
îÁÃ¦ÏÎÁÌØÎÁ ÁËÁÄÅÍ¦Ñ ÎÁÕË õËÒÁ§ÎÉ

���������	
� ¶îóôéôõôæ¶úéëéëïîäåîóï÷áîéèóéóôåí

'
&

$
%

I.V.Stasyuk,T.S.MysakovychRAMAN SCATTERING TENSOR FOR HUBBARD AND t� JMODELS
ICMP{98{28E

ìø÷¶÷

õäë: 535.375.5PACS: 72.10D,72.20D,75.10J,71.10.FôÅÎÚÏÒ ËÏÍÂ¦ÎÁÃ¦ÊÎÏÇÏ ÒÏÚÓ¦ÑÎÎÑ Ó×¦ÔÌÁ ÄÌÑ ÍÏÄÅÌ¦ èÁÂÂÁÒ-ÄÁ ¦ t� J ÍÏÄÅÌ¦¶.÷.óÔÁÓÀË,ô.ó.íÉÓÁËÏ×ÉÞáÎÏÔÁÃ¦Ñ. äÏÓÌ¦ÄÖÅÎÏ ÎÅÆÏÎÏÎÎ¦ ×ÎÅÓËÉ Õ ËÏÍÂ¦ÎÁÃ¦ÊÎÅ ÒÏÚÓ¦ÑÎÎÑÓ×¦ÔÌÁ ÄÌÑ ÍÏÄÅÌ¦ èÁÂÂÁÒÄÁ ¦ t� J ÍÏÄÅÌ¦. äÌÑ ÐÏÂÕÄÏ×É ÏÐÅÒÁÔÏÒÁÐÏÌÑÒÉÚÏ×ÁÎÏÓÔ¦ ×ÉËÏÒÉÓÔÏ×Õ¤ÔØÓÑ Í¦ËÒÏÓËÏÐ¦ÞÎÉÊ Ð¦ÄÈ¦Ä ¦ ÚÄ¦ÊÓÎÀ-ÀÔØÓÑ ÏÐÅÒÁÔÏÒÎ¦ ÒÏÚËÌÁÄÉ × ÔÅÒÍ¦ÎÁÈ ÏÐÅÒÁÔÏÒ¦× èÁÂÂÁÒÄÁ, ×ÉËÏ-ÒÉÓÔÏ×ÕÀÞÉ t i J ÑË ÆÏÒÍÁÌØÎ¦ ÐÁÒÁÍÅÔÒÉ ÒÏÚËÌÁÄÕ. äÏ ÒÏÚÇÌÑÄÕÐÒÉÊÍÁÌÉÓÑ Ä×Á Ò¦ÚÎ¦ ×ÎÅÓËÉ ÄÏ ÄÉÐÏÌØÎÏÇÏ ÍÏÍÅÎÔÕ: oÄÉÎ ÐÏ×'ÑÚÁ-ÎÉÊ Ú ÎÅÇÏÍÅÏÐÏÌÑÒÎ¦ÓÔÀ ÚÁÐÏ×ÎÅÎÎÑ ÅÌÅËÔÒÏÎÎÉÈ ÓÔÁÎ¦× ÎÁ ×ÕÚÌÁÈÇÒÁÔËÉ, ¦ÎÛÉÊ - ¦Ú ÄÉÐÏÌØÎÉÍÉ ÐÅÒÅÈÏÄÁÍÉ Ú ÏÓÎÏ×ÎÏÇÏ Õ ÚÂÕÄÖÅÎ¦ÓÔÁÎÉ. ú ÁÎÁÌ¦ÚÕ ÏÔÒÉÍÁÎÏÇÏ ×ÉÒÁÚÕ ÄÌÑ ÔÅÎÚÏÒÁ ÒÏÚÓ¦ÑÎÎÑ ×ÉÄÎÏ,ÝÏ Ã¦ Ä×Á ÍÅÈÁÎ¦ÚÍÉ ÄÁÀÔØ ÐÏÄ¦ÂÎ¦ ×ÎÅÓËÉ. äÏÓÌ¦ÄÖÅÎÏ ×ÉÇÌÑÄ ÔÅÎ-ÚÏÒÁ ÒÏÚÓ¦ÑÎÎÑ × ÚÁÌÅÖÎÏÓÔ¦ ×¦Ä ÓÐ¦××¦ÄÎÏÛÅÎØ Í¦Ö ÐÏÌÑÒÉÚÁÃ¦¤ÀÐÁÄÁÀÞÏÇÏ ¦ ÒÏÚÓ¦ÑÎÏÇÏ Ó×¦ÔÌÁ.Raman scattering tensor for Hubbard and t� J modelsI.V.Stasyuk,T.S.MysakovychAbstract. Nonphonon contributions to Raman light scattering are in-vestigated for the Hubbard and t� J models. To construct the polaris-ability operator the microscopic approach is used, which is based on theoperator expansion in the terms of the Hubbard operators, using t andJ as a formal parameters of the expansion. Two di�erent contributionsto the dipole momentum are taken into account: one is connected withthe nonhomeopolarity of �lling of the electron states on a site, another- with the dipole transitions from the ground state to the excited ones.Analysing the expression for the scattering tensor, we can see that thesetwo mechanisms give similar contributions. The dependence of the scat-tering intensity on the polarisation of the incident and scattered light isinvestigated.c
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1 ðÒÅÐÒÉÎÔ1. IntroductionThe investigation of Raman light scattering enable us to obtain the in-formation about the low-frequency excitations in crystals. The problemof nonphonon contributions to Raman light scattering in the systemswith the strong short-range Hubbard-type interaction between electronsremains a subject of interest in the last years in spite of the successachieved in the description of the magnetic and electron Raman scatter-ing in the systems with antiferromagnetic ordering [1,2]. The approachused by [1,2] is based on some semiphenomenological assumptions tobuild the e�ective Hamiltonian of the interaction between a system andincident light. Fleury and Loudon ([1]) used this method for antifer-romagnetics and Shastry and Shraiman ([2]) dealt with the Hubbardmodel. The aim of this work is to investigate these contributions usingthe method which is based on the construction of a polarizability op-erator ^P in the framework of a microscopic approach; the method wasdeveloped in [3{5]. This approach is applied to the cases of the Hubbardand t � J models. To construct the ^P -operator, the electron transferparameter t and the e�ective exchange constant J are used as formalexpansion parameters.The expressions for the polarizability operator ^Pin terms of the correlation functions built on the Hubbard operators arepresnted. Using these expressions, the formulae for the Raman scatter-ing tensor are obtained for the cases of the Hubbard and t� J models.Analysis of the achieved results is carried out.2. General formulaeWe start from the explicit expression for the cross-section of Raman lightscattering ([3,4]):@2�@
@!2 = 1(4�"0)2r"1"2 !32!1�h2c4 X���0�0 e1�e2�e1�0e2�0H�0�0;�;�k2;k1 (!1; !2) (1)here ~e1; ~e2 are polarization vectors; !1; !2 are incident and scattered lightfrequencies; ~k1; ~k2 are corresponding wave vectors; "1;2 � "(!1; !2);H�0�0;�;�k2;k1 (!1; !2) is the Raman scattering tensor:H�0�0;�;�k2;�k1;�k2;k1(!1; !2) = 12� +1Z�1 dtei(!1�!2)t � (2)h ^P �0�0~k2�~k1(�!1; t) ^P ���~k2~k1(!1; 0)i;

