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õäë: 532.783:548-14; 536.425PACS: 61.30.Cz, 64.60.Cn, 02.70.LqæÁÚÏ×ÉÊ ÐÅÒÅÈ¦Ä ÎÅÍÁÔÉË-¦ÚÏÔÒÏÐÎÁ Ò¦ÄÉÎÁ × ÇÒÁÔËÏ×¦Ê ÍÏ-ÄÅÌ¦ Ú ÚÁÍÏÒÏÖÅÎÉÍÉ ÄÏÍ¦ÛËÁÍÉ. ëÏÍÐ'ÀÔÅÒÎÁ ÓÉÍÕÌÑÃ¦ÑÚÁ ÄÏÐÏÍÏÇÏÀ ÍÅÔÏÄÕ íÏÎÔÅ ëÁÒÌÏñ. í. ¶ÌØÎÉÃØËÉÊ, ó. óÏËÏÌÏ×ÓË¦, ï. ð¦Ú¦ÏáÎÏÔÁÃ¦Ñ. ÷ÉËÏÎÁÎÏ íÏÎÔÅ ëÁÒÌÏ ÓÉÍÕÌÑÃ¦§ ÇÒÁÔËÏ×Ï§ ÍÏÄÅÌ¦, ÑËÁÏÐÉÓÕ¤ ÐÏ×ÅÄ¦ÎËÕ Ò¦ÄËÏÇÏ ËÒÉÓÔÁÌÕ ÐÒÉ ÎÁÑ×ÎÏÓÔ¦ ÚÁÍÏÒÏÖÅÎÉÈ ÄÏ-Í¦ÛÏË. îÁ ×¦ÄÍ¦ÎÕ ×¦Ä ×ÉÐÁÄËÕ ÞÉÓÔÏ§ ÓÉÓÔÅÍÉ, Õ ÑË¦Ê ×¦ÄÂÕ×Á¤ÔØÓÑÄÏÓÔÁÔÎØÏ ÓÉÌØÎÉÊ ÏÒ¦¤ÎÔÁÃ¦ÊÎÉÊ ÐÅÒÅÈ¦Ä ÐÅÒÛÏÇÏ ÒÏÄÕ, ÐÒÉ ÎÁÑ×-ÎÏÓÔ¦ 5% ÄÏÍ¦ÛÏË ÃÅÊ ÐÅÒÅÈ¦Ä ¤ ÓÕÔÔ¤×Ï ÓÌÁÂÛÉÍ. äÏÓÌ¦ÄÖÕ¤ÔØÓÑÚÓÕ× ÔÅÍÐÅÒÁÔÕÒÉ ÐÅÒÅÈÏÄÕ, ÐÏÎÉÖÅÎÎÑ ÔÅÐÌÏÔÉ ÐÅÒÅÈÏÄÕ, ÐÁÒÁÍÅ-ÔÒÕ ×ÐÏÒÑÄËÕ×ÁÎÎÑ, ÔÅÐÌÏ¤ÍÎÏÓÔ¦ ÔÁ ÓÐÒÉÊÎÑÔÌÉ×ÏÓÔ¦,ÝÏ ×ÉËÌÉËÁÎÏÎÁÑ×Î¦ÓÔÀ ÄÏÍ¦ÛÏË. ÷ÉËÏÒÉÓÔÏ×Õ¤ÔØÓÑ Ç¦ÓÔÏÇÒÁÍÎÁ ÔÅÈÎ¦ËÁ ÔÁ ÁÎÁÌ¦ÚÞÉÓÌÏ×ÉÈ ÄÁÎÉÈ ÚÁ ÄÏÐÏÍÏÇÏÀ ÓË¦ÎÞÅÎÎÏ×ÉÍ¦ÒÎÏÇÏ ÓËÅÊÌ¦ÎÇÕ. ÷ÉËÏ-ÎÁÎÏ ÐÏÒ¦×ÎÑÎÎÑ ¦Ú ÅËÓÐÅÒÉÍÅÎÔÁÍÉ ÎÁÄ Ò¦ÄËÉÍÉ ËÒÉÓÔÁÌÁÍÉ × ÁÅ-ÒÏÇÅÌÑÈ ÔÁ ÐÏÒÉÓÔÉÈ ÓËÌÁÈ.On the nematic-isotropic transition in a lattice model withquenched disordered impurities. A Monte Carlo study.Ja. M. Ilnytskyi, S. Soko lowski, O. PizioAbstract. We have performed Monte Carlo (MC) simulations of thelattice model mimicking liquid crystalline behavior in the presence ofdisordered quenched impurities. A well pronounced �rst order nematic-isotropic transition has been obtained for a bulk pure model. However,at a 5% concentration of impurities, we have observed a very weak �rstorder transition being suppreseed as compared to a pure case. We havediscussed a shift of the transition temperature, a suppression of the latentheat and the maxima of the heat capacity and susceptibility due to thepresence of impurities. A histogram analysis and a �nite-size scaling hasbeen applied to the MC data. A comparison of the simulation data withthe experimental results for liquid crystals con�ned to silica aerogels andporous glasses also has been performed.ðÏÄÁ¤ÔØÓÑ × Physical Review ESubmitted to Physical Review Ec
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1 ðÒÅÐÒÉÎÔ1. IntroductionThe structure, thermodynamics and phase behavior of 
uids con�ned todisordered porous media has received much attention during last decade.A large amount of the experimental, simulational and theoretical re-sults have been accumulated. On the other hand, more interesting, andphysically richer, complex 
uids under con�nement have received lessattention. The liquid crystalline materials in con�ned geometry are ofparticular interest for basic science and for applied research.Interest to liquid crystals (LCs) in the individual pores and in dis-ordered porous media is very rapidly increasing, see, e.g. [1{16]. In par-ticular, the nematic-isotropic (NI) transition in liquid crystals con�nedto microporous and mesoporous media has been studied experimentally[5{9]. The experimental results provide evidence that the �nite size ofpores, the e�ect of quenched disorder and the interconnectivity of pores,are main factors that in
uence phase behaviour of LCs in microporousadsorbents. Theoretical investigation and simulation of the NI transitionin porous media therefore must include modelling of the various factorscrucial to the NI transition [10{16].A set of numerical studies of liquid crystalline materials in micro-porous media has been attempted during last decade. In particular, amodel of trimers on a simple cubic (sc) lattice has been simulated byDadmun and Muthukumar [12]. A porous medium has been implied asa dilution, i.e. it has been assumed that a fraction of sites of the latticeis unaccessible for trimers. The excluded volume e�ects of dilution haveyielded lower temperature of the NI transition temperature and rounderheat capacity maximum of the model, if compared to its pure counter-part. Moreover, the transition has been shown to change its nature fromthe �rst to the second order, if the concentration of impurities is largerthan 2.5%. The simulation data have been shown to agree qualitativelywith the experimental results. However, quantitatively the shift of thetransition temperature compared to the pure model, i.e. in the absenceof impurities, is essentially overestimated. It seems that, the size of thelattice system considered in Ref. [12] (up to 16x16x16 sites, such thatthe system consists of less than 1300 trimers) is insu�cient to describethe thermodynamics quantitatively.A study of the phase transitions in aerogel has been undertaken byUzelac et al. [13] in the framework of the q = 3 and q = 4 Potts models.The models are characterized by a weak �rst order transition in the purecase. The aerogel has been modelled as a set of correlated impurities onthe lattice by using di�usion-limited cluster-cluster aggregation; the case
