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KBanryBanus BaliniBcbkoro tumy ta N-uacTuHKOBa peastizanis are-
opu Ilyankape y nBoBuMipHOMY IpocTOpi-4daci

B. ITuurko

Amnorauja. Y pamax dpounrasibol GopMu AUHAMIKM Y JIBOBUMIDHOMY
MIPOCTOPi-9aci po3IVIANAECTHCA KBAHTYBAHHA KAHOHIYHOI peastizarnil areopu I1y-
aHKape, mo BiamoBimae cucTemi N B3aEMOMIIOYNX YACTUHOK. 3a HOMOMO-
o0 MpaBWjI KBAHTyBaHHA BailyiBcbKOro tuiry moOymoOBaHO YHITApPHI Ipemd-
crapienna rpymm P(1,1). Ilokasano, mo Bumora 30epexenns ayrebpu JIi
niel rpymu obMexkye MHOXKUHY IIPABAJI KBAHTYBAHH:A, ajle HE yCyBa€ caMma
c000I0 HEOTHO3HAYHOCTL MPOUELYyPU KBAHTyBaHHsa. MHOXWHA IPABU/I KBAaH-
TyBaHH:A pO30MBAETHCA HA KJIACH eKBiBaJIeHTHOCTH. IIpaBusia KBaHTYBaHHA i3
TOrO K CaMOr0 KJIACy IPUBOIATH JO TOIO K CAMOrO CIEKTPY MaC Ta €BOJIIONIl
KBAQHTOBAHOL CHCTEMH 1 JAIOTh YHITAPHO €KBIBAJIEHTHI HPEICTAB/IEHHIA IPYIIH
P(1,1). IIpaBnia KBAaHTYBaHHS i3 PI3HUX KJIACIB JAIOTh YHITADHO HEEKBiBa-
JICHTHI IIPEICTABJIEHH: Ta HPUBOIATH 10 PI3HUX BUPA3IB IJIA CIHOCTEPEKYyBa-
HUX BEJIMYHH.

Weyl-type quantization rules and N-particle canonical realization of
the Poincaré algebra in the two-dimensional space-time

V. Shpytko

Abstract. The quantization of canonical realization of Poincaré algebra corre-
sponding to NN-particle interacting system in the two-dimensional space-time
M in the front form of dynamics is considered. Unitary realizations of the
group P(1,1) are obtained by means of a set of Weyl-type quantization rules.
We demonstrate that the requirement of preservation of Lie algebra of this
group restricts the set of quantization rules but does not by itself remove the
ambiguity of quantization procedure. The set of quantization rules fall apart
into equivalence classes. The quantization rules from the same equivalence
class give the same mass spectrum, evolution of the quantized system and lead
to equivalent unitary representations of the group P(1,1). The quantizations
which belong to different classes lead to non-equivalent unitary representations
and may result in different values for observable quantities.
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[. Introduction

The problem of quantization of classical theory occupies a prominent
place in the theoretical physics in 20-th century. Since the very begin-
ning of appearance of the quantum mechanics it has been known about
the deep difference between the classical and the quantum description —
the deterministic character of the classical mechanics contrasts with the
probabilistic interpretation of the quantum mechanics.

At the same time it has been realized that the quantum and classi-
cal mechanics are only different levels of the description of the physical
reality and therefore they must have some common features. Various
attempts to coordinate this two contrary facts and construct quantum
description the structure of which ”"remembers” some essential features
of the classical mechanics have led to various treatments in quantization
problem [1-6].

The basic structure of the classical Hamiltonian mechanics for an
unconstrained system is a 2N-dimensional phase space P ~ R2N (in
general case a symplectic manifold) with symplectic form w. Phase space
can be (locally) parametrized by canonical variables q,, p,, @ = 1, N.
The state of the classical system is described by a point in P. Observable
quantities are identified with smooth functions on P. They form the
space C*°(P). Symplectic form determines on C°°(P) the structure of
Lie algebra (which is called Poisson algebra) by means of the Poisson
bracket [7].

In the quantum mechanics a state is described by a vector |[¢)) in
some Hilbert space H and physical observables are self-adjoint operators
in H. Correspondence between the classical and quantum pictures is es-
tablished within the framework of certain quantization procedure which
is meant as a linear map Q : f — f of the Poisson algebra into the set
of self-adjoint operators in the Hilbert space H.

The maximal group of automorphisms of the phase space which
preserve the symplectic structure is the infinite dimensional group
Symp(P, w) of canonical transformations (symplectomorphisms). Quan-
tum counterpart of such transformation is the group U(#) of unitary
transformations. It is well known that not every canonical transforma-
tion of a classical system leads after quantization to a unitary transfor-
mation in the quantum case. This shows that these two groups are not
isomorphic [2].