ICMP{98{28E 2^P is the polarizability operator^P ��~k0~k(!; t) = � +1Z�1 dsei!(t�s)ff ^M�(~k0; t)j ^M�(~k; s)gg; (3)here ^M�(~k) is a dipole momentum of a crystal unit cell in the ~k-represen-tation and the symbol ff ^M�(~k0; t)j ^M�(~k; s)gg stands for "unaveraged"Green's function de�ned in the following way ([5]):ffA(t)jB(t0)gg = �i�(t� t0)[A(t); B(t0)]: (4)The equations of motion for this function have a form�h!1ffAjBgg!1;!2 = �h2� [A;B]!1�!2 + ff[A;H ]jBgg!1;!2 ; or (5)�h!2ffAjBgg!1;!2 = �h2� [A;B]!1�!2 � ffAj[B;H ]gg!1;!2 : (6)It is used to construct the polarizability operator; the solutions of theseequations are built in the form of operator series in powers of someparameters of a Hamiltonian. It has to be emphasized that this methoddoes not use phenomenological assumptions.3. The Hubbard modelFirst let us consider the case of the Hubbard model^H =Xi;j ti;j^cyi;�^cj;� + UXi ^ni;"^ni;# �Xi �^ni: (7)We will restrict ourselves to the case of large U , so we can make expansionin powers of t=U at the construction of the ^P -operator, considering onlythe terms which are linear and quadratic in t=U . In the case of theHubbard model the dipole momentum has a form^~Mi = e~Ri(^ni;" + ^ni;#): (8)Here the nonhomeopolarity of �lling of the electron states on lattice sitesis taken into account. It is useful to consider the following single-site basisof states jni;#; ni;" >j1 >= j0; 0 >; j2 >= j1; 1 >; j3 >= j1; 0 >; j4 >= j0; 1 > (9)