ICMP{98{33E 2of randomly distributed impurities also has been studied in [13]. A �nitesize scaling analysis (on the lattices up to 203 size) and the Ferrenberg-Swendsen (FS) histogram technique [17] have been used. The shift ofthe transition temperature with increasing concentration of impuritiesappeared to be smaller in the aerogel case, comparing with the case ofrandomly distributed impurities. The heat capacity peaks have been ob-tained as suppressed and essentially broadened with increasing impurityconcentration. The �nite-size scaling analysis of the simulation data hasshown that the order of the transition for 3D q = 3 and q = 4 Pottsmodels changes at a nonzero concentration threshold. However, theseresults must be considered with some care due to small lattice sizes in-volved, and due to the fact that systematic averages over disorder havenot been performed. Neverhteless, the results presented in Ref. [13] con-�rm that even a weak dilution may essentially a�ect the NI transition(these trends were observed earlier by Hashim et al. [18]).Other models and theoretical developments concerning the behaviorof liquid crystalline materials in the presence of the quenched disorderhave been proposed recently, particularly, random-�eld Ising model [10,11], random anisotropy nematic model [15], single-pore model for liquidcrystal in aerogel [16].In general, computer simulations are powerful tools to investigate amicroscopic nature of the liquid crystalline phases. The most successfullintermolecular potentials applied in the simulations of the bulk modelsinclude the Berne-Pechukas [19] and Gay-Berne [20] potentials. However,reasonably large systems of molecules interacting via these potentials,appropriate to study phase transitions, are di�cult to consider due tocomputer time consumption. Therefore, for practical reasons, it is im-portant to obtain the simulation results for large systems of moleculesin the framework of quite simple models, intrinsically preserving liquidcrystalline nature.With this aim, in the present study we perform Monte Carlo simu-lations of the NI transition in a modi�ed Lebwohl-Lasher (LL) latticemodel for liquid crystals [21], however, both in its pure state and inthe presence of quenched random dilution. The particles in the modelinteract via the angular part of the Berne-Pechukas (BP) potential [19]derived from the overlap integral of two ellipsoidal Gaussians of a certainelongation a. The �rst order NI transition in the pure modi�ed LL modelbecomes stronger with increasing elongation parameter [21]. We considerthe case a = 3, that yields reasonable values for the latent heat and forthe order parameter at the NI transition [21]. Our investigation of themodel in the presence of a microporous media, is restricted to the case of



3 ðÒÅÐÒÉÎÔa 5% dilution (which formally corresponds to a highly porous medium).A more \liquid crystalline" model is used in the present study, in com-parison with previous works [12,13]. Consequently, the simulations aremuch more time consuming. Moreover, the lattice sizes up to 243 aresimulated and a wide set of thermodynamical properties is discussedclose to the NI transition. We would like to investigate how the dilu-tion a�ects thermodynamic properties near the NI transition, and if thetransition remains of the �rst order. On the other hand, our intention isto perform comparison with the available experimental results on LCsin highly porous con�ning media. A �nite-size scaling analysis and theFS histogram technique [17] are used in the analysis of the simulationresults.2. The Nematic-Isotropic Transition in the PureModelWe consider a lattice model of elongated particles interacting via anangular part of the BP potential. The last one has a following form [19]:VBP (^ui; ^uj ; ~r) = 4 �(^ui; ^uj)�"��(^ui; ^uj ; ^r)r �12 ���(^ui; ^uj ; ^r)r �6# ;where �(^ui; ^uj) and �(^ui; ^uj ; ^r) are the e�ective orientationally dependentstrength and range parameters, respectively. The unit vectors ^ui; ^uj aredirected along the corresponding long axes of the interacting i; j-th el-lipsoids, ~r is the center-of-mass distance vector between them, and ^r isthe unit vector along ~r. In the case of rotators ^ui on a lattice with thenearest neighbors interaction only the angular dependence of �(^ui; ^uj)�(^ui; ^uj) = �0p1� �2 cos2 �ij (1)is involved (�ij is the angle between ^ui and ^uj). The anisotropy of ellip-soids is characterized by the anisotropy parameter:� = a2 � 1a2 + 1 ; a = �k�? ;where �k; �? are their major and minor axes, and a denotes the elonga-tion parameter. In our computer simulations we use the following nor-
ICMP{98{33E 4malized interparticle interaction,VBPA(�ij) = � �2 " 6a(a� 1)2  1p1� �2 cos2 �ij � 1!� 1# ; (2)where � = (a� 1)23a �0 (3)is the parameter used as energy unit in our simulations. For the sakeof convenience, this potential is normalized such that at �ij = 0 and at�ij = �2 it gives the same energy (in units of �) as the LL potential [22].Moreover, the LL potential is reproduced in the limit of small anisotropy(�� 1) by expanding the expression given by Eq. 2 in powers of �:lim��1 VBPA(�ij) = ��P2(cos �ij) + const.The �rst order NI transition, that has been observed in the model athand, becomes stronger with the increasing elongation parameter a [21].However, the parameter a provides only a rough estimate of the elonga-tion of real molecules; more reasonable is just to think that the anisotropyof the intermolecular potential increases with augmenting value of theparameter a. On the other hand, stronger anisotropy can be achieved byadding higher P2n terms to the LL potential [23{25] and choosing theexpansion coe�cients appropriately.We restrict ourselves to the case a = 3 in Eq. 2 (it is interesting tomention that in this case VBPA(�ij) coincides well with the potentialconsidered by Romano [26] expanded up to P6 term). The value a = 3also has been used in the simulations of the Gay-Berne model [20].We have performed simulations of the pure model with the potentialVBPA(�ij) for four di�erent lattice sizes 163, 183, 203, 243 and apply a�nite-size scaling analysis and the FS reweighting technique for the dataobtained. Our principal interest is in the properties that are expectedto change at a weak dilution. These are the transition temperature, themaximum values for the speci�c heat and susceptibility, the minima forthe fourth Binder's cumulant, the latent heat and the order parameterat transition.A numerical procedure for each lattice size was similar. First, shortscanning runs (up to 105 MC cycles) were performed for the entire inter-val of temperatures including the NI transition point. Then we select atemperature for which a number of con�gurations (along the run), withpredominant nematic or isotropic phase, is of the same order. A goodindication for that is a regular \
ow" of the order parameter values from



5 ðÒÅÐÒÉÎÔabout 0.05 to 0.3. At such a temperature, we would say, the coexistenceof two phases is observed. Then, an extended run of the 5 �105 MC cycleswas performed at this temperature and the histograms of energy and ofthe order parameter have been built up. By applying the FS reweight-ing the NI transition point was located in the �rst approximation. Thisestimate for the NI transition temperature is used for the �nal extendedrun of not less than 106 MC cycles that provides �nal histograms andthe quantities of interest.A standard Metropolis algorithm has been used in our simulations.The orientation of each particle ^ui was attempted to change by adding avector ~l with random orientation and of controlled length [27], and thennormalizing the value ^u0i = ^ui +~l back to unity. A new con�guration wasaccepted, if the energy becomes lower, or accepted with a Boltzmannprobability otherwise. The length of ~l has been adjusted during simula-tion to provide a ratio of accepted attempts approximately equal to 0.4.The dimensionless temperature T � = kBT=� is used in the simulations.Each con�guration is characterized by the one-particle energyU� = 1Nf �Xij VBPA(�ij)(Nf is the number of unit vectors ^ui in the simulation box) and