HarmionanbHa akameMisa HayK Y KpaiHU

IHCTUTYVYT
PIBNKN
KOHIEHCOBAHUX
CUCTEM

4 N

ICMP-98-28E

1.V.Stasyuk,T.S.Mysakovych

RAMAN SCATTERING TENSOR FOR HUBBARD AND t —J
MODELS

\ /

JIbBIB

YIOK: 535.375.5
PACS: 72.10D,72.20D,75.10J,71.10.F

Teusop KombiHaIiHOrO po3cigHHs cBiTiIa Ojisa Moneii Xab6ap-
mait—J momeni

1.B.Craciok,T.C.MucakoBu4

Amnoranis. ocitimkeno HepOHOHHI BHECKM y KOMOiHaliliHe PO3CisiHHA
cBiTyia myia momesti Xabbapna i t — J momeri. s mobymoBu omneparopa
[OJIAPU30BAHOCTI BUKOPUCTOBYE€THCA MiKPOCKOMIYHM miaxis i 3aificHio-
IOTHCS OMEPATOPHI PO3KJIAAM B TepMiHAX ormeparopiB Xabbapaa, BUKO-
pucroByoun t i J sk ¢dopMasbHI mapaMerpu poskaaay. o posriisamy
IpUiiMa/InCs ABa Pi3HI BHECKW 0 JUIMOILHOIO MOMEHTY: OIUH OB’ A3a-
Hull 3 HErOMEOIIOJIAPHICTIO 3AIIOBHEHH:A €JIEKTPOHHUX CTAHIB HA BY3J/1aX
rparku, iHmmi - i3 OUIOJIBHUMEI HepexoiaMu 3 OCHOBHOIO y 30yizKeHi
cranu. 3 aHaJsi3y OTPUMAHOIO BUPA3y IJjIsA TEH30pa PO3CIAHHA BUIHO,
O IIi [IBa MEXaHI3MHU HAIOTH MOIiOHI BHECKH. 1OC/TioKeHO BUTJIA, TEH-
30pa PO3CIAHHA B 3a/I€KHOCTI Bill CHiBBIIHOIMEHb MiXK MOJIAPU3AIIIEIO
[IaJIAI0Y0r0 i pO3CiAHOIO CBiTJIA.

Raman scattering tensor for Hubbard and ¢ — J models
1.V.Stasyuk,T.S.Mysakovych

Abstract. Nonphonon contributions to Raman light scattering are in-
vestigated for the Hubbard and ¢t — J models. To construct the polaris-
ability operator the microscopic approach is used, which is based on the
operator expansion in the terms of the Hubbard operators, using t and
J as a formal parameters of the expansion. Two different contributions
to the dipole momentum are taken into account: one is connected with
the nonhomeopolarity of filling of the electron states on a site, another
- with the dipole transitions from the ground state to the excited ones.
Analysing the expression for the scattering tensor, we can see that these
two mechanisms give similar contributions. The dependence of the scat-
tering intensity on the polarisation of the incident and scattered light is
investigated.
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1. Introduction

The investigation of Raman light scattering enable us to obtain the in-
formation about the low-frequency excitations in crystals. The problem
of nonphonon contributions to Raman light scattering in the systems
with the strong short-range Hubbard-type interaction between electrons
remains a subject of interest in the last years in spite of the success
achieved in the description of the magnetic and electron Raman scatter-
ing in the systems with antiferromagnetic ordering [1,2]. The approach
used by [1,2] is based on some semiphenomenological assumptions to
build the effective Hamiltonian of the interaction between a system and
incident light. Fleury and Loudon ([1]) used this method for antifer-
romagnetics and Shastry and Shraiman ([2]) dealt with the Hubbard
model. The aim of this work is to investigate these contributions using
the method which is based on the construction of a polarizability op-
erator P in the framework of a microscopic approach; the method was
developed in [3-5]. This approach is applied to the cases of the Hubbard
and t — J models. To construct the P—operator, the electron transfer
parameter ¢t and the effective exchange constant J are used as formal
expansion parameters.The expressions for the polarizability operator P
in terms of the correlation functions built on the Hubbard operators are
presnted. Using these expressions, the formulae for the Raman scatter-
ing tensor are obtained for the cases of the Hubbard and ¢ — J models.
Analysis of the achieved results is carried out.

