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®a30BUH Iepexinm HeMaTHK-i30TpomHa piayHA B rpaTKoBiH Mo-
eIl 3 3aMOpPOXKeHuMH moMimkamu. Komir’'rorepHa CUMYJIAIs
3a momnomMororo metony Monte Kapito

. M. Ineaunpkuii, C. Coxososcki, O. Ilizio

Amnoramisi. Bukonano Moure KapJsio cumyJisnii rparkoBoi mojet, ska
OIUCYE IOBEIIHKY PIIKOI0 KPUCTAJY IIPU HAABHOCTI 3aMOPOXKEHUX I10-
mimok. Ha Binminy Bin Bunanky umcroi cucremu, y sAKiit BigOyBaeTbhcs
MOCTATHLO CUJIbHUI Opi€HTAliliHWi mepexin Mmepuioro pomy, MpU HasdB-
mocti 5% momimok meil mepexin € cyTTeBo ciabmmM. ILOCHimKy€EThCA
3CYB TEMIIEPATyPHU [EePEXOly, IMOHUKEHH: TeIIOTH [MEePEXOy, [apamMe-
TPY BHOPAOKYBaHHH, TEIIJIOEMHOCTI Ta CHPURHATIIMBOCTI, IO BUKJIUKAHO
HaABHICTIO JOMIMMOK. BUKOPUCTOBY€ETHCA ricTOrpaMHa TEXHIKA Ta aHAJTI3
YUCIOBUX JTAHUX 33 JOTOMOTOI0 CKiHYeHHOBHMIPHOTO CKeiltinry. Buko-
HAHO TIOPiBHAHHA i3 eKCIepUMeHTaMU HaJ, PIIKUMU KPUCTAJIAMU B ae-
poresifx Ta MOPUCTUX CKJIAX.

On the nematic-isotropic transition in a lattice model with
quenched disordered impurities. A Monte Carlo study.

Ja. M. Ilnytskyi, S. Sokotowski, O. Pizio

Abstract. We have performed Monte Carlo (MC) simulations of the
lattice model mimicking liquid crystalline behavior in the presence of
disordered quenched impurities. A well pronounced first order nematic-
isotropic transition has been obtained for a bulk pure model. However,
at a 5% concentration of impurities, we have observed a very weak first
order transition being suppreseed as compared to a pure case. We have
discussed a shift of the transition temperature, a suppression of the latent
heat and the maxima of the heat capacity and susceptibility due to the
presence of impurities. A histogram analysis and a finite-size scaling has
been applied to the MC data. A comparison of the simulation data with
the experimental results for liquid crystals confined to silica aerogels and
porous glasses also has been performed.
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1. Introduction

The structure, thermodynamics and phase behavior of fluids confined to
disordered porous media has received much attention during last decade.
A large amount of the experimental, simulational and theoretical re-
sults have been accumulated. On the other hand, more interesting, and
physically richer, complex fluids under confinement have received less
attention. The liquid crystalline materials in confined geometry are of
particular interest for basic science and for applied research.

Interest to liquid crystals (LCs) in the individual pores and in dis-
ordered porous media is very rapidly increasing, see, e.g. [1-16]. In par-
ticular, the nematic-isotropic (NI) transition in liquid crystals confined
to microporous and mesoporous media has been studied experimentally
[5-9]. The experimental results provide evidence that the finite size of
pores, the effect of quenched disorder and the interconnectivity of pores,
are main factors that influence phase behaviour of LCs in microporous
adsorbents. Theoretical investigation and simulation of the NI transition
in porous media therefore must include modelling of the various factors
crucial to the NI transition [10-16].

A set of numerical studies of liquid crystalline materials in micro-
porous media has been attempted during last decade. In particular, a
model of trimers on a simple cubic (sc) lattice has been simulated by
Dadmun and Muthukumar [12]. A porous medium has been implied as
a dilution, i.e. it has been assumed that a fraction of sites of the lattice
is unaccessible for trimers. The excluded volume effects of dilution have
yielded lower temperature of the NI transition temperature and rounder
heat capacity maximum of the model, if compared to its pure counter-
part. Moreover, the transition has been shown to change its nature from
the first to the second order, if the concentration of impurities is larger
than 2.5%. The simulation data have been shown to agree qualitatively
with the experimental results. However, quantitatively the shift of the
transition temperature compared to the pure model, i.e. in the absence
of impurities, is essentially overestimated. It seems that, the size of the
lattice system considered in Ref. [12] (up to 16x16x16 sites, such that
the system consists of less than 1300 trimers) is insufficient to describe
the thermodynamics quantitatively.

