms whih are linear in the oordinates:V ! ~V = V + �XXa<b rab(pa � pb): (4.31)The original Weyl quantization gives the following result (see Ref.[19℄):M2n = " NXa=1rm2a � �24!2 + ! N�1Xb=1 (nb + 1=2)#2++N � 14 !2 + �2N24!2 : (4.32)Comparing the equalities (4.29), (4.32) we see that the quantizationsWF1 , F 01(0) 6= 0; F 001 (0) = 0 of the lassial system with the pureosillator-like interation (4.1) gives the terms in the expression for massspetrum (4.29) whih we an treat as a presene of the linear interationwith � = �2!2F 01(0): (4.33)Then suh a quantum system is equivalent to those whih is obtainedfrom the lassial system with the interation (4.31) by means of the orig-inal Weyl quantization. Thus, the use of di�erent quantization rules maylead to essentially di�erent quantum results. Moreover di�erent quanti-zations may lead to quantum systems with physially di�erent intera-tions!In the nonrelativisti ase all the ambiguities in the mass spetrum(4.29) vanish and we obtain well known energy spetrum of nonrela-tivisti system with the osillator interation. But the �rst relativisti
ICMP{99{10E 22orretion to the nonrelativisti energy depends on the type of quanti-zation:E � ~! N�1Xb=1 (nb + 1=2) ++~2!222 8<:1m N�1Xb=1 (nb+1=2)!2��F 01(0)�2 NXa=1 1ma++ 1m �(N � 1)�14 �NF 001 (0)�+ (NF 01(0))2�� : (4.34)Here we renewed onstants ~; .Let us note that for the quantization of the osillator-like interationwe have used only quantizations preserving the ommutability of thediagram (3.24). Using the quantization rules WF (3.16), whih preserveonly the ommutation relations of the Poinar�e algebra p(1; 1), we ouldobtain more ambiguous results for the mass spetrum.IV. ConlusionsWe have onsidered the problem of onstrution of a unitary represen-tation of the group P(1; 1) by means of quantization of the lassialanonial realization of the Poinar�e algebra orresponding to N -partilerelativisti system with an interation in the two-dimensional spae-timeM 2 in the front form of dynamis.The Lie algebra of the Poinr�e group P(1; 1) has three generators:P+; P�;K. Two of them, namely, P+ ; P� belong to the omutativeideal h. These two generators determine the square of lassial totalmass funtion M2 = P+P� and the Hamiltonian (evolution generator)H = 12 (P++M2= ^P+). The struture of the Lie algebra of P(1; 1) permitsto redue the quantization problem to the quantization of lassial gen-erator P�. This generator is the only one whih ontains an interation.On the quantum level, operators belonging to the ideal h generate theevolution and the mass spetrum of the system via Eqs (3.38), (3.40).For the onstrution of a unitary realization of the group P(1; 1)we have applied only Weyl-type quantization rules (3.2). It has beendemonstrated that the requirement of preservation of the Lie algebrap(1; 1) restrits the set of quantization rules but does not by itself removethe ambiguity of the quantization proedure.In the lassial ase the square of total mass funtion M2 is the in-variant of the group P(1; 1). Thus, to obtain in the quantum ase the



23 ðÒÅ�ÒÉÎÔalgebrai struture whih is most losely related to the lassial one, thequantum Kasimir operator ^M2 = ^P+ ^P� must be the quantization resultof the lassial expressionM2 = P+P�. This additional requirement im-poses additional restrition on the family of the Weyl-type quantizationrules. But it does not destroy the ambiguity of the quantization either.We have also demonstrated that the Weyl-type quantization rules aresplit into equivalene lasses. Quantization rules from the same equiva-lene lass lead to the same realization of the ideal h and therefore givethe same mass spetrum and the evolution of quantized system. Theylead to equivalent unitary representations of the group P(1; 1). The quan-tizations whih belong to di�erent lasses lead to non-equivalent uni-tary representation of P(1; 1) and give di�erent mass spetra. We havedemonstrated this fat by the example of the N -partile system withthe osillator-like interation. As it has been shown, in the expressionsof the mass spetrum (4.29) there appear the terms whih one an treatas the presene of the additional linear interation. Thus, the hoie ofdi�erent quantizations may hange the type of interation and lead toquantum systems with physially di�erent interations. This unexpetedresult means that if we start with the lassial desription of a mehan-ial system then quantization rule seems to be the essential part of thede�nition of the orresponding quantum system.AknowledgmentsI am extremely grateful to Professor V. Tretyak for his interest to thework and enouragement. The author would like to thank A. Duviryakfor very helpful disussions.Referenes1. Feynman R.P., Hibbs A.R. Quantum mehanis and path integrals.| MGraw-Hill Book Company, New York, 1965.2. Kirillov A.A. Geometri quantization. // In Itog. Nauk. Tek., 1985.Vol.4, p. 141{178. | Mosow, VINITI, 1985 (in Russian).3. Hurt N.E. Geometri quantization in ation. | D. Reindel Pub-lishing Company, 1983.4. Bayen F., Flato M., Fronsdal C., Lihnerowiz A., Sternheimer D.Deformation theory and quantization. I. Deformation of sympletistrutures. // Ann. Phys. (N.Y.), 1978, 111, No 1, p. 61{110.5. Fronsdal C. Some ideas about quantization. // Rep. Math. Phys.,1978, 15, No 1, p. 111{145.
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