For every symmetry group, which is some Lie group G, the classical
Hamiltonian description provides a canonical realization of this group.
The symmetry group of a classical system generates canonical transfor-
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mations and as we have mentioned above, after quantization such clas-
sical transformations do not necessarily lead to unitary transformations
on the quantum level of description. Besides, they may violate commu-
tation relations of the Lie algebra of G. Thus, we cannot a priori be sure
that any classical symmetry leads after quantization to the quantum
one. Moreover, different quantization rules may preserve some types of
symmetries and break out other ones. It is natural to demand the preser-
vation of physically important symmetries. Therefore, we shall require
for a quantization procedure the fulfilment of condition

Q{f.9p) =ilf. 4] (L.1)

only for some subalgebra of the Poisson algebra. It is clear that canonical
generators corresponding to physically important symmetries have to
belong to this subalgebra. This means that after quantization we come
to a unitary representation of the symmetry group G acting in the Hilbert
space H.

On the other hand, it is well known that there exist a lot of different
treatments to the quantization problem. Starting from some classical
system different quantization procedures may result in non-equivalent
quantum systems. From this point of view it is very important to un-
derstand whether there exists such a subalgebra of the Poisson algebra
which minimizes the ambiguities of the quantization procedure.

In the relativistic mechanics of interacting particles the main alge-
braic structure is Lie algebra p(1,3) of Poincaré group P(1,3) and the
description of a system of N interacting particles must be Poincaré invari-
ant in the classical case as well as in the quantum one. The Hamiltonian
formalism leads to a canonical realization of p(1, 3). Therefore, the quan-
tization procedure must preserve the structure of the Poincaré algebra,
i.e. canonical generators of the Poincaré group have to be transformed
into Hermitian operators which satisfy commutation relations of this
algebra. In the relativistic case, the quantization problem is of special
interest because Poincaré invariance conditions lead to the complicated
dependence of interaction potentials on canonical coordinates and mo-
menta. In most cases classical relativistic Hamiltonians depend on the
products of non-commutative (in terms the of the Poisson bracket) quan-
tities. This raises the question of symmetrization of non-commutative
operators in the quantum description. Different ordering methods may
result in different expressions for physical observable quantities [8].

The ten generators of the Poincaré group are realized in terms of
canonical coordinates and momenta. As a rule, canonical coordinates
do not coincide with the covariant particle coordinates owing to the no-
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interaction theorem [9]. Poincaré group is split into two parts — kinemat-
ical and dynamical. The kinematical part contains the generators inde-
pendent of interaction and is called stability group Gx. It determines the
Hamiltonian form of relativistic dynamics and is automorphism group
of simultaneity hypersurface ¥ [10]. The hypersurface ¥ determines ge-
ometrical form of dynamics [11]. The generators which constitute the
dynamical part depend on interaction. Dirac called them Hamiltonians
[10]. Different forms of dynamics for N-particle system lead to differ-
ent numbers of generators independent of interaction. The front form
of dynamics [10,12,13] has the largest possible stability group Gsx for
N-particle system — only three generators are Hamiltonians.

To construct the relativistic description which contains only one
Hamiltonian it is necessary to choose in the four-dimensional Minkowsky
space My a Poincaré-invariant hypersurface X. Unfortunately such a hy-
persurface does not exist. In other words, G # P(1,3) [11]. This fact
means that Lagrangian of N-particle system with an interaction must be
a function L : J®°7m — R defined on the infinite order jet space of fibre
bundle 7 : F — R, (t,2%) ~ t [14]. The last statement is the Lagrangian
variant of no-interaction theorem [15]. To avoid the difficulty related with
the presence of time derivatives of infinite order in Lagrangian function
we have to go beyond the class of geometrical forms of dynamics. De-
termining simultaneity conditions only for points of particle world lines
(not for the whole space-time) we come to isotropic forms of dynamics
[16].

In the two-dimensional space-time M, the hypersurface ¥ which de-
termines the front form of dynamics for arbitrary N-particle system be-
comes isotropic [17]. The front form corresponds to the foliation of Ms
by isotropic hyperplanes ¥ p:

P +r=t (1.2)

The Poincaré group P(1,1) is the automorphism group of the foliation
(1.2). In this form of dynamics Poincaré-invariance conditions for N-
particle system allow the existence of interaction Lagrangians which do
not contain derivatives higher than the first order. Only one generator
of p(1,1) contains an interaction and mechanical description is in some
sense similar to the nonrelativistic one. The two-dimensional variant of
the front form permits the construction of the number of exactly solvable
classical and quantum relativistic models [18]-[21].

Due to the certain simplicity of the relativistic description in the front
form in My, we are able to elucidate the peculiarities of the quantization
procedure in the relativistic case [18]-[20] and to understand how the
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Poincaré invariance reduces the quantization ambiguities.

The aim of this article is the quantization of the canonical realization
of the Poincaré algebra corresponding to N-particle relativistic system
with an interaction (Sec. IT) within the framework of the two-dimensional
variant of the front form of dynamics. Using the set of Weyl-type quanti-
zation rules we construct in Sec. IIT unitary representations of the group
P(1,1). We study the influence of different quantization rules on quan-
tized system and propose some classification method of non-equivalent
quantizations of the canonical realization of the Lie algebra of P(1,1).
In Sec.IV we apply the obtained results to N-particle relativistic system
with oscillator-like interaction.