the orderparameter, S = hP2(cos#i)ii;where �i is the angle between ^ui and a director. The order parameteris calculated after each simulation cycle as the largest eigenvalue of thecorresponding tensor [28].The values of U� and S have been stored after each MC cycle alongthe extended run at temperature T �0 . These arrays were used to build upthe normalized histograms of energy PT�0 (U�) and of the order parameterP 0T�0 (S) distribution at T �0 ; these distributions can be presented in theform (slight modi�cation of the formulae of Ferrenberg and Swendsen[17] is used): PT�0 (U�) = 1Z0w(U�) exp(�E(U�)kBT0 ); (4)P 0T�0 (S) = 1Z 00w0(S) exp(�E0(S)kBT0 );where w(0)(M) is the number of states with the corresponding valueof M , and E(0)(M) is the energy of that state. The factor Z(0)0 has been
ICMP{98{33E 6introduced for the sake of normalization. Evidently, the function E(U�) issimply Nf � U� and, correspondingly, E0(S) = Nf � U�(S), where U�(S)is the histogram for the energy distribution versus given values of theorder parameter S. As a result, we can rewrite Eqs. 4 in the form:PT�0 (U�) = 1Z0w(U�) exp(�U�NfT �0 ); (5)P 0T�0 (S) = 1Z 00w0(S) exp(�U�(S)NfT �0 ):As far as w(0)(M) are temperature independent the corresponding dis-tributions at some nearby temperature T � can be derived analyticallyby simple reweighting of the expressions given by Eq. 5 [17]:PT�(U�) = 1ZPT�0 (U�) exp(�( 1T � � 1T �0 )U�Nf );P 0T�(S) = 1Z 0P 0T�0 (S) exp(�( 1T � � 1T �0 )U�(S)Nf );where Z(0) serves as a new normalization constant at T �. These distri-butions are used then to calculate the average momenta of U� and S atT �: hU�ni = Xi U�i n PT�(U�i ); hSni =Xi Sni P 0T�(Si);from which we obtain a set of quantities of interest. Particularly, thedimensionless heat capacity, C�v = Cv=(kBNf ), and the susceptibility,�� = ��=Nf , can be de�ned via the 
uctuational formulae:C�v = NfT �2 (hU�2i � hU�i2); �� = NfT � (hS2i � hSi2)Also, we have calculated the fourth Binder's cumulant of the energy
uctuations [29] as follows:V4 = 1� hU�4i3 hU�2i2 ;which is a useful additional estimate of the transition temperature, andserves to determine the order of the transition.



7 ðÒÅÐÒÉÎÔ

0.00 0.05 0.10 0.15 0.20 0.251.0531.0541.0551.0561.0571.0581.059 r r r r103 L�3pTNI pure
Figure 1. Finite-size scaling behavior of the NI transition temperature inthe pure model de�ned by di�erent ways (circles and diamonds are ob-tained from the peaks of the heat capacity and the susceptibility, respec-tively, triangles are from the minima of the fourth Binder's cumulant),Lp is the linear size of the simulated model.Let us denote the NI transition temperature (estimated in the frame-work of a procedure numbered by m) by T �m;NI(Lp) for the systemof L3p size, p is the subscript introduced to emphasize the pure case.For the �rst order transition, we would expect from Ref. [30], thatT �m;NI(Lp)�T �m;NI(1p) � L�3p , where T �m;NI(1p) is the transition tem-perature for an in�nite system. Following Ref. [31] we have used threedi�erent procedures to evaluate the NI transition temperature for eachsystem size. The locations of the peaks for C�v (Lp) and ��(Lp) yieldT �1;NI(Lp) and T �2;NI(Lp) respectively, and a location of the V4 minimumgives T �3;NI(Lp). The expected �nite-size scaling behaviour holds exactlyfor all T �m;NI(Lp) (see, Fig. 1); this behavior is quite similar to the oneobserved for the LL model [31]. The �tting lines meet at L = 0; givingthe value T �NI(1p) = 1:0540� 0:0002 (6)for an in�nite system. We must mention that this value cannot be com-

ICMP{98{33E 8pared straightforwardly with the one for the LL model [31] due to adi�erent energy scale (� given by Eq. 3 is anisotropy dependent).Another common test for the �rst order transition is the scaling ofthe maxima for C�vmax(Lp) and for ��max(Lp) proportionally to L3p; withincreasing Lp. We have obtained typical rounded peaks for C�v (Lp) and��(Lp); both become higher, narrower and shift to a lower value of T �as Lp increases. For the sake of brevity, we do not present these curvesin the present work (see, e.g. Refs. [13,31,32]). The values for Cvmax(Lp)and for �max(Lp) versus L3p; together with the corresponding �tting linesare shown in Fig. 2. One can see that the scaling law of the L3p type issatis�ed very well.