3 ðÒÅÐÒÉÎÔand to introduce the Hubbard operators Xr;s = jr >< sj.To calculate Green's function ff ^M�k j ^M�l gg at �rst we write the equa-tion of motion (5):ff ^M�k j ^M�l gg = eR�k�h!1 Xi;j;� ti;j(�i;k � �j;k)ff^cyi;�^cj;�j ^M�l gg: (10)Than we use the equation of motion, which is written in the form (6):ff^cyi;�^cj;�j ^M�l gg = [ �h2� (�j;l � �i;l)^cyi;�^cj;� � (11)�Xs;p�0 ts;p(�s;l � �p;l)ff^cyi;�^cj;�j^cys;�0^cp;�0gg]eR�l�h!2 :To calculate this function we again write the equation of motion (5) andneglect the terms which are proportional to t3. Using this scheme, thefollowing expression for Green's function ff ^M�k j ^M�l gg is obtainedff ^M�k j ^M�l gg = [Xi;j;� ti;j(�i;k � �j;k)(�j;l � �i;l)^cyi;�^cj;� + (12)+ 1�h!1 + U ^Ay � 1�h!1 � U ^A+ 1�h!1 ( ^A� ^Ay)] e2R�kR�l2��h!1!2 ;here U plays the role of the energetic distance between two levels whichare responsible for the scattering,^A =Xi;j;s ti;j ts;j(�i;k � �j;k)(�j;l � �s;l)� (13)�X31i (X22j +X44j )(X13s �X42s ) +X41i (X31s �X24s )X12j ��(X41s +X23s )(X11j +X44j )X32i +X41i X34j (X42s �X13s ) ++X41i (X33j +X22j )(X32s +X14s ) +X21j (X13s �X42s )X32i ��(X31s �X24s )X43j X32i �X31i X43j (X14s +X32s )��X31i (X41s +X23s )X12j +X21j (X14s +X32s )X42i ++(X41s +X23s )X34j X42i + (X31s �X24s )(X11j +X33j )X42i �:Comparing with [2], we can see that some terms in our expression (wheni = s, ni;" + ni;# = 1 and neglecting the state j2 >) are the same as thescattering Hamiltonian obtained in [2]:ff ^M�k j ^M�l gg �Xi;j (�i;k � �j;k)(�i;l � �j;l) t2i;j�h!1 � U ^~Si^~Sj ; (14)
ICMP{98{28E 4considering only the resonant term. However, there are some additionalterms in (11) which are not presented in [2], these terms describe electrontransitions between the next nearest neighbors.Now let us calculate the scattering tensor . To deal with this expres-sion we will use the following formula:h ^A(!1 � !2) ^B(!01 � !1)i = �(!01 � !2)2Imhh ^Bj ^Aii!+i�e��h! � 1 !=!1�!2(15)In consequence we obtain the following expression for the scattering ten-sor: H�0�0;�;�k2;k1 (!1; !2) = Xn;n0;n1;n01i;j;i1;j1 ei(~k2(~Rni�~Rn1i1 )�~k1(~Rn0j�~Rn01j1 ))(16)�e42Imhh ^Aj ^Ayii!=!1�!2R�niR�n0jR�0n1i1R�0n01j1(e��h! � 1)�h!1!2(�h!1 � U)2 ;considering only the resonant term. So we have to calculate Green'sfunction hh ^Aj ^Ayii using the Hamiltonian of the Hubbard model. We willuse a decoupling procedure for Fermi type operators:hXpq(t)Xrs(t)XmnXpli � hXpq(t)XplihXrs(t)Xmni � (17)�hXpq(t)XmnihXrs(t)Xpli;having split Boson operators Xpp in the product of two Fermi operators:Xpp = Xp1X1p. When calculating Green's function hhXpq jXrsii (nowXpq; Xrs are Fermi operators), we use the Hubbard-1 approximationand neglect the state j2 >. After some tedious algebra we obtain thefollowing result:H�0�0;�;�k2;k1 (!1; !2) = hX11 +X33i4N2!1!2(�h!1 � U)2 �Xq1;q2;q3;q �(k2 � k1 � q1 + q + q2 � q3)(e�(��hX11+X33it(q)) + 1)(e��(��hX11+X33it(q1)) + 1) ��(! � hX11+X33i�h (t(q1)� t(q) + t(q3)� t(q2))(e�(��hX11+X33it(q2)) + 1)(e��(��hX11+X33it(q)3) + 1) �sin(q�0)(sin(q�1 ) + sin(q�3 ))sin(q�01 )(sin(q�) + sin(q�1 )) (18)The equation for hX11 +X33i can be written as follows:2hX11 +X33i � 1 = 1N Xq hX11 +X33ie�(��hX11+X33it(q)) + 1 (19)