[1. Hamiltonian description of N-particle system in the front form
of dynamics in My

The classical Hamiltonian description of the system of N structureless
particles with masses m, (a = 1, N) in the two-dimensional Minkowsky
space My in the framework of the front form of dynamics (1.2) leads to
the canonical realization of the Lie algebra of the Poincaré group P(1,1)
with generators H, P, K [17]. They correspond to energy, momentum,
and boost integral. Due to the positiveness of the momentum variables
(pe > 0) [12,17] in the front form of dynamics, the phase space of N-
particle Hamiltonian system is P = RY x RV with standard Poisson
bracket

Y (af dg g Of
{f,9} =) <a_%a—m - a—%ap) : (2.1)

a=1

We use more convenient in the front form quantities P = H £ P with
the following Poisson bracket relations of the Poincaré algebra p(1,1)

{Py,P_.}=0, {K,Pi}=x+Ps. (2.2)

The generators are determined in terms of particle canonical variables
Zq,Pq [17] as follows:

N N

P, = Zpa: Kzzxapa: (23)
a=1 a=1
N m?2 1

P = — + —V(rpy,r1c/7 2.4
St Vel (2.4
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and we can see that only one generator, namely P_, depends on interac-
tion. The Poincaré-invariant function V' describes the particles interac-
tion and depends on 2N —1 indicated arguments, where r,. = o —c; 7 =
ra;a,b=1,N,c=2,N. In this case, the particle canonical coordinates
coincide with covariant ones and we can pass to the Lagrangian de-
scription by means of the inverse of usual Legendre transformation. In
contrast to the nonrelativistic mechanics, this transformation is nonlin-
ear and, therefore, purely paired interactions in one formalism do not
correspond to such ones in the other formalism [17].

Generators (2.3), (2.4) determine the square of the mass function of
the system

N 2
M2 =PyPo= Py T vy e ). (2.5)

a=1 %

The first terms in Egs. (2.4), (2.5) corresponds to the free-particle sys-
tem.

The description of motion of the system as a whole may be per-
formed by choosing Py and @ = K/P; as new (external) variables.
There exist a lot of possibilities of the choice of inner variables. If

(m, @) = (1, -y IN=1, q1,---, gnv—1) determine the set of inner canonical
variables,

{(]aﬂ?b} :6(16; {Q7P+}: 17 aab: 17N_17

{9,Q} = {na,P+} =0, (2.6)

such that the inner momenta 1, do not depend on the particle canonical
coordinates, then

M? = M37(n) + F(q,n), F(q,n) = V(rps,r1c/7) (2.7)
and Hamiltonian equations of motion take the form
. M? .
= 1/2— — P, = 2.
Q / 2P+ ) + 07 ( 8)
1 OM? 1 oM?
joa = ——— e = ——— . 2.9
da 2P+ a’f}a ’ fla 2P+ aqa ( )

One of the possible choices of inner variables is [19]:

P _
Mo = POt = Play1)(Qa — Tapr); (2.10)
2P(a-‘,—l)—',—
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where a,b =1, N — 1 and we use the following notations

PaJr = Zpla Qa = a:i-l lepla
i=1 i=1
Pvi = Pi Qu=0Q. (2.11)

Variables (2.10) satisfy (2.6) and the free-particle squared mass function
in Eq. (2.7) has the form

N 2 N
M3(n) = z_: 1/2—76;711—1 U(1/2 +mi) (2.12)

In the two-particle case variables (2.10) coincide with the variables pro-
posed in Ref.[12].

[1l. Quantization of N-particle canonical realization of the
Poincaré algebra in M

To perform the quantization procedure, we have to determine firstly
quantum operators corresponding to the particular canonical variables
Za, Pa- Then for a given set of classical observables a = a(z,p) we con-
struct corresponding quantum operators A. Let Za,Pa be Hermitian op-
erators corresponding to the classical particle coordinates and momenta
with the following commutation relations

[Za,Db) = 10ap- (3.1

The original Weyl application [22] is a basis for the whole set of quan-
tization rules Wz : a — A, which map bijectively a family of classical
real functions a(z,p) € C°°(P) to a family of Hermitian operators A in
some Hilbert space H. For P ~ R?", the formal definition is given in the
explicit form [5,23] as follows

A= / (dk)(ds)a(k, s)F(k, s) exp lz > (koo + saﬁa)] , (3.2)

a

where a(k,s) is Fourier transform of the function a(p,q). Function
F(k,s) determines the type of quantization. Different choices of F(k, s)
correspond to different ordering conventions. We shall call the elements
of the family of quantizations (3.2) Weyl-type quantization rules. For
the original Weyl quantization F(k,s) = 1. Let us restrict ourselves to
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real functions F(k,s) € C=(R*Y), i.e. F(k,s) = F*(k,s). Every quan-
tization rule must obey the following condition:

(1) =1, (3.3)

where the unity means function on P and in r.-h. side 1 is the unit
operator. As a result, for the family of quantizations (3.2) we obtain

F(0,0)=1. (3.4)
Hermiticity condition means:
F(k,s) = F(~k, —5). (3.5)