3 4 5 6 7 8 9 10 11 12 13 14 1520406080100120140160 r r r r10�3 L3p��maxr C�vmax pure

Figure 2. Finite-size scaling behavior of the heat capacity, C�vmax, andthe susceptibility, ��max, maxima in the vicinity of the NI transition inthe pure model of linear size Lp.The properties that can be compared with the experiment are thelatent heat at the NI transition �HNI(Lp) and the order parameterSNI(Lp) at TNI . To obtain the value for �HNI(Lp) we seek �rst thetemperature T �eq(Lp), at which the maxima of the energy distributionPT�eq (U�) are of equal height. This temperature turned out to be veryclose to the susceptibility peak position T �2;NI(Lp) for all Lp. It is knownthat the energy distribution of a system close to the �rst order transition



9 ðÒÅÐÒÉÎÔcan be approximated reasonably well by a double Gaussian [33]. How-ever, we have obtained better �tting by using a double non-Gaussiandistribution of the form:PT�eq (U�)�cn exp �� (U� � U�nem)2�nem � (U� � U�nem)3�nem � (U� � U�nem)4
nem �+ ci exp �� (U� � U�iso)2�iso � (U� � U�iso)3�iso � (U� � U�iso)4
iso � ; (7)where the expected values Unem and Uiso and the �tting coe�cientsare obtained numerically, by using the least-squares method. The di-mensionless latent heat per particle was then estimated at T �eq(Lp) as�H�NI(Lp) = U�iso � U�nem (see, Fig. 3). To get a better accuracy, wehave used the following average:h�H�NI(Lp)i� = 13(�H�NI (Lp) + �H�NI+(Lp) + �H�NI�(Lp));where �H�NI+(Lp) has been estimated similar to �H�NI(Lp) at T �eq(Lp)+�T � and �H�NI�(Lp) has been estimated at T �eq(Lp)��T �. Here (for thepure model) we choose �T � = 0:0005. These estimates h�H�NI(Lp)i� donot exhibit a �nite-size scaling dependence within the accuracy of ourcalculations (see, Fig. 4). The latent heat for an in�nite system can bederived as the average over all simulated lattice sizes:�H�NI (1p) = hh�H�NI (Lp)i�iLp = 0:179� 0:005: (8)Similar methodology has been used to evaluate the order parameterat the transition SNI . In this case the distribution PT�eq (U�) is reweightedat T �2;NI(Lp). The isotropic maximum, that is very low, was �tted by aGaussian and the nematic maximum by a non-Gaussian:P 0T�2;NI (S) � c0n exp �� (S � Snem)2�0nem � (S � Snem)3�0nem � (S � Snem)4
0nem �+ c0i exp �� (S � Siso)2�0iso � (9)(see, Fig. 5); moreover, we have assumed SNI(Lp) = Snem. Similar to thecase of �H�NI(Lp), the averaging in the form hSNI(Lp)i� = 13 (SNI(Lp)+SNI+(Lp)+SNI�(Lp)) has been used (the + and � signs have the samemeanings as above). The values for hSNI (Lp)i� do not exhibit the Lp
ICMP{98{33E 10

-0.7 -0.6 -0.5 -0.4 -0.3U�PT�eq(U�) 6U�nem 6U�isopure
Figure 3. Histogram of the energy distribution (the pure model, Lp = 24)at T �eq and its �t by a double non-Gaussian according to Eq. 7 (the �tpractically coincides with the histogram). A nematic and an isotropicnon-Gaussian also are shown separately. Their expected values are U�nemand U�iso, respectively.dependence within the statistical errors (see, Fig. 6). The average valueover all simulated lattice sizesSNI(1p) = hhSNI (Lp)i�iLp = 0:333� 0:005: (10)is used as an estimate for an in�nite system. The results obtained for thelatent heat and for the order parameter are more accurate in comparisonwith our previous study [21], in which a system of single size has beensimulated, and in which the FS technique has not been applied to thesimulation data.To conclude this section, the pure model undergoes a well pronounced�rst order NI transition. This conclusion follows from a �nite-size be-haviour of the transition temperature, of the heat capacity and suscep-tibility. The latent heat and the order parameter at the transition areobtained by �tting the corresponding histograms. These properties areof particular interest. We would like to compare them with a weaklydiluted case which is the subject of the following section.
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0.00 0.05 0.10 0.15 0.20 0.25 0.300.050.100.150.20 r r r rb b b b103 L�3h�H�NIi� purediluted
Figure 4. Finite-size scaling behavior of the latent heat of the NI transi-tion calculated as U�iso�U�nem and averaged over the vicinity of T �eq . Blackcircles represent the pure model, the average is shown by the dashed line.Empty circles are for the diluted model, a dashed line corresponds to thelinear �t.3. The Nematic-Isotropic Transition in a Weakly Di-lute ModelThe method described above now is applied to study a weakly dilutemodel. We have used a so-called random dilution, i.e. when Nm ran-domly chosen lattice sites are assumed to be occupied by quenched im-purities. The other sites, Nf = N �Nm, are characterized by the unitvectors ^ui, which describe the orientational interactions between liquidcrystal molecules. Similar to the pure model, a nearest neighbours inter-action between ^ui and ^uj is assumed, also we assume that there is nointeraction between the impurities and ^ui. Therefore, only the e�ects ofexcluded volume are taken into account. A porous medium formed byimpurities may be thought to consists of highly interconnected pores.We consider the case of a weak dilution, c = Nm=N = 0:05; which maycorrespond to a LC con�ned in a highly porous medium. Due to theCPU time limitations, we have averaged the results over not more thanthree quenched con�gurations of impurities for each lattice size.