5 ðÒÅÐÒÉÎÔFrom the expression (18) we can see that the frequency of the scat-tered wave di�ers from that of the incident wave due to the two-electrontransitions in the band - the integrand in (18) has a delta-peak at thefrequency:! = !1 � !2 = hX11 +X33i[t(q1) + t(q3)� t(q2)� t(q3)];q1 + q3 = q2 + q + k2 � k1: (20)If we had replaced Boson operators Xpp by their mean value hXppi, wewould have obtained the one-electron transitions:!1 � !2 == hX11 +X33i[t(q1)� t(q)]; q1 = q + k2 � k1: (21)This one-electron transitions also can be obtained from the nonreso-nant term in (12), which is linear in t. If we calculate the correlatorhXpp(t)Xqqi more precisely (using higher order approximations), we willobtain both the one-electron transitions and the two-electron transitions( [6]).Calculating Green's function, we have used the Hubbard Hamiltonianwith the excluded state j2 >, so we have obtained only the electronscattering. To consider the magnon scattering we will deal with the t�Jmodel.4. The t� J modelNow let us consider the case of nearly half �lling < ni;"+ni;# >� 1 andU >> t. In this case the Hubbard Hamiltonian can be reduced to thee�ective Hamiltonian of the so-called t� J model:^Ht�J =Xi;j;� ti;j^ecyj;�^eci;� +Xi;j Ji;j(^~Si^~Sj � ^ni;"^nj;#4 )�Xi �^ni; (22)here ^eci;� = ^ci;�(1� ^ni;��), J = 4t2U . Let us add to this Hamiltonian someadditional terms to consider excited states on the atoms  exc, havingdi�erent parity with respect to the ground state �0 and their interactionwith the ground state:^H = ^Ht�J + (E � �)Xi;�;� ^ay�i;�^a�i;� + (23)+ Xi;j;�;�;�M�;�i;j (X31i X13j ++X41i X14j )^ay�;j;�^ay�;i;� �
ICMP{98{28E 6� Xi;j;�;�K�;�i;j (X33i ^ay�j;#^a�j;# +X44i ^ay�j;"^a�j;" ++X34i ^ay�j;"^a�j;# +X43i ^ay�j;#^a�j;");here E is the di�erence between the energy of the excited states and theone of the ground state. The terms, connected with K�;�i;j ;M�;�i;j , describeexchange interaction between the ground and excited states. The dipolemomentum has a form:^M�i = d�(^ay�;i;#X13i + ^ay�;i;"X14 + h:c:) (24)We make expansion in terms of t=E;M=E;K=E at the construction ofthe polarizability operator, considering the linear terms in M=E;K=Eand quadratic in t=E. The following formula for Green's functionff ^M�k j ^M�l gg is obtained:ff ^M�k j ^M�l gg = �he2d�d�2�(�h!1 �E)(�h!2 �E) � (25)[�Xi �k;l��;�ti;k(X31i X13k +X41i X14k )��Xi �k;l2Ji;k(^~Si^~Sk � ^ni^nk4 )��;� ��M��l;k (X33k X33l +X44k X44l +X43k X34l +X34k X43l )��Xi �l;kK��i;k (X33k X33i +X44k X44i +X43k X34i +X34k X43i )] ++ �he2d�d��k;l��;�2�(�h!1 �E)2(�h!2 �E)Xi;j ti;ktj;k(X31i X13j +X41i X14j ):Here we consider only the resonant terms and d� =< �0jr�j exc >.We have also eliminated in (25) the terms including the operators con-nected with the higher energetic states. The obtained expression forff ^M�k j ^M�l gg is similar to that obtained in [1] for antiferromagnetics.The formula transforms into the simple product of spin operators ^~Si^~Sjfor the case of homeopolarity: ni;" + ni;# = 1 (the hole doping level isequal to zero) and the terms which are linear and quadratic in t=E arisefrom the pure band transitions.Let us calculate the scattering tensor. A spin polaron approach can beused for the t�J model in the region of small hole concentrations [7,8].We introduce for electron operators ^eci;� the following representation on