For a system of N spinless particles we shall work with a momentum
space basis given by

p) = |p1) @p2) @ - -~ @ |pN) (3.6)

where |p,) is eigenvector of operator P, : Pq|Pa) = Pa|Pa). The wave
functions 1 (p) = (p|v) describing the physical (normalized) states in the
front form of dynamics constitute the Hilbert space H% = £? (Rﬂ\_’ ,duky)
with the inner product [18]

(1.0) = [ duk )i 0)0(o) (3.7)
where
" dp,
dui(p) =[] 3,00 (3:8)

is the Poincaré-invariant measure and ©(p,) is Heaviside step function.
Operators act on wave functions 1 (p) € HY; as integral operators:

wz/wﬁwﬂmmmm. (3.9)

The kernel corresponding to operator (3.2) has the form

Alp,p) = ﬁ/(dw)(d@ exp(ii( ;—pa)wa) x

a=1

(3.10)
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where we take into account Eq.(3.5). We understand the expression
F (i0/x,i0/z) as a formal series:

e i1+ +in+iji+. N
f<ia ,a) 9 7(0,0)

,

9z’ 0z 2y ik, .. ONknOls .. . 0iNsy
21,--IN
J1,--0JN
N iq Ja
1 P 9
— (i i 3.11
Xa[[lia!ja! <’axa> (’aza> (3.11)

Condition (3.5) leads to the equalities
0F(0,0)  9F(0,0)
Ok,  Os,
Now let us consider the quantization procedure of classical canon-
ical generators (2.3), (2.4) of p(1,1). Substituting expressions (2.3) of
the generators K, Py into (3.10) and using (3.4), (3.12) we obtain the
following operators

P =P ; —zZpaapa az 8k asa . (3.13)

The Weyl-type quantization rules transform the generator P_ into inte-
gral operator (3.9) with the kernel

N
Rmmza%@/wdzmwz( ~ Pa)Ta) X
a=1

N
(H 6(% pa-l-pa 2\/papa> (3.14)

=0, a=1,N. (3.12)

F(202) [ 552 Vnan
T z Za
a=1 Z Za
a=1

After quantization we want to obtain a unitary realization of the group
P(1,1). Therefore Hermitian operators (3.13), (3.14) have to satisfy the
quantum commutation relations of the Poincaré algebra p(1,1)

[Py, P_]=0, [K,Py] = +iPy. (3.15)

The last term in the expression (3.13) of the boost operator K has no
influence on commutation relations (3.15). Thus, the quantization prob-
lem reduces in fact to the construction of Hermitian operator P_. That
in its turn determines the form of the function F.
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Proposition 1. So that the Weyl-type quantizations could lead to uni-
tary realizations of the group P(1,1), the function F has to be of the
following form:

F = Flks) (3.16)

where the function F on the right-hand side depends on the all possible
products of arguments: k1s1, ..., k1SN, k251, -, k2SN, .. -

Proof: In order to satisfy relations (3.15) the kernel (3.14) must obey
the following conditions:

N 9\~ _

;( 9pa +p“6p )P*(pﬂpl) =-P_(p.p) (3.17)
N ~

> (pa =) P-(p.p)) = 0. (3.18)

Equation (3.18) is obtained as a result of commutation of the operators
P+ and P_. It holds if the kernel P_ (p,p'") is proportional to d-function
d(Py — P'). The classical expression for P_ is translational invariant
function. Therefore equation (3.18) holds for arbitrary Weyl-type quan-
tization rule.

Equatlon (3.17) is the consequence of commutation of the operators
K and P_. It means that the kernel P_(p,p') must be homogeneous
function of the order -1. To satisfy this COndlthn the function F must
obey the following homogeneity equation

F(Bk, B s) = F(k,s) . (3.19)

The only possibility to satisfy this equation is (3.16).

Thus, we see that not every Weyl-type quantization rule preserves
commutation relations (3.15) of the Lie algebra of the Poincaré group
P(1,1). The set of quantization rules with the function F of the form
(3.16) transforms arbitrary classical function depending only on momen-
tum variables (A = A(p1, ..., pn)) into operator which acts on wave func-
tions of momentum representation (3.7) as multiplication operator and
has the classical form: A(p1,...,Hn) = A(p1,...,pn). Such quantization
rules transform the interaction function V' from (2.4) into operator which
commutes with K and ]5+;

[KV] = [PJF,V} =0. (3.20)
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It should be noted that the set of Weyl-type quantization rules with
the function F of the form (3.16) does not include normal rule of ordering
of noncommuting operators (see [23]).