A study of the phase transitions in aerogel has been undertaken by
Uzelac et al. [13] in the framework of the ¢ = 3 and ¢ = 4 Potts models.
The models are characterized by a weak first order transition in the pure
case. The aerogel has been modelled as a set of correlated impurities on
the lattice by using diffusion-limited cluster-cluster aggregation; the case

ICMP-98-33E 2

of randomly distributed impurities also has been studied in [13]. A finite
size scaling analysis (on the lattices up to 20° size) and the Ferrenberg-
Swendsen (FS) histogram technique [17] have been used. The shift of
the transition temperature with increasing concentration of impurities
appeared to be smaller in the aerogel case, comparing with the case of
randomly distributed impurities. The heat capacity peaks have been ob-
tained as suppressed and essentially broadened with increasing impurity
concentration. The finite-size scaling analysis of the simulation data has
shown that the order of the transition for 3D ¢ = 3 and ¢ = 4 Potts
models changes at a nonzero concentration threshold. However, these
results must be considered with some care due to small lattice sizes in-
volved, and due to the fact that systematic averages over disorder have
not been performed. Neverhteless, the results presented in Ref. [13] con-
firm that even a weak dilution may essentially affect the NI transition
(these trends were observed earlier by Hashim et al. [18]).

Other models and theoretical developments concerning the behavior
of liquid crystalline materials in the presence of the quenched disorder
have been proposed recently, particularly, random-field Ising model [10,
11], random anisotropy nematic model [15], single-pore model for liquid
crystal in aerogel [16].

In general, computer simulations are powerful tools to investigate a
microscopic nature of the liquid crystalline phases. The most successfull
intermolecular potentials applied in the simulations of the bulk models
include the Berne-Pechukas [19] and Gay-Berne [20] potentials. However,
reasonably large systems of molecules interacting via these potentials,
appropriate to study phase transitions, are difficult to consider due to
computer time consumption. Therefore, for practical reasons, it is im-
portant to obtain the simulation results for large systems of molecules
in the framework of quite simple models, intrinsically preserving liquid
crystalline nature.

With this aim, in the present study we perform Monte Carlo simu-
lations of the NI transition in a modified Lebwohl-Lasher (LL) lattice
model for liquid crystals [21], however, both in its pure state and in
the presence of quenched random dilution. The particles in the model
interact via the angular part of the Berne-Pechukas (BP) potential [19]
derived from the overlap integral of two ellipsoidal Gaussians of a certain
elongation a. The first order NI transition in the pure modified LL model
becomes stronger with increasing elongation parameter [21]. We consider
the case a = 3, that yields reasonable values for the latent heat and for
the order parameter at the NI transition [21]. Our investigation of the
model in the presence of a microporous media, is restricted to the case of
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a 5% dilution (which formally corresponds to a highly porous medium).
A more “liquid crystalline” model is used in the present study, in com-
parison with previous works [12,13]. Consequently, the simulations are
much more time consuming. Moreover, the lattice sizes up to 24° are
simulated and a wide set of thermodynamical properties is discussed
close to the NI transition. We would like to investigate how the dilu-
tion affects thermodynamic properties near the NI transition, and if the
transition remains of the first order. On the other hand, our intention is
to perform comparison with the available experimental results on LCs
in highly porous confining media. A finite-size scaling analysis and the
FS histogram technique [17] are used in the analysis of the simulation
results.

2. The Nematic-Isotropic Transition in the Pure
Model

We consider a lattice model of elongated particles interacting via an
angular part of the BP potential. The last one has a following form [19]:

VBP(’lAI,i,’LALj,'I:') = 46(’11,',’&]')

' Ka(ai,aj,f))“ ~ <a(ai,aj,f)>6] |

where €(4;, 4;) and (4, 4j, 7) are the effective orientationally dependent
strength and range parameters, respectively. The unit vectors 4;, 4; are
directed along the corresponding long axes of the interacting i, j-th el-
lipsoids, 7 is the center-of-mass distance vector between them, and 7 is
the unit vector along 7. In the case of rotators @; on a lattice with the
nearest neighbors interaction only the angular dependence of €(t;, @;)

i, i) = —— o (1)

1 —x2cos?6;;

is involved (§;; is the angle between 4; and ;). The anisotropy of ellip-
soids is characterized by the anisotropy parameter:

a2—1 0'||

= R a=—,
X a?+1 o

where o),0 are their major and minor axes, and a denotes the elonga-
tion parameter. In our computer simulations we use the following nor-
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malized interparticle interaction,