7 ðÒÅÐÒÉÎÔtwo sublattices with spin up (i 2") and spin down (i 2#):^eci;" = ^hyi ;^eci;# = ^hyi ^S+i (i 2"); ^eci;# = ^fyi ;^eci;" = ^fyi ^S�i (i 2#); (26)here ^hi is a hole spinless operator and ^S�i are spin operators. Employingthe linear spin-wave approximation, we can writeS+i � bi1(i 2"); S+i � b+i2(i 2#); (27)bi1; bi2 are magnon operators on two sublattices. Performing the canon-ical transformation for the Fourier componentsbk1 = vk�k + uk�+�k; bk2 = vk�k + uk�+�k; (28)we obtain the following Hamiltonian of the spin polaron model:Ht�J =X k; q(h+k fk�q[g(k; q)�q + g(q � k; q)�+q ] + h:c:)�(29)��Xk (h+k hk + f+k fk) +Xq !q(�+q �q + �+q �q):Here g(k; q) = 4t=pN=2(uq
k�q + vq
k); uk =q(1 + �k)=2�); (30)vk = �sign(
k)q(1� �k)=2�); �k =q1� 
2k ;
k = 1=4Xr eikr ; !k = 2J(1� �)2�k;� =< h+h > + < f+f > : (31)This representation excludes doubly occupied states and takes into ac-count strong antiferromagnetic spin correlations at the electron hopping.To simplify the calculations we will consider only the last diagonal termin the Hamiltonian.Now we have to rewrite the Raman scattering tensor in terms of thehole spinless operators and the magnon operators:H�0�0;��k1;k2 (!1; !2) = e4�h2d�d�0d�d�02ImhhT��n1i1;n01j1 jT�0�0ni;n0jii(e��h! � 1)(�h!1 �E)2(�h!2 �E)2 ; (32)here the operator T��n1i1;n01j1 has a form:T��n1i1;n01j1 = [����n1n01�i1j1Xm;l 2Jml;n1i1(bmlbn1i1 + b+mlb+n1i1)(33)
ICMP{98{28E 8+M��n1i1;n01j1(bn1i1bn01j1 + b+n01j1b+n1i1 + nn1i1 + nn01j1) ++Xm;l K��n1i1;ml(bn1i1bml + b+mlb+n1i1 + nn1i1 + nml)](1� �)2:Here we consider the low values of magnon concentration and do notconsider the term ninj ; we have also used the approximation: hih+i !(1� �): So we have to �nd Green's function built on the magnon oper-ators, using the diagonal magnon Hamiltonian. For instance, let us cal-culate Green's function hhbq1bq22jb+q31b+q42ii. Using the above mentionedcanonical transformation, we can writehhbq1bq22jb+q31b+q42ii = hh�q1�+�q2 j�+q3��q4iiuq1uq3vq2vq4 + (34)+hh�+�q1�q2 j��q3�+q4iiuq2uq4vq1vq3 ++hh�q1�q2 j�+q3�+q4iiuq1uq3uq2uq4 ++hh�+�q1��q2 j��q3��q4iivq1vq3vq2vq4The obtained functions can be easy calculated using the standard tech-nique of the equations of motion:hh�q1�+�q2 j�+q3��q4ii = �h2� �q1q3�q2q4 hnq2 � nq1i�h! � !q1 + !q2 (35)hh�+�q1�q2 j��q3�+q4ii = �h2� �q1q3�q2q4 hnq1 � nq2i�h! + !q1 � !q2 : (36)hh�q1�q2 j�+q3�+q4ii = �h2� �q1q3�q2q4 hnq2 + 1 + nq1i�h! � !q1 � !q2 : (37)hh�+�q1�+�q2 j��q3��q4ii = � �h2��q1q3�q2q4 hnq2 + 1 + nq1i�h! + !q1 + !q2 ; (38)! = !1 � !2:By analogy with this Green's functions we can �nd all other functions.Considering a two-dimensional volume centered lattice, we can write thediagonal components of the scattering tensor as follows:Hxx;yy(!1; !2) = (1� �)42�e4�h2dx4(e��h! � 1)(�h!1 �E)2(�h!2 �E)2 � (39)[Xk (v2k + u2k)2�(! � 2!k)cos2(ky=2)cos2(kx=2)�64(Mxx + J +Kxx)2(2nk + 1) ++Xk 4v2ku2k�(! � 2!k)(Mxx +Kxx)2(2nk + 1)];