Let us introduce the following variables

p=a1, y2=Pr =) pa,

Yo =TPa , Yo = T%b b=3,N . (3.21)

In terms of variables (3.21) the differential operators 0/0xz,, 0/0p, take
the form

R A S R
Oz, 2.0y, 7 Op, PyOx, 0Py’
o P[0 XL o
—_ - __T — - — 3.22
D PN (; a 92, dz::s Yd 5’yd , ( )
o o pP(XL o U 8
A Tl — 1— ) —o
axl 8y1 P (Z:l Mg 6% + Z( yd) 6y ’
N
where sy = ) 3,. As aresult of translational invariance of the classical
a=1

generator P_, it does not depend on y;:

N o2

P_ = ;—i_ 2 % + P_lJrV(%h ey N Y3y -y YN ) - (3.23)
As it follows from (3.11), (3.22) formal series F (—i0/x, —id/z) ex-
pressed in terms of variables (3.21) contains differentiations with re-
spect to Py. Therefore not every Weyl-type quantization rule with the
arbitrary function F of the form (3.16) will transform the product
PyP_ = M? ({Py,P_} = 0) of classical functions into the correspond-
ing product of quantum (commutating) operators P, P_ = M?2. This
means that not every quantization rule W, preserving the structure of
Lie algebra of the group P(1, 1), preserves commutability of the following

diagram

M?*=P, P_
P,, P_ M?
P
MP=P, P_
p., P e
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In the classical case the squared total mass function AM? is an invariant
of the group P(1,1). Thus, to obtain in the quantum case the algebraic
structure which is most closely related to the classical one, the quantum
Kasimir operator M? = P, P_ should be a quantization result of the
classical function M? = P, P_.

Proposition 2. If the function F has the following form
F=F(A1,A), (3.25)

where

N N N
= kasa, D2= Y kass, (3.26)
a=1

a=1 b=1
a#b

then diagram (3.24) is commutative.

Proof It F = F(A1,As), then kernel (3.10) takes the form:

~ 1 N
A1) = Gy [ @)@ exp Y (9= pa)a)

a=1
N
_ Pa +pa 7 A A
<al;[1 5(za — )2 papa) }"(Al,Ag) a(x, z) , (3.27)
where
A A —~n— OTHF0,0) 1 1 ia
FALA) =% (@A) (0As)7 1151 F(AD)'(Az) (3.28)
i=1 j=1
and
N N N
0? A o?
— Ay = — 2
; a-/I:aaza ’ ? az::l; a.’L’aaZb (3 9)

Let us consider the action of the sum of partial derivatives
N
> 0%/(0z,0p.) on a translation-invariant function
a=1

N
Z P+a%y3a"7yN)_

0x,0p, B
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N
0 0 0
1 er— | (5= — 75—

0 0 0

| 0| 1Pyt (3.30)
As follows from the last equation, such an action does not contain dif-
ferentiations with respect to P;.. Moreover

iv: 62f(P+7%7 Y3, 7yN) _

p 07,0pq B

_Zza f P+7%y37 -,Z/N) ) (331)

a=1b=1 0za0pa
a#b

Thus, the proposition follows from the translation-invariance of P_.
We shall also consider partial cases with

F =F(A1,0) = Fi(Ay) (3.32)

F=7F(0,42) = F2(Az) . (3.33)

Quantization rule with F = F; has been considered, for example, in Ref.
[24].
If

F=FAo)=F0, Ao=A1+A, (3.34)
then, as it follows from (3.31), (3.26), (3.28)

f(AO)f(P+7 Hly ey XN Y3y eeny yN) =
F(Py, 51, ooy 2N, Y3y oy YN) - (3.35)
Thus, the quantization rule Wy, leads to the same operators P_ P,

as well as the original Weyl quantization does. The operator K takes the
form

_dF(0)
= Zazl Pa 8pa I (3.36)
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If F = Fo and
dFo(0)
Dy 0, (3.37)

then we obtain the same operators K,Pi as in the case of the orig-
inal Weyl quantization. This means that quantization rules connected
with the classes of functions F (A1, As) and F (A, Az)Fo, where Fy has
property (3.37), lead exactly to the same unitary realization of the group
P(1,1).

If condition (3.37) is not satisfied, then quantization rules Wz and
Wgr, give us different expressions for K but they lead to the same
realization of commutative ideal h = (P, P_).

In the front form of dynamics the evolution of the quantum system
is described by the Schrédinger-type equation

iar = oy, (3.38)

where ¥ € HL and
1. Lo oy s
H=3(Py+Po) = 5(Py + I12/ Py). (3.39)

Putting ¥ = x(t, Py )¢, where ¢ is a function of some Poincaré-invariant
inner variables, we obtain the stationary eigenvalue problem for the op-
erator M?2:

M*)p =Py Py = M2 4. (3.40)

The ideal b generates by means of the Eqs (3.38), (3.40) the evolution
of the system and the mass spectrum.

Boost operator (3.13) obtained from classical expression (2.3) by
means of arbitrary Weyl-type quantization rule Wx preserving commu-
tation relation of the Poincaré algebra p(1,1) generates Lorentz trans-
formation

() o —m<22ﬂ$>@w» (341

We see that different quantization rules W, Wz preserving commu-
tation relation of p(1, 1) lead to boost transformations which distinguish
on phase factor:

(%) @) = e (Fv) o), (3.42)
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where

N 2Tl
Z F(0,0) B 0*F'(0,0) ' (3.43)
6k 208, 0k,0s,

These Lorentz transformations are physically equivalent, because
exp (—iAK")y(p) and exp (—iAK)y(p) belong to the some ray. Thus,
quantizations which lead to the same realization of the ideal h give equiv-
alent unitary representations of the group P(1,1). Therefore, it is natural
to introduce the following

Definition 1. Quantizations Wr, Wx which lead to the same realiza-
tion of the ideal b are called equivalent:

W]: >~ W]:r . (344)

Proposition 3. Quantization rules Wr, Wx preserving the commu-
tation relations of p(1,1), where F = F(ks,ANo), F = F(ks,0), are
equivalent:

W ks,a0) = WE(ks,0)- (3.45)
Proof: This follows immediately from (3.35) and (3.23).