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Figure 5. Histogram of the order parameter distribution (the pure model,Lp = 24) at the temperature T �2;NI and its �t by a sum of a Gaussianand a non-Gaussian according to Eq. 9. The expected value of a nematicnon-Gaussian gives the order parameter at the transition, SNI .Similar to the pure model, we denote the NI transition temperatureof the dilute model of linear size Ld estimated in the framework of aprocedure denoted by m by T �m;NI(Ld). An estimate for the NI transitiontemperature from the peak for C�v (Ld) and for ��(Ld) corresponds tom = 1; 2, respectively, and from the minimum of V4 corresponds tom = 3. We have observed the shift of the transition temperature ofthe order (T �m;NI(Lp) � T �m;NI(Ld))=T �m;NI(Lp) � c = 0:05 for eachlattice size in accordance with a mean �eld estimate. A �nite-size scalingbehaviour for the �rst order transition, T �m;NI(Ld)�T �m;NI(1d) � L�3d ;holds very well within the accuracy of our data (see, Fig. 7). For anin�nite system, we obtainT �NI(1d) = 1:0035� 0:0002: (11)Further con�rmation of the �rst order nature of the transition in the di-lute model is the �nite size scaling behaviour of the maxima C�vmax(Ld)and ��max(Ld). The heights of the maxima are essentially supressed, com-pared with the pure model. But their L3d dependence expected for the�rst order transition is still pronounced (Fig. 8).



13 ðÒÅÐÒÉÎÔ

0.00 0.05 0.10 0.15 0.20 0.25 0.300.200.250.300.35 103 L�3hSNIi� purediluted
Figure 6. Finite-size scaling behavior of the order parameter at the NItransition obtained from the �ts at T �2;NI and averaged over the vicinityat this temperature. Black diamonds represent the pure model, the av-erage is shown as the dashed line. Empty diamonds are for the dilutedmodel, the dashed line is a linear �t.The presence of dilution has a strong e�ect on the form of the energyand order parameter distributions, PT�(U�) and P 0T�(S). Even for thelargest lattice size simulated, L = 24, the double-maxima form for theenergy distribution is not observed. This is due to a much weaker �rstorder transition. The distributions for two coexisting phases intersect es-sentially and it is practically impossible to evaluate the spinodal pointsfor this case. Therefore, we are not able to de�ne formally the tempera-ture T �eq; with equally heighted maxima (as for the pure model). Instead,we have used the temperature where the upper part of the distributionhas a symmetric shape (see, Fig. 9). Similar �tting formula for PT�(U�)(7) was used to extract the expected values for U�nem and U�iso; and toestimate a latent heat of the transition �H�NI(Ld) = U�iso � U�nem (see,Fig. 9). We have observed that this procedure is very sensitive to the ac-curacy of the distribution tails. The accuracy can be unsu�cient for thesimulated temperature farther from T �eq . In this case, an additional cur-vature of the distribution tails is present, and the least-squares methodfails to �t the histograms correctly. Similar to the pure case, we have
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Figure 7. Finite-size scaling behavior of the NI transition temperature inthe diluted model de�ned by di�erent ways (the meaning of the symbolsis the same as in Fig. 1), Ld is the linear size of the simulated system.calculated the average h�H�NI (Ld)i� = 13 (�H�NI(Ld) + �H�NI+(Ld) +�H�NI�(Ld)) for each Ld, where �H�NI+(Ld) has been estimated atT �eq(Ld) + �T � and correspondingly the value for �H�NI�(Ld) at tem-perature T �eq(Ld) � �T �. The shift of the temperature, �T � = 0:00025;was chosen twice smaller, in comparison with the pure model. At theseshifted temperatures, T �eq(Ld)��T �, the distribution is essentially asym-metric with the isotropic or nematic maxima clearly seen. Therefore avalue, �H+(Ld) = U�iso(T �eq + �T �) � U�nem(T �eq � �T �), provides a rea-sonable upper limit of the latent heat. In the majority of cases it is about10% higher than the value h�H�NI (Ld)i�. We have used this fact as anadditional test. As one can see in Fig. 4, the values for h�H�NI(Ld)i�re
ect the Ld dependence. For an in�nite system we then obtain thevalue, �H�NI(1d) = 0:063� 0:002; (12)which is essentially lower, if compared with 0.179 for the pure model (8).The order parameter at the transition is estimated quite similar to thepure model. The only di�erence is that at T �2;NI(Lp) + �T �, the nematic
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Figure 8. Finite-size scaling behavior of the heat capacity, C�vmax, andthe susceptibility, ��max, maxima in the vicinity of the NI transition inthe diluted model of linear size Ld.maximum for the order parameter is not very well de�ned to provide�tting successfully. Thus, instead of evaluating the average, hSNI(Ld)i�;we have investigated the dependence of SNI�(Ld) (obtained from the�tting at temperature, T �2;NI(Ld)� �T �, slightly lower than T �2;NI(Ld))with increasing �T �. One might expect linear dependence on �T �, if itis chosen small. This is indeed the case for �T � 2 [0:00025; 0:00075].We have used this fact as an additional test of stability of the �t atT �2;NI(Ld). One can note a well pronounced Ld dependence of SNI(Ld)(see, Fig. 6), in contrast to the pure model. Thus, the �tting procedureyields for an in�nite system the value,SNI(1d) = 0:220� 0:005: (13)This value must be compared with the value 0.333 for the pure model(10).The essential �nite-size dependence of the latent heat and of the or-der parameter for the diluted model can be explained according to thefollowing arguments. The �nite-size behaviour of the pure system is gov-erned by the fact that the correlation lenght � cannot overcome linear