9 ðÒÅÐÒÉÎÔThe nondiagonal components of the tensor have a formHxy;xy(!1; !2) = (1� �)42�e4�h2dx4(e��h! � 1)(�h!1 �E)2(�h!2 �E)2 �[Xk (v2k + u2k)2�(! � 2!k)sin2(ky=2)sin2(kx=2)�64(Mxy +Kxy)2(2nk + 1)]: (40)The main contribution comes from Green's function hhS+S�jS+S�ii;Green's function hhS+S�jSzSzii, hhSzSzjS+S�ii do not lead to newterms and give contribution only to the diagonal components of thetensor.The obtained results are similar to that obtained for antiferromag-netics [1] but the condition of homeopolarity is not valid for the t � Jmodel and so the hole doping level is not equal to zero. It has led tothe appearance of the factor (1� �)4 in the expression for the scatteringtensor. If we do not use the approximation hihyi ! (1� �), the in
uenceof the hole doping on the scattering will be more complicated.5. General case.Now let us consider the Hubbard model, which includes the higher en-ergetic states:^H =Xi;j ti;j^cyi;�^cj;� + UXi ^ni;"^ni;# �Xi �^ni + (41)+(E � �)Xi;� ^ay�i;�^a�i;� +Xi;� M��ij ^ay�j;�0^a�i;�0^cyi;�0^cj;�0and the polarizability operator has a form:P�i = eR�i [n"i + n#i +X� (n�"i + n�#i] + d�X� [a+�i�ci� + h:c:]: (42)Here the operators c; n refer to the ground state, the operators a�; n�refer to the excited states. We do not consider the term connected withK��ij becouse it does not lead to the new contributions to the scatteringtensor in comparison with that obtained from the term connected withM��ij .By analogy to the previous cases we can obtain the following expres-sion for operator Green's function ffM�jM�g:ffM�k jM�l gg = �he2d�d�2� [( 1(�h!1 �E)(�h!2 �E)��;� � (43)
ICMP{98{28E 10[�Xi �k;lti;k(X31i X13k +X41i X14k )��Ml;k(X33k X33l +X44k X44l +X43k X34l +X34k X43l )] ++ �he2R�kR�l2��h2!1!2 Xi;j;s ti;jts;j(�i;k � �j;k)(�j;l � �s;l)�(X31i X44j X13s +X41i X33j X14s �X41i X34j X13s �X31i X43j X14s )���he2d�d�2� ( 1(�h!1 �E + U)(�h!2 �E)(�h!2 �E) �� 1(�h!1 +E � U)(�h!1 +E)(�h!2 +E) )�kltiktjl �(X31i X14j X43k +X41i X13j X34k �X41i X14j X33k �X31i X13j X44k )��2�he2d�d�2� ( 1(�h!1 �E + U)(�h!2 �E)(�h!2 �E + U) ++ 1(�h!1 +E � U)(�h!2 +E � U)(�h!1 +E) )�kltiktjl �(X31i X14j X43k +X41i X13j X34k �X41i X14j X33k �X31i X13j X44k ):So we can see that there are resonant terms with the frequencies:�h!1 = E; �h!1 = U ; �h!1 = E � U ; �h!1 = U �E: (44)For the case of large U(U >> �h! �E) and i = j one of the terms has aform: J(~S~S � nn=4); (45)which is analogous to the term of Green's function ffM�k jM�l gg (25)obtained for the t� J model.Let us consider the �rst and the second resonant terms and use thediagonal magnon Hamiltonian to calculate Green's function. Then theformula for the diagonal components of the scattering tensor can bewritten as follows:H��;��(��;��)(!1; !2) = (1� �)42�e4�h2(e��h! � 1) �Xk (v2k + u2k)2�(! � 2!k)�cos2(ky=2)cos2(kx=2)�[ 4dx2Mxx(�h!1 �E)(�h!2 �E) + 2a2t2�h!1�h!2(�h!1 � U) ]2(2nk + 1) +