Corollary 1.
Wrks)Fo = Wr(ks)- (3.46)

For the special class of quantization rules which preserve in addition
to the commutation relation of p(1, 1) the commutability of the diagram
(3.24), we have

Wria) 2 Wr—a.), Wras) = Wr—ay)- (3.47)

Hence, we see that the Weyl-type quantization rules which preserve
the commutation relation of the Poincaré algebra p(1,1) fall apart into
equivalence classes. Rules from different classes give non-equivalent uni-
tary representations of the group P(1,1) and may result in different
expressions for such important observable quantity as the mass spec-
trum of the system. We shall demonstrate this fact by the example of
N-particle system with oscillator-like interaction in the next section.
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V. Ambiguities of quantization of N-particle system with
oscillator-like interaction

In the case of the free particle system (V' = 0), arbitrary quantiza-
tion rule of the type (3.16) transforms the classical canonical generators
P,, P_ into the quantum operators which in momentum representation
(3.7) have the same form as the corresponding classical quantities. The
expression for the boost operator K depends on the class of quantiza-
tion rules Wg, but different Weyl-type quantizations (3.16) of the free
particle canonical realization of the Lie algebra p(1,1) give equivalent
unitary representations of the Poincaré group P(1,1).

Let us consider an example of N-particle system with interaction. Let
us choose the interaction function V' in the following form

V =w? Z Zribpapb, w? > 0. (4.1)

a<b

The function (4.1) describes N-particle oscillator-like interaction [19]. In
the nonrelativistic limit such a system is reduced to the nonrelativistic
oscillator system. In terms of the variables (2.10) the interaction function
V takes the form
N-1 N
V="Fgn)=w ) /4-n)a [T @/2+n)" (4.2)

a=1 j=a+1

The system with interaction (4.1) has N — 2 additional integrals of
motion Aj, which mutually commute

{Ai; A} =0, i,k=2,N—1. (4.3)
In terms of the variables (2.10) they have the form

J 2 J 2
m m;
A\ = __d 1/24n,) 1 + gt +
Jj+1 ; 1/2_7”_1 Zl;([j( / 171) 1/2_77]
Jj—1 J
+0* Y (/d=niaz [T 1/2+n)7" + (1 /4-n))d;, (4.4)

d=1 i=d+1

where A% = M2,j =1, N — 1. They can be represented by means of the
recursive relations
2 m2
Aj M1

M=
it 1/2+nj+1/2—

+ W (1/4=n3)dj, (4.5)
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where we denote \? = m?2.

Quantum mechanical description for this system have been con-
structed by means of the ordinary Weyl quantization in Ref. [19]. Here
we shall consider the Weyl-type quantization rules connected with the
function F; (see (3.32)). The Weyl-type quantization rules differ from
the ordinary Weyl quantization in the presence of the nontrivial operator
F (Al) acting on the classical generator P_ in the expression for kernel
(3.14). We consider in this section quantization rules which preserve the
commutability of diagram (3.20). Therefore the quantization problem
of the canonical generators reduces to the construction of quantum in-
teraction operator V. This gives us immediately the expression for the
operator P

P_=M?*/P,. (4.6)
Hence, first of all, we have to find the action of F(A;) on classical inter-

action function (4.1). In terms of the variables (2.10) this gives us the
following result

R (1/4 -
FA) =7V =w?Py Z( [4=m5) q“+
a+1)+

Qa[(a - )/2 - (a+ 1)"7(1] n

271(0) o~
P 3)/;;@ ublll ) : (4.7)

where F{(0) = dF:1(0)/dA,, Py = P+H .(1/2 + n;). Moreover,
changing every classical functions Z; by 7 Z; we reduce the quanti-
zation procedure to the quantization of the classical problem with the
new set of “classical observables” ¥ 7 via the original Weyl rule and
we can immediately use the results of Ref. [19]. Using equality (4.7),
expressions (4.4), for integrals of motion A;, we obtain

Jj—1 9 j—1

2
ms m
PN=—L 4y ——F  T[@/2+n)7" +
J ]_/2—7’]]',1 1 1/2—77,671 i:k(/ z)

Jj—2 2

(1/4~n3)ai, —

k(k—1)
1/24n

2F1(0)gy <1;2k+(k+1)nk> +f{’(0)< —k(k+ 1))
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. 2—5 .
2 (1/4_77]2‘—1)‘]]2'—1_2]‘—{(0)%’71 (T‘f’ﬂ?jl) +
—-1)(i-2) ..
+F1(0 ((37 —j(-1 , 4.8
10) (S U (48)
where 71)0% = 71 M?2. Recurrence relations (4.5) are transformed into