Vepa(0ij) = —% l(a Ea1)2 <\/1_X§m - 1) - 1] ;o (2)

where (@ 1)2
a—
€= g ¢ (3)
is the parameter used as energy unit in our simulations. For the sake
of convenience, this potential is normalized such that at 6;; = 0 and at
0;; = 5 it gives the same energy (in units of €) as the LL potential [22].
Moreover, the LL potential is reproduced in the limit of small anisotropy

(x < 1) by expanding the expression given by Eq. 2 in powers of x:

lim Vgpa(bi;) = —eP>(cosb;;) + const.
x<K1

The first order NI transition, that has been observed in the model at
hand, becomes stronger with the increasing elongation parameter a [21].
However, the parameter a provides only a rough estimate of the elonga-
tion of real molecules; more reasonable is just to think that the anisotropy
of the intermolecular potential increases with augmenting value of the
parameter a. On the other hand, stronger anisotropy can be achieved by
adding higher P, terms to the LL potential [23-25] and choosing the
expansion coefficients appropriately.

We restrict ourselves to the case a = 3 in Eq. 2 (it is interesting to
mention that in this case Vapa(6;;) coincides well with the potential
considered by Romano [26] expanded up to Fs term). The value a = 3
also has been used in the simulations of the Gay-Berne model [20].

We have performed simulations of the pure model with the potential
Vepa(0;;) for four different lattice sizes 163, 182, 203, 243 and apply a
finite-size scaling analysis and the F'S reweighting technique for the data
obtained. Our principal interest is in the properties that are expected
to change at a weak dilution. These are the transition temperature, the
maximum values for the specific heat and susceptibility, the minima for
the fourth Binder’s cumulant, the latent heat and the order parameter
at transition.

A numerical procedure for each lattice size was similar. First, short
scanning runs (up to 10> MC cycles) were performed for the entire inter-
val of temperatures including the NI transition point. Then we select a
temperature for which a number of configurations (along the run), with
predominant nematic or isotropic phase, is of the same order. A good
indication for that is a regular “flow” of the order parameter values from
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about 0.05 to 0.3. At such a temperature, we would say, the coexistence
of two phases is observed. Then, an extended run of the 5-10% MC cycles
was performed at this temperature and the histograms of energy and of
the order parameter have been built up. By applying the FS reweight-
ing the NI transition point was located in the first approximation. This
estimate for the NI transition temperature is used for the final extended
run of not less than 105 MC cycles that provides final histograms and
the quantities of interest.

A standard Metropolis algorithm has been used in our simulations.
The orientation of each particle u; was attempted to change by adding a
vector [ with random orientation and of controlled length [27], and then
normalizing the value a; =a;+ I'back to unity. A new configuration was
accepted, if the energy becomes lower, or accepted with a Boltzmann
probability otherwise. The length of [ has been adjusted during simula-
tion to provide a ratio of accepted attempts approximately equal to 0.4.
The dimensionless temperature 7% = kpT'/e is used in the simulations.

Each configuration is characterized by the one-particle energy

1
U*=—— Vapalti
Nfe - BPA( zy)

(Ny is the number of unit vectors ; in the simulation box) and the order
parameter,
S = (Py(cos9;))s,

where 6; is the angle between 4; and a director. The order parameter
is calculated after each simulation cycle as the largest eigenvalue of the
corresponding tensor [28].

The values of U* and S have been stored after each MC cycle along
the extended run at temperature 7j7. These arrays were used to build up
the normalized histograms of energy Prx (U*) and of the order parameter
Pq’wo* (S) distribution at T§; these distributions can be presented in the
form (slight modification of the formulae of Ferrenberg and Swendsen
[17] is used):

Pr7) = e en-20))
@
Pis(8) = Zv/(S)esp(~ D)

where w() (M) is the number of states with the corresponding value
of M, and E\")(M) is the energy of that state. The factor Zé') has been
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introduced for the sake of normalization. Evidently, the function E(U*) is
simply Ny eU* and, correspondingly, E'(S) = NyeU*(S), where U*(S)
is the histogram for the energy distribution versus given values of the
order parameter S. As a result, we can rewrite Egs. 4 in the form:

1 U*N
Pry(U7) = Sw(U)exp(==7),
0
6
, 1, U*(S)N
Piy(8) = Zru(S)exp(~ L),

As far as w(’)(M ) are temperature independent the corresponding dis-
tributions at some nearby temperature T* can be derived analytically
by simple reweighting of the expressions given by Eq. 5 [17]:

* 1 * 1 1 *
Pr-(U7) = —Pry(U) exp(=(5; = 7x)U"Np),
0
1 11
Pr.(S) = P (S)exp(=(7 — 72)U(S)Ny),
0

where Z() serves as a new normalization constant at 7*. These distri-
butions are used then to calculate the average momenta of U* and S at
T*:
U= = U Pre(UF), (S = SPPp.(S)),
i i

from which we obtain a set of quantities of interest. Particularly, the
dimensionless heat capacity, C; = C,/(ksNy), and the susceptibility,
X* = xe/Ny¢, can be defined via the fluctuational formulae:

_ Ny

N
o= N -

V= s (U = (U, X ((S%) = (8))

Also, we have calculated the fourth Binder’s cumulant of the energy
fluctuations [29] as follows:

Vi=1- crt

which is a useful additional estimate of the transition temperature, and
serves to determine the order of the transition.
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Figure 1. Finite-size scaling behavior of the NI transition temperature in
the pure model defined by different ways (circles and diamonds are ob-
tained from the peaks of the heat capacity and the susceptibility, respec-
tively, triangles are from the minima of the fourth Binder’s cumulant),
L, is the linear size of the simulated model.

Let us denote the NI transition temperature (estimated in the frame-
work of a procedure numbered by m) by T} y;(Lp) for the system
of LZIBJ size, p is the subscript introduced to emphasize the pure case.
For the first order transition, we would expect from Ref. [30], that
Ty ni(Lp) =T ni(00p) ~ Li?, where Ty, v (00,) is the transition tem-
perature for an infinite system. Following Ref. [31] we have used three
different procedures to evaluate the NI transition temperature for each
system size. The locations of the peaks for CX(L,) and x*(L,) yield
T7 n1(Lp) and T (L) respectively, and a location of the V4 minimum
gives T3y (Lyp). The expected finite-size scaling behaviour holds exactly
for all 7}y n;(Ly) (see, Fig. 1); this behavior is quite similar to the one
observed for the LL model [31]. The fitting lines meet at L = 0, giving
the value

T (o0p) = 1.0540 £ 0.0002 (6)

for an infinite system. We must mention that this value cannot be com-
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pared straightforwardly with the one for the LL model [31] due to a
different energy scale (e given by Eq. 3 is anisotropy dependent).

Another common test for the first order transition is the scaling of
the maxima for C ... (L,) and for x},,, (Lp) proportionally to L3, with
increasing L,. We have obtained typical rounded peaks for C}(L,) and
X*(Lp); both become higher, narrower and shift to a lower value of T*
as L, increases. For the sake of brevity, we do not present these curves
in the present work (see, e.g. Refs. [13,31,32]). The values for Cymax(Lp)
and for Xmax (Ly) versus L2, together with the corresponding fitting lines
are shown in Fig. 2. One can see that the scaling law of the Lg type is
satisfied very well.

160 I I sy B B Y I Y D ) B B P
- //‘ —
140 - \ ]
n ® Xriax bure B -7 *
120 - i .- -
100 : o Cvma,x //// /;
L * T
80 - T T g
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3 4 5 6 7 8 9 1011 12 13 14 15
107" L)

Figure 2. Finite-size scaling behavior of the heat capacity, C7 . .., and
the susceptibility, x} .., maxima in the vicinity of the NI transition in
the pure model of linear size L.

The properties that can be compared with the experiment are the
latent heat at the NI transition AHy7(L,) and the order parameter
Sn1(Lp) at Tny. To obtain the value for AHnr(L,) we seek first the
temperature T¢, (Lp), at which the maxima of the energy distribution
PT:q (U*) are of equal height. This temperature turned out to be very
close to the susceptibility peak position T35 y;(Ly) for all L. It is known
that the energy distribution of a system close to the first order transition
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can be approximated reasonably well by a double Gaussian [33]. How-
ever, we have obtained better fitting by using a double non-Gaussian
distribution of the form:

(U* — U;:em)z _ (U* — U;;em)g _ (U* — U;em)4:|

Qnem Brem Tnem

Pr. (U*)~cpexp [—

(U — Ui U -U;

)4
180 , 7
Qiso /6iso Yiso :| ( )

where the expected values Upen, and Uy, and the fitting coefficients
are obtained numerically, by using the least-squares method. The di-
mensionless latent heat per particle was then estimated at T} (L,) as
AHY (L) = Uy, — Uk, (see, Fig. 3). To get a better accuracy, we
have used the following average:

R e U

180

+ ¢; exp {—

(AHN(Lp))x = %(AH;U(LP) +AHN1 1 (Ly) + AHy - (Ly)),

where AHY ;, (L) has been estimated similar to AHR (L) at T, (Lp)+
0T and AHY,; (L) has been estimated at 17, (L,) — 7. Here (for the
pure model) we choose 6T7* = 0.0005. These estimates (AHx;(Lp))+ do
not exhibit a finite-size scaling dependence within the accuracy of our
calculations (see, Fig. 4). The latent heat for an infinite system can be
derived as the average over all simulated lattice sizes:

AHjy(00,) = ((AHR (L)) +) 1, = 0.179 = 0.005. (8)

Similar methodology has been used to evaluate the order parameter
at the transition Syy. In this case the distribution PTe*q (U*) is reweighted
at T3 ny(Lp). The isotropic maximum, that is very low, was fitted by a
Gaussian and the nematic maximum by a non-Gaussian:

— 2 _ 3 _ 4
Pl (8) m yoxp [ Freml (=S (5 Soen)

2,NT !
anem nem r)/nem

(9)

(see, Fig. 5); moreover, we have assumed Sny1(Lp) = Spem- Similar to the
case of AH} ;(Ly), the averaging in the form (Sn1(Ly))+ = $(Sn1(Lp)+
Sn1+(Lp)+ Sni—(Lyp)) has been used (the + and — signs have the same
meanings as above). The values for (Syr(Lp))+ do not exhibit the L,

G )2
+ ¢ exp {—7(5 ,sto)}

Qiso
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Figure 3. Histogram of the energy distribution (the pure model, L, = 24)
at Ty, and its fit by a double non-Gaussian according to Eq. 7 (the fit
practically coincides with the histogram). A nematic and an isotropic
non-Gaussian also are shown separately. Their expected values are U}},,,

and U7, respectively.

dependence within the statistical errors (see, Fig. 6). The average value
over all simulated lattice sizes

SN[(OOp) = ((SNI(Lp»i)Lp = 0.333 £ 0.005. (10)

is used as an estimate for an infinite system. The results obtained for the
latent heat and for the order parameter are more accurate in comparison
with our previous study [21], in which a system of single size has been
simulated, and in which the FS technique has not been applied to the
simulation data.

To conclude this section, the pure model undergoes a well pronounced
first order NI transition. This conclusion follows from a finite-size be-
haviour of the transition temperature, of the heat capacity and suscep-
tibility. The latent heat and the order parameter at the transition are
obtained by fitting the corresponding histograms. These properties are
of particular interest. We would like to compare them with a weakly
diluted case which is the subject of the following section.
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Figure 4. Finite-size scaling behavior of the latent heat of the NI transi-
tion calculated as U, — Uy, and averaged over the vicinity of 77, . Black
circles represent the pure model, the average is shown by the dashed line.
Empty circles are for the diluted model, a dashed line corresponds to the

linear fit.

3. The Nematic-Isotropic Transition in a Weakly Di-
lute Model

The method described above now is applied to study a weakly dilute
model. We have used a so-called random dilution, i.e. when N,, ran-
domly chosen lattice sites are assumed to be occupied by quenched im-
purities. The other sites, Ny = N — N,,, are characterized by the unit
vectors u;, which describe the orientational interactions between liquid
crystal molecules. Similar to the pure model, a nearest neighbours inter-
action between 4; and 4; is assumed, also we assume that there is no
interaction between the impurities and 4;. Therefore, only the effects of
excluded volume are taken into account. A porous medium formed by
impurities may be thought to consists of highly interconnected pores.
We consider the case of a weak dilution, ¢ = Ny, /N = 0.05, which may
correspond to a LC confined in a highly porous medium. Due to the
CPU time limitations, we have averaged the results over not more than
three quenched configurations of impurities for each lattice size.
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/
*
T3 nr

Figure 5. Histogram of the order parameter distribution (the pure model,
L, = 24) at the temperature T3 y; and its fit by a sum of a Gaussian
and a non-Gaussian according to Eq. 9. The expected value of a nematic
non-Gaussian gives the order parameter at the transition, Syy.