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Figure 9. Histogram of the energy distribution (the diluted model, Ld =24) at T �eq and its �t by a double non-Gaussian according to Eq. 7. Anematic and an isotropic non-Gaussian also are shown separately. Theirexpected values are U�nem and U�iso, respectively.size of the system, L. Therefore, in the pure model, all the singularitiesare scaled by the single characterictic length � [30]. In the dilute model,another characteristic length appears, which is an average distance be-tween impurities. Alternatively, in
uence of the dilution on the phasetransition can be described by the parameter � = c�3 (proposed by Imryand Wortis [34]), � represents the average number of impurities in a co-herence volume. Actually, this parameter measures the relative in
uenceof impurities on the phase transition. We suppose that this parametermust be kept constant for di�erent L, rather than the absolute con-centration of impurities c. For L < �bulk , one can assume that �L � L,therefore it seems reasonable to keep constant the parameter � = cL3 fordi�erent L. Thus, in this case, one must rescale c by L�3 with increasingL. For L larger than �bulk , a concentration corresponding to saturation,cbulk , would arise. This concentration characterizes a diluted system ofin�nite size. In the case of a constant dilution, used most generally, onewould obtain a progressive suppression of the transition by impurities asL increases (this behavior can be seen from Figs. 4 and 6).



17 ðÒÅÐÒÉÎÔTo summarize the results about the in
uence of a constant, weak, 5%dilution on the NI transition in the lattice model of this study we wouldlike to mention the following. At chosen concentration of impurities, thetransition remains the �rst order transition. However it is much weakerthan for the pure case, i.e. in the absence of impurities. A shift of thetransition temperature in an in�nite system according to Eqs. 6 and 11can be written in the form of a ratio:T �NI(1d)T �NI(1p) = 0:952� 0:0004: (14)The supression of the maxima of the heat capacity and of the suscep-tibility in an in�nite system can be obtained from a �t using �nite-sizedata (see, Fig. 10). We have obtained the following ratios:C�vmax(1d)C�vmax(1p) = 0:35� 0:01; ��max(1d)��max(1d) = 0:45� 0:01: (15)A decrease of the latent heat and of the order parameter at the transitionpoint in an in�nite system are obtained by using the following values(8,10,12,13). Then, our estimates are,�H�NI(1d)�H�NI(1p) = 0:35� 0:02; SNI(1d)SNI(1p) = 0:66� 0:02: (16)It must be mentioned that the e�ects of lowering the transition tempera-ture, and of suppression of the heat capacity maxima, have been observedpreviously for: a dilute model of trimers undergoing orientational tran-sition [12], for q = 3; 4 state dilute Potts models [13] and for the modelof random anisotropy [15]. However, in the present study we have simu-lated a quite di�erent model and studied the in
uence of dilution on thesusceptibility, on the latent heat and on the order parameter.4. A Comparison with the Experimental Results.The in
uence of dilution on thermodynamic properties close to the NItransition can be related to the experimental results for LCs con�nedin a highly porous media. In particular, Wu et al. [9] have studied theNI transition in 8CB LC con�ned to silica aerogels at di�erent porosity.For � = 0:08 g cm�3 aerogel density (which corresponds roughly to the5% volume fraction of impurities for our model) the shift of TNI of themagnitude -0.45� has been observed, thus yielding T gelNI =T pureNI = 0:9986.The shift, following from our simulations, and given by the ratio (14)
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Figure 10. Suppress of the heat capacity, C�vmax, and the susceptibility,��max, maxima resulting from a dilution of the model. Here Lp = Ld = Land indices d and p denote the pure and diluted model, respectively.is much more pronounced. The integrated enthalpy estimated from theexperiment is given by �H = �H + �W , where �H is the latent heatand �W is the contribution from the integrated area of a pretransitionalregion. For the pure model, it follows that �Hpure = �Hpure + �W =(2:1 + 5:58) J g�1 [9].It was observed experimentally, that the heat capacity points (plottedversus temperature) for aerogels at di�erent density may be �tted by thesame curve in the \pretransitional" region (except the area of about 1.5�width near the transition point) [9]. This lead to the assumption that thedensity of a con�ning aerogel in
uences mostly the value for �H , but donot a�ect strongly the values for �W . In this case, one can use the ratio�Hdil=�Hpur = 0:35 (16) from the simulations and obtain an estimate,�Hdil = �Hdil + �W = (0:735 + 5:58) J g�1 = 6:315 J g�1. This valueis indeed very close to the experimental one, �Hgel = 6:28 J g�1, for� = 0:08 g cm�3 aerogel [9]. We can also compare the suppression of theheat capacity maxima by increasing progressively the aerogel density �.As it follows from the experiment [9], the excess heat capacity �Cpmaxdecreases almost linearly with the increasing �, at � < 0:36 g cm�3.