T+ - DF0) =

PN +WR DG - FO) | m
] 1/2+nj i 1/2 —]771‘—1 i
W2 ((1/4=13 )@, ~2FO)[(25)/2+jm; 1]g; 1 ). (4.9)

The separation of motion of the system as a whole by means of canon-
ical variables (2.10) leads on the quantum level to the decomposition of
the Hilbert space H% into the tensor product H& = hins ® Hepe, where
“inner” and ”external” spaces are realized, correspondingly, by functions
¥(n), and f(P;) with the inner products

() =3 / T PP, (410
/2 Ny s

= | <H 1/2+2> Ui (n)- (4.11)
—1/2

All the operators j\j act only in h;,;. When we pass from the functions
1 with inner product (4.11) to the functions

N-1

o) = v ] (/2 —203)/2 (4.12)

b=1
with the inner product

1/2 N-1
(o) = [ o et ] dna (4.13)
—1/2 a=1

then classical functions 7 Z; depending only on the inner variables are
transformed into the following integral operators [19]

1/2

N-1
(Zo)n) = / WG, )o ') T] din; (4.14)

—-1/2
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with the kernel

N-—1
W (n,n')= <H [(1/2+4) (1/24n0)) " DdL) X

d=1

00 N— N—ld~
/ P17k (7 exp( Z ﬁé)Ya> 1T % (4.15)

“0 a=1 b=1
where

N N

Do = [[@/2+n)+ [[@/2+n)), (4.16)
j=a j=a

N
Yo=4D;2, [] (1/2+n)(1/2+ ). (4.17)
j=a+1

The quantities ¢, 7 have the form

d, = Da+1 < Duqa +
2Dq HJ a+1(1/2+7h)

a—1 N-—-1
1/2+n)
+3 e [[ 52 (4.18)
v=1 j=v+1 1/2 + nj
N N
=Dty | ma T /24m) + T] (/2+0)) |- (4.19)
j=a+1 j=a+1

Substituting the expressions for the integrals 71 A3 into kernel (4.15)

we obtain expression for the operators Xj—:

Jj—1 2 Jj—1 2

~, m m:
N=> b T]1/2+n) M — -

i=k

(-5 ( (1-K)F1 0+
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2 2 & . -
—w (/4 =m1) 55— = (12 =570+
-1
0]

ot ey - 4 B
+2 (Zfl(o)] + 1)77]_1> 817].71
_7"7:{(0).7 - i +3( - 1).7:11(0)] (4.20)
and boundary conditions

. 2 0P .
— ) 2L = (n:) =
(/A=) g, =, i) =0, (4.21)

which ensure the hermiticity of (4.20). The operators ;\j can be deter-
mined by means of the following recursive relations

s (-0 - ) -

Note? (=D (0)-4) |

>

1/2+nj—1
M@)o (i F o)
1/2—n; oz, '
+2(i}"(0)j+1)17- =2 im) - (4.22)
1 J— 677j—1 1 4

Putting j = N we have the expression of the total mass operator M?2.
Operators (4.20) mutually commute

[\, Al =0 (4.23)

and therefore they have a common set of eigenfunctions. Thus, we see
that the Weyl-type quantization rules W, preserve additional (concern-
ing to the Poincaré-invariance) symmetries which are responsible for the
integrability of the system.

Let ¢(n) be an eigenfunction of M2 = A%. Putting ga(n) =
vaz i(n;) reduces the eigenvalue problem for the operators )\ to the
system of N — 1 differential equation of the hypergeometric type

AN+ W (-1 G=2)F(0) - (5 - 2)/4)+
1/2 +mj-1
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1, 02

m;j 2
(1_77]'—1)—6772 ) -
i

+7_
1/2 —n;

- <i(2—j)}"{ (0)+2(iF] (0)j+1)nj_1> 877?1 -
—iF(0) 3+ G- ) - :—] } i) = 0, (1.21)

where Hi;ll wi(n;) is an eigenfunction zind A7 is an eigenvalue of the
operator A7 and A, is an eigenvalue of A7 ;. Solving system (4.24) and
taking into account boundary conditions (4.21) we find the functions

n; (07) = oy (1/2 = 1) (1/2 + 1) P22 (2yy), (4.25)

and the eigenvalues of the quantum integrals )\j

2

J
)\? =w? (ao +Z(ak + ng +1/2)> +

li-n (5 it ) + RO (4.26)

Here

(4.27)
bj=ao+ Y _(ar +nk+1/2),
k=1

ny, are integers: ng, = 0,1,2, ..., and Pf(lf”“%j)(%j) are Jacobi polynomi-
als. The constants C),; are determined by the equality:

nj!(2nj+1+2aj+2bj)l“(nj+1+2aj+2bj)
F(nj + 1+ 2a]~)F(nj + 1+ 2()])

Thus, the mass spectrum of the system is

N N-1
Z\/ — (wF (0 +w2 (np +1/2)
= b=1

+w? {(N —1) G - NFJ( ) + (NF(0 ] : (4.29)

|C; |* = (4.28)

2

+
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The discrete spectrum exists only for real a;. This leads to the inequality
w|F1(0)] < min{my},a=1,N, (4.30)

which gives additional restriction for the type of quantization rules W, .
In the two-particle case mass spectrum (4.29) coincides with the re-
sult of Ref.[8] where the ambiguity in the quantization procedure of the
two-particle oscillator-like interaction (4.1) have been considered within
framework of purely algebraic method and two classes of ordering rules
without specifying any representation.