Similar to the pure model, we denote the NI transition temperature
of the dilute model of linear size L, estimated in the framework of a
procedure denoted by m by T}, x;(La)- An estimate for the NI transition
temperature from the peak for C}(Lg4) and for x*(Lg) corresponds to
m = 1,2, respectively, and from the minimum of V; corresponds to
m = 3. We have observed the shift of the transition temperature of
the order (Ty, n(Lp) — T ny(La))/ T ni(Lp) ~ ¢ = 0.05 for each
lattice size in accordance with a mean field estimate. A finite-size scaling
behaviour for the first order transition, T}, n;(La) — T}y, nr(00a) ~ L?,
holds very well within the accuracy of our data (see, Fig. 7). For an
infinite system, we obtain

T} (004) = 1.0035 + 0.0002. (11)

Further confirmation of the first order nature of the transition in the di-
lute model is the finite size scaling behaviour of the maxima C} ... (Lq)
and x5 .. (Lq). The heights of the maxima are essentially supressed, com-
pared with the pure model. But their L3 dependence expected for the
first order transition is still pronounced (Fig. 8).
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Figure 6. Finite-size scaling behavior of the order parameter at the NI
transition obtained from the fits at 75 y; and averaged over the vicinity
at this temperature. Black diamonds represent the pure model, the av-
erage is shown as the dashed line. Empty diamonds are for the diluted
model, the dashed line is a linear fit.

The presence of dilution has a strong effect on the form of the energy
and order parameter distributions, Pr-(U*) and Pr.(S). Even for the
largest lattice size simulated, L = 24, the double-maxima form for the
energy distribution is not observed. This is due to a much weaker first
order transition. The distributions for two coexisting phases intersect es-
sentially and it is practically impossible to evaluate the spinodal points
for this case. Therefore, we are not able to define formally the tempera-
ture 77, with equally heighted maxima (as for the pure model). Instead,
we have used the temperature where the upper part of the distribution
has a symmetric shape (see, Fig. 9). Similar fitting formula for Pp«(U*)

(7) was used to extract the expected values for Uy, and U}, and to
estimate a latent heat of the transition AHRx,(Lq) = Uy, — Usser (€€,

Fig. 9). We have observed that this procedure is very sensitive to the ac-
curacy of the distribution tails. The accuracy can be unsufficient for the
simulated temperature farther from T7;. In this case, an additional cur-
vature of the distribution tails is present, and the least-squares method
fails to fit the histograms correctly. Similar to the pure case, we have
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Figure 7. Finite-size scaling behavior of the NI transition temperature in
the diluted model defined by different ways (the meaning of the symbols
is the same as in Fig. 1), L4 is the linear size of the simulated system.

calculated the average (AHX (La))+ = 5(AH},(Lq) + AH} 1, (Lq) +
AHy;_(Lg)) for each Lg, where AHy;, (Lq) has been estimated at
T;,(Lg) + 0T* and correspondingly the value for AHY; (Lq) at tem-
perature 17, (Lq) — 6T, The shift of the temperature, 67 = 0.00025,
was chosen twice smaller, in comparison with the pure model. At these
shifted temperatures, 17, (Lq) £ 7™, the distribution is essentially asym-
metric with the isotropic or nematic maxima clearly seen. Therefore a
value, AH " (Lq) = Ulo (T2, +6T7) = Uy (T, — 0T™), provides a rea-
sonable upper limit of the latent heat. In the majority of cases it is about
10% higher than the value (AHRX;(Lq))+. We have used this fact as an
additional test. As one can see in Fig. 4, the values for (AHX (Lq))+
reflect the L; dependence. For an infinite system we then obtain the
value,

AHYN(00qg) = 0.063 + 0.002, (12)

which is essentially lower, if compared with 0.179 for the pure model (8).
The order parameter at the transition is estimated quite similar to the
pure model. The only difference is that at 75 y(Ly) + 67, the nematic
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Figure 8. Finite-size scaling behavior of the heat capacity, C} ..., and
the susceptibility, x} .., maxima in the vicinity of the NI transition in
the diluted model of linear size L.

maximum for the order parameter is not very well defined to provide
fitting successfully. Thus, instead of evaluating the average, (Snr(Lg))+,
we have investigated the dependence of Snyy—(L4) (obtained from the
fitting at temperature, T3 nj(La) — 61, slightly lower than T3 y;(La))
with increasing 67™*. One might expect linear dependence on 67™, if it
is chosen small. This is indeed the case for §7* € [0.00025,0.00075].
We have used this fact as an additional test of stability of the fit at
T3 n(La). One can note a well pronounced L4 dependence of Sny(La)
(see, Fig. 6), in contrast to the pure model. Thus, the fitting procedure
yields for an infinite system the value,

Sn1(0og) = 0.220 + 0.005. (13)

This value must be compared with the value 0.333 for the pure model
(10).