19 ðÒÅÐÒÉÎÔFor the aerogel densities, �1 = 0:08 g cm�3 and �2 = 0:17 g cm�3, wethen obtain the ratio �Cpmax(�2)=�Cpmax(�1) =0.51, which is higher,but nevertheless comparable with the ratio 0.35 (15) obtained in thesimulations.Other experiments for the NI transition in 8CB LC con�ned toporous glasses have been performed by Iannacchione et al. [8]. In thecase of a macroporous con�nement (1000�A mean pore size), the shiftof the transition temperature of -2.05� has been observed. This givesa ratio T glassNI =T pureNI = 0.993 which again is higher than the ratio(14). The latent heat �Hglass has been shown to decrease and theratio �Hglass=�Hpur is 0.74; it is approximately twice larger than(16). Similar discrepancy can be observed for the suppression of theheat capacity, �Cpmax(glass)=�Cpmax(pure) = 0.65, which is againhigher than 0.35 (15). In this context, it is interesting to note, thatthe values obtained for the smallest lattice, Ld = 16, are much closerto the experimental data, giving �H�NI(16d)=�H�NI(16p) = 0:63 andC�vmax(16d)=C�vmax(16p) = 0:60. Augmenting discrepancy with increas-ing system size is due to the hypothesis that the dilution concentration, c,must be rescaled for a �nite size system, keeping the value c�3 constant.We have obtained an essential overestimate for the suppression of theNI transition at a weak 5% dilution, when compared with the experi-ments. However, our results have been obtained in an in�nite volumelimit via �nite-size scaling. Following the considerations of Imry andWortis [34], we had supposed that the value c�3 must be kept constantat increasing L, rather than the impurity concentration c. Nevertheless, ashift of the transition temperature is overestimated. Possible explanationof these trends is that one particle in a lattice model describes a groupof real molecules, rather than a single one (a simple estimate of Belliniet al. [16] has shown that a group of about ten molecules correspondsto a site in the case LL model). Thus, a dilution due to only one sitewould destroy 6 bonds on the sc lattice, and the energy of 6 surroundingparticles (6 groups of molecules) would be essentially underestimated.The temperature of the transition, in fact, is proportional to the num-ber of \surviving" bonds, so it would shift too much. According to thatargument, we would like to mention, in particular, that a 5% dilutioncorresponds e�ectively to a higher density aerogel, than � = 0:08 g cm�3implied in a comparison performed above.

ICMP{98{33E 205. ConclusionsWe have performed an extensive Monte Carlo simulations of a weakly di-lute liquid crystal lattice model with quenched impurities. The nearest-neighbors interact via the angular part of the Berne-Pechukas poten-tial. The elongation parameter is chosen equal to 3; the correspondingpure system undergoes a well pronounced �rst order nematic-isotropictransition. The model, in the presence of impurities at constant dilu-tion of 5% has been simulated; four lattice sizes with linear dimensionsL = 16; 18; 20; 24 have been used. The results of simulations have beenaveraged over three quenched con�gurations of impurities for each lat-tice size. The Ferrenberg-Swendsen reweighting technique has been usedin the vicinity of the transition, also a �nite-size scaling analysis wasapplied to the simulation data. The latent heat of the transition andthe order parameter have been evaluated by �tting the correspondenthistograms by a double non-Gaussian distribution.We have observed an essential suppression of the nematic-isotropictransition in the model at 5% dilution. This result is in agreement withgeneral theoretical estimates of the in
uence of the quenched disorder onthe �rst-order transitions [35,36]. However, at a 5% dilution consideredhere, the nematic-isotropic transition remains an extremely weak �rstorder. A shift of the transition temperature, a suppression of the latentheat and of the heat capacity maxima in the in�nite volume limit havebeen obtained. However, these e�ects are essentially overestimated, incomparison with the experiments on the 8CB liquid crystal con�nedto a highly porous media. This behavior seems to appear due to theassumption of rescaled concentration of dilutions for a �nite system ata �xed value for the parameter c�3.6. AcknowledgmentsThis work has been supported in parts by the State Fund for Fundamen-tal Investigations under the program DKNT 2.4/173 of the UkrainianState Commitee for Science and Technology, by the National Commit-tee for Science and Technology (CONACyT) of Mexico under Grant.No.25301-E, and by the National University of Mexico (project DGAPA-IN 111597). One of us (J. I.) is indebted to G. Luckhurst, S. Romano,C. Zannoni and M. P. Allen for very stimulating discussions during theNATO ASI \Advances in the computer simulation of liquid crystals",Erice, 1998.
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