We see that the mass spectrum depends essentially on the choice of
quantization rule. In the case F; = 1 we come to the spectrum of the
system with the interaction (4.1) which has been obtained by the original
Weyl quantization in Ref.[19]. In this work the generalization of the pure
oscillator-like interaction has been considered too. This new interaction
function contains also the terms which are linear in the coordinates:

V—)V:V—i—aZZrab(pa—pb). (4.31)

a<b

The original Weyl quantization gives the following result (see Ref.[19]):

[Z\/mg +wz (np+1/2)| +
N—l N2
+Tw2+ a4w2 : (4.32)

Comparing the equalities (4.29), (4.32) we see that the quantizations
Wg,, F1(0) # 0, F{'(0) = 0 of the classical system with the pure
oscillator-like interaction (4.1) gives the terms in the expression for mass
spectrum (4.29) which we can treat as a presence of the linear interaction
with

a = —2w2F(0). (4.33)

Then such a quantum system is equivalent to those which is obtained
from the classical system with the interaction (4.31) by means of the orig-
inal Weyl quantization. Thus, the use of different quantization rules may
lead to essentially different quantum results. Moreover different quanti-
zations may lead to quantum systems with physically different interac-
tions!

In the nonrelativistic case all the ambiguities in the mass spectrum
(4.29) vanish and we obtain well known energy spectrum of nonrela-
tivistic system with the oscillator interaction. But the first relativistic
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correction to the nonrelativistic energy depends on the type of quanti-
zation:

N—-1
Exho ) (n+1/2) +
b=1
o |1 (A= ’ el 1
—_— — I —_—
52 \m (;(nwlﬂ)) (F1(0)) az::lma+

w2 [ -0 (§-570) + o]} (.34

Here we renewed constants A, c.

Let us note that for the quantization of the oscillator-like interaction
we have used only quantizations preserving the commutability of the
diagram (3.24). Using the quantization rules Wy (3.16), which preserve
only the commutation relations of the Poincaré algebra p(1,1), we could
obtain more ambiguous results for the mass spectrum.

V. Conclusions

We have considered the problem of construction of a unitary represen-
tation of the group P(1,1) by means of quantization of the classical
canonical realization of the Poincaré algebra corresponding to N-particle
relativistic system with an interaction in the two-dimensional space-time
Mo in the front form of dynamics.

The Lie algebra of the Poincré group P(1,1) has three generators:
P ,P K. Two of them, namely, P, ,P_ belong to the comutative
ideal h. These two generators determine the square of classical total
mass function M? = P, P_ and the Hamiltonian (evolution generator)
H = 1(Py +M?/P,). The structure of the Lie algebra of (1, 1) permits
to reduce the quantization problem to the quantization of classical gen-
erator P_. This generator is the only one which contains an interaction.
On the quantum level, operators belonging to the ideal h generate the
evolution and the mass spectrum of the system via Eqs (3.38), (3.40).

For the construction of a unitary realization of the group P(1,1)
we have applied only Weyl-type quantization rules (3.2). It has been
demonstrated that the requirement of preservation of the Lie algebra
p(1,1) restricts the set of quantization rules but does not by itself remove
the ambiguity of the quantization procedure.

In the classical case the square of total mass function M? is the in-
variant of the group P(1,1). Thus, to obtain in the quantum case the
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algebraic structure which is most closely related to the classical one, the
quantum Kasimir operator M? = 15+]5, must be the quantization result
of the classical expression M? = P, P_. This additional requirement im-
poses additional restriction on the family of the Weyl-type quantization
rules. But it does not destroy the ambiguity of the quantization either.

We have also demonstrated that the Weyl-type quantization rules are
split into equivalence classes. Quantization rules from the same equiva-
lence class lead to the same realization of the ideal h and therefore give
the same mass spectrum and the evolution of quantized system. They
lead to equivalent unitary representations of the group P(1, 1). The quan-
tizations which belong to different classes lead to non-equivalent uni-
tary representation of P(1,1) and give different mass spectra. We have
demonstrated this fact by the example of the N-particle system with
the oscillator-like interaction. As it has been shown, in the expressions
of the mass spectrum (4.29) there appear the terms which one can treat
as the presence of the additional linear interaction. Thus, the choice of
different quantizations may change the type of interaction and lead to
quantum systems with physically different interactions. This unexpected
result means that if we start with the classical description of a mechan-
ical system then quantization rule seems to be the essential part of the
definition of the corresponding quantum system.
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