The essential finite-size dependence of the latent heat and of the or-
der parameter for the diluted model can be explained according to the
following arguments. The finite-size behaviour of the pure system is gov-
erned by the fact that the correlation lenght ¢ cannot overcome linear
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Figure 9. Histogram of the energy distribution (the diluted model, Ly =
24) at T, and its fit by a double non-Gaussian according to Eq. 7. A
nematic and an isotropic non-Gaussian also are shown separately. Their

expected values are U}, and U}, , respectively.

size of the system, L. Therefore, in the pure model, all the singularities
are scaled by the single characterictic length ¢ [30]. In the dilute model,
another characteristic length appears, which is an average distance be-
tween impurities. Alternatively, influence of the dilution on the phase
transition can be described by the parameter k = c£* (proposed by Imry
and Wortis [34]), x represents the average number of impurities in a co-
herence volume. Actually, this parameter measures the relative influence
of impurities on the phase transition. We suppose that this parameter
must be kept constant for different L, rather than the absolute con-
centration of impurities ¢. For L < &1, one can assume that £ ~ L,
therefore it seems reasonable to keep constant the parameter k = cL? for
different L. Thus, in this case, one must rescale ¢ by L~2 with increasing
L. For L larger than &k, a concentration corresponding to saturation,
Cyulk, would arise. This concentration characterizes a diluted system of
infinite size. In the case of a constant dilution, used most generally, one
would obtain a progressive suppression of the transition by impurities as
L increases (this behavior can be seen from Figs. 4 and 6).
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To summarize the results about the influence of a constant, weak, 5%
dilution on the NI transition in the lattice model of this study we would
like to mention the following. At chosen concentration of impurities, the
transition remains the first order transition. However it is much weaker
than for the pure case, i.e. in the absence of impurities. A shift of the
transition temperature in an infinite system according to Eqgs. 6 and 11
can be written in the form of a ratio:

TRy(00a)

= 0.952 + 0.0004. 14
T r(00p) (14)

The supression of the maxima of the heat capacity and of the suscep-
tibility in an infinite system can be obtained from a fit using finite-size
data (see, Fig. 10). We have obtained the following ratios:

Clmax(00a) _ 0.35 + 0.01, Xinax(%0d) _ 0.45+0.01.  (15)
C:;max(oop) X;ax d

A decrease of the latent heat and of the order parameter at the transition
point in an infinite system are obtained by using the following values
(8,10,12,13). Then, our estimates are,

AHR(004)
AHY (00p)

Snr1(00q)

— 0.35+0.02,
Sn1(oop)

=0.66+002.  (16)

It must be mentioned that the effects of lowering the transition tempera-
ture, and of suppression of the heat capacity maxima, have been observed
previously for: a dilute model of trimers undergoing orientational tran-
sition [12], for ¢ = 3,4 state dilute Potts models [13] and for the model
of random anisotropy [15]. However, in the present study we have simu-
lated a quite different model and studied the influence of dilution on the
susceptibility, on the latent heat and on the order parameter.

4. A Comparison with the Experimental Results.

The influence of dilution on thermodynamic properties close to the NI
transition can be related to the experimental results for LCs confined
in a highly porous media. In particular, Wu et al. [9] have studied the
NI transition in 8CB LC confined to silica aerogels at different porosity.
For p = 0.08 g cm ™3 aerogel density (which corresponds roughly to the
5% volume fraction of impurities for our model) the shift of T of the
magnitude -0.45° has been observed, thus yielding T4 /T2%" = 0.9986.
The shift, following from our simulations, and given by the ratio (14)
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Figure 10. Suppress of the heat capacity, C} ..., and the susceptibility,
X ax, Maxima resulting from a dilution of the model. Here L, = Ly = L

and indices d and p denote the pure and diluted model, respectively.

is much more pronounced. The integrated enthalpy estimated from the
experiment is given by dH = AH + W, where AH is the latent heat
and 6 is the contribution from the integrated area of a pretransitional
region. For the pure model, it follows that dHpyre = AHpyre + W =
(2.1+5.58) J g1 [9].