11 ðÒÅÐÒÉÎÔ+sin2(ky=2)sin2(kx=2)sin2(2
)(2nk + 1)�[ 4dx2Mxy(�h!1 �E)(�h!2 �E) + 2a2t2�h!1�h!2(�h!1 � U) ]2�: (46)The components H��;�� ,H��;�� di�er from H��;�� only by the signof the second term. The nondiagonal components can be written in theform: H��;��(��;��)(!1; !2) = 2� e4�h2(e��h! � 1)Xk (v2k + u2k)2 � (47)�(! � 2!k)[ 4dx2Mxy(�h!1 �E)(�h!2 �E) + 2a2t2�h!1�h!2(�h!1 � U) ]2 �(2nk + 1)cos2(2
)sin2(ky=2)sin2(kx=2)(1� �)4:Here 
 is the angle between the crystal axes and the polarization axes(see �g. 1.). This angle is equal to zero in the previous cases. We can seer
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y x
� �rr� �
Figure 1. Dark �lled circles depict atoms; x,y are crystal axes; �; � arepolarization axes.that if it is not so, the diagonal components of the tensor have the termwhich is proportional to sin(kx=2)sin(ky=2); this term lead to the peakat the edge of the Brillouin zone ( [1]).6. SummaryThe method of the construction of the polarizability operator for systemswith the strong short-range correlation between electrons is developed inthis work. The expressions for the polarizability operator in terms of the

ICMP{98{28E 12correlation functions calculated on the Hubbard operators are obtainedfor the cases of the Hubbard and t�J models. It is shown that in the caseof the Hubbard model the frequency change is caused by the electrontransitions in the band. In the case of the t � J model the frequencychange is due to the creation of the pair of magnons.Two di�erent contributions to the polarizability operator were takeninto account, one is connected with the nonhomeopolarity of �lling of theelectron states on a site, another is responsible for the dipole transitionsto the excited states. This two mechanisms lead to similar contributionsto the scattering tensor. The comparison with the formulae derived in theframework of the method used in [1,2] is done. Using the obtained resultswe can investigate the electron and magnon contributions to Ramanscattering in the systems with the strong short-range interaction betweenelectrons and study the in
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