It was observed experimentally, that the heat capacity points (plotted
versus temperature) for aerogels at different density may be fitted by the
same curve in the “pretransitional” region (except the area of about 1.5°
width near the transition point) [9]. This lead to the assumption that the
density of a confining aerogel influences mostly the value for AH, but do
not affect strongly the values for §W. In this case, one can use the ratio
AHgy/AHpyr = 0.35 (16) from the simulations and obtain an estimate,
SHgyy = AHgy + 6W = (0.735 4+ 5.58) J g=! = 6.315 J g~!. This value
is indeed very close to the experimental one, 6H, = 6.28 J g, for
p =0.08 g cm~3 aerogel [9]. We can also compare the suppression of the
heat capacity maxima by increasing progressively the aerogel density p.
As it follows from the experiment [9], the excess heat capacity AC)max
decreases almost linearly with the increasing p, at p < 0.36 g cm™>.
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For the aerogel densities, p; = 0.08 g cm ™2 and ps = 0.17 g cm ™3, we

then obtain the ratio ACp max(p2)/ACymax(p1) =0.51, which is higher,
but nevertheless comparable with the ratio 0.35 (15) obtained in the
simulations.

Other experiments for the NI transition in 8CB LC confined to
porous glasses have been performed by Iannacchione et al. [8]. In the
case of a macroporous confinement (1000A mean pore size), the shift
of the transition temperature of -2.05° has been observed. This gives
a ratio T4 /TP = 0.993 which again is higher than the ratio
(14). The latent heat AHg,ss has been shown to decrease and the
ratio AHgqss/AHpyr is 0.74; it is approximately twice larger than
(16). Similar discrepancy can be observed for the suppression of the
heat capacity, ACpmax(glass)/ACymax(pure) = 0.65, which is again
higher than 0.35 (15). In this context, it is interesting to note, that
the values obtained for the smallest lattice, Ly = 16, are much closer
to the experimental data, giving AHR;(164)/AHR;(16,) = 0.63 and
Crax(164)/C% . (16,) = 0.60. Augmenting discrepancy with increas-
ing system size is due to the hypothesis that the dilution concentration, ¢,
must be rescaled for a finite size system, keeping the value c£® constant.

We have obtained an essential overestimate for the suppression of the
NI transition at a weak 5% dilution, when compared with the experi-
ments. However, our results have been obtained in an infinite volume
limit via finite-size scaling. Following the considerations of Imry and
Wortis [34], we had supposed that the value ¢£€* must be kept constant
at increasing L, rather than the impurity concentration c¢. Nevertheless, a
shift of the transition temperature is overestimated. Possible explanation
of these trends is that one particle in a lattice model describes a group
of real molecules, rather than a single one (a simple estimate of Bellini
et al. [16] has shown that a group of about ten molecules corresponds
to a site in the case LL model). Thus, a dilution due to only one site
would destroy 6 bonds on the sc lattice, and the energy of 6 surrounding
particles (6 groups of molecules) would be essentially underestimated.
The temperature of the transition, in fact, is proportional to the num-
ber of “surviving” bonds, so it would shift too much. According to that
argument, we would like to mention, in particular, that a 5% dilution
corresponds effectively to a higher density aerogel, than p = 0.08 g cm™3
implied in a comparison performed above.
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5. Conclusions

We have performed an extensive Monte Carlo simulations of a weakly di-
lute liquid crystal lattice model with quenched impurities. The nearest-
neighbors interact via the angular part of the Berne-Pechukas poten-
tial. The elongation parameter is chosen equal to 3; the corresponding
pure system undergoes a well pronounced first order nematic-isotropic
transition. The model, in the presence of impurities at constant dilu-
tion of 5% has been simulated; four lattice sizes with linear dimensions
L = 16,18, 20, 24 have been used. The results of simulations have been
averaged over three quenched configurations of impurities for each lat-
tice size. The Ferrenberg-Swendsen reweighting technique has been used
in the vicinity of the transition, also a finite-size scaling analysis was
applied to the simulation data. The latent heat of the transition and
the order parameter have been evaluated by fitting the correspondent
histograms by a double non-Gaussian distribution.

We have observed an essential suppression of the nematic-isotropic
transition in the model at 5% dilution. This result is in agreement with
general theoretical estimates of the influence of the quenched disorder on
the first-order transitions [35,36]. However, at a 5% dilution considered
here, the nematic-isotropic transition remains an extremely weak first
order. A shift of the transition temperature, a suppression of the latent
heat and of the heat capacity maxima in the infinite volume limit have
been obtained. However, these effects are essentially overestimated, in
comparison with the experiments on the 8CB liquid crystal confined
to a highly porous media. This behavior seems to appear due to the
assumption of rescaled concentration of dilutions for a finite system at
a fixed value for the parameter c£3.
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