2. General formulae

We start from the explicit expression for the cross-section of Raman light
scattering ([3,4]):
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here €, € are polarization vectors; wy, ws are incident and scattered light
SP5
frequencies; ki, k2 are corresponding wave vectors; €12 = (w1, ws);

H,’i’akll"g’a(wl, ws) is the Raman scattering tensor:

1
Hlfg,a—fl’:ikg,h (wth) = % / dtei(uufwz)t % (2)
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P is the polarizability operator

+oo
P (w,t) = — / dse™ =) LANO (K )| M* (K, 5)} Y, (3)

here M O‘(l_c’) is a dipole momentum of a crystal unit cell in the E—represen—
tation and the symbol {{MP (K, t)|M*(k,s)}} stands for "unaveraged”
Green’s function defined in the following way ([5]):

{AMIB()}} = —i0(t — t)[A(t), B(t)]- (4)

The equations of motion for this function have a form

hwi {{A|B} e, = %[A:B]m—u)z +{{[A, H]|B}} o wss0r (9)
hws{{A|B} o w, = %[AaB]m—wz —{{4l[B, H]} }or w0- (6)

It is used to construct the polarizability operator; the solutions of these
equations are built in the form of operator series in powers of some
parameters of a Hamiltonian. It has to be emphasized that this method
does not use phenomenological assumptions.

3. The Hubbard model

First let us consider the case of the Hubbard model
H=> t;;¢l 60 +UY gy — Y it (7)
i i i

We will restrict ourselves to the case of large U, so we can make expansion
in powers of ¢/U at the construction of the P—operator, considering only
the terms which are linear and quadratic in ¢/U. In the case of the
Hubbard model the dipole momentum has a form

M; = eRi(fir + ). (8)

Here the nonhomeopolarity of filling of the electron states on lattice sites
is taken into account. It is useful to consider the following single-site basis
of states |n; ,n;+ >

[1>=10,0>,12>=]1,1>,]13>=11,0>,[4>=10,1> (9)
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and to introduce the Hubbard operators X% = |r >< s|.
To calculate Green’s function {{Mg|M, lﬁ }} at first we write the equa-
tion of motion (5):

N eRY RN
{0y = h—w’z Z i (Bik — 8100 H{E o250 1141} (10)
1,],0

Than we use the equation of motion, which is written in the form (6):

g oA hi o4
el 020 1M7 Y} = [5G0 = 8102 50 = (11)
A4 a At eRY
~ 2 el = S UL tirleno o M

To calculate this function we again write the equation of motion (5) and
neglect the terms which are proportional to At3. Using this scheme, the

following expression for Green’s function {{M{|M, l'g }} is obtained
(AN} = (32 tas Gk = 850) (B30 = 0i)é] 650+ (12)

4,3,0

1 A 1 A 1 - .
AT — A+ —(A- At
+hw1+U hw = U +hw1( )

here U plays the role of the energetic distance between two levels which
are responsible for the scattering,

A=t gt (Bik — 6.1) (850 — 0s1) X (13)
©,J,8

(P22 o XX — X2 X (X - X)X -
—(X3+ XP) (X + XX+ XXX - X)) +
+XMXP + XP)(XP + X+ XX - X)X -
(X - XEOXPNP - XPAB M+ X -

—XPH G+ XE)X P+ XX+ X)X

FOO 4+ XXX 4 (X3 - X (X X)X,

e?Re R/
2mhwiws

Comparing with [2], we can see that some terms in our expression (when
i =s, n;+ +n;,; =1 and neglecting the state |2 >) are the same as the
scattering Hamiltonian obtained in [2]:
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considering only the resonant term. However, there are some additional
terms in (11) which are not presented in [2], these terms describe electron
transitions between the next nearest neighbors.

Now let us calculate the scattering tensor . To deal with this expres-
sion we will use the following formula:

2[m<<B|A>>w+ie

(Awr = w2)B(w) — w1)) = 6(w) — wn) oBhw 1

(15)
wW=wi1—w2
In consequence we obtain the following expression for the scattering ten-
sor:

B’ B _ Z (2 (Rni—Rnyiy) k(BB ;)

ho Fr (whwz) — e 11 J 191 (16)
n,n',ny,n’
A
2,751,571

4 Al A a pb o' 6’

€ 2Im<<A|AT>>w:w1—szniRn’jRnlilR’nrljl

X

)

(e8hw — 1) hwiws (hwy — U)?
considering only the resonant term. So we have to calculate Green’s
function ((A|AT)) using the Hamiltonian of the Hubbard model. We will
use a decoupling procedure for Fermi type operators:
(XPIU6)XT () XX~ (XPUOXP X ()X £ (17)
(XXX (H)XP),
having split Boson operators XPP in the product of two Fermi operators:
XPP = XPLX' When calculating Green’s function ((XP?|X7"%)) (now
XP4 X% are Fermi operators), we use the Hubbard-1 approximation
and neglect the state |2 >. After some tedious algebra we obtain the
following result:

(x1 +X33>4
N2u)1W2(hu)1 - U)2

Z ko —k1i —q1 +q+ 92— q3) «
(Pl XTEXT)q) 1 1)(e B (XTHX0a) 4 1)

1A !
Hy 505 (wr,wo) =

q1,92,493,9

Bw — B (tqy) — o) +Hgs) ~ @)
(eﬁ(u—(X“JrX”)t(qz)) + 1)(e—ﬁ(u—<X“+X33)t(q)s) +1)

sin(q™)(sin(q7) + sin(q5))sin(a) ) (sin(a®) + sin(¢?))  (18)
The equation for (X! + X33) can be written as follows:
1 (X + X%)
1 33 _
AXM +XP) 1= 5D | e 5 1 (19)
q
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From the expression (18) we can see that the frequency of the scat-
tered wave differs from that of the incident wave due to the two-electron
transitions in the band - the integrand in (18) has a delta-peak at the
frequency:

w=w —wy = (X" + XP)[t(q) + t(gs) — t(q2) — ()],
@ tq=q+q+k—ki. (20)

If we had replaced Boson operators X??P by their mean value (X?P), we
would have obtained the one-electron transitions:

wi —wy == (X" + XP)[t(q1) — t(9)], 1 = g+ k2 — k1. (21)

This one-electron transitions also can be obtained from the nonreso-
nant term in (12), which is linear in ¢. If we calculate the correlator
(XPP(t)X99) more precisely (using higher order approximations), we will
obtain both the one-electron transitions and the two-electron transitions
([6))-

Calculating Green’s function, we have used the Hubbard Hamiltonian
with the excluded state |2 >, so we have obtained only the electron
scattering. To consider the magnon scattering we will deal with the ¢t —J
model.

4. The ¢t — J model

Now let us consider the case of nearly half filling < n; 4+ +n;; >~ 1 and
U >> t. In this case the Hubbard Hamiltonian can be reduced to the
effective Hamiltonian of the so-called ¢ — J model:

A IS S 55 T ATl R
Hig =) ti;¢,Cio+ Y Jij(8i5; — m4 L) — > phi,  (22)

4,3,0 ,J i

here éiJ =éio(l1—My—0), J = %. Let us add to this Hamiltonian some
additional terms to consider excited states on the atoms .., having
different parity with respect to the ground state ¢ and their interaction
with the ground state:

H=H ;+ (E—p) Z &Li,aaai,a + (23)
i,0,a
n Z Maﬁ X31X13 + +X41X14)aaj adg o —
1,J,0,0,8
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By 33
- Z K7 (X; agJ,aﬁJ¢+X %]TGBJT+
i,J,0,8

34~ A 4351 A
+X; Goj, 1654 + X, aaj,iaﬁj,T)a

here E is the difference between the energy of the excited states and the
one of the ground state. The terms, connected with K af M af describe
exchange interaction between the ground and excited states. The dipole
momentum has a form:

do‘( X +al X" 4 he) (24)

a,t,T

We make expansion in terms of t/E, M/E, K/E at the construction of
the polarizability operator, considering the linear terms in M/E, K/E
and quadratic in t/E. The following formula for Green’s function
{{Mg|MP}} is obtained:

he2d®d’ y
27T(hw1 — E)(hwz — E)
= Okabastin (X7 X + XM XY -
i

{7} =

(25)

> o

- Z5k,l2Ji,k(§i5k - 14 )0a,5 —

_Mlakﬁ(Xg3X33 + X]%4Xl44 + X:3Xl34 + X34Xl43) _
_ Z(sl kKOZB X33X33 + X44X44 + X43X34 + X34X43)]

he2d°‘dﬁ(5k7l5a75
21 (hwy — E)? (hwy — E)

D tintik(XPX]P 4+ XX,
,J

Here we consider only the resonant terms and d® =< ¢o|r®|Yese >-
We have also eliminated in (25) the terms including the operators con-
nected with the higher energetic states. The obtained expression for
g |Ml’3 }} is similar to that obtained in [1] for antiferromagnetics.

The formula transforms into the simple product of spin operators §,§ B
for the case of homeopolarity: n; + + n; = 1 (the hole doping level is
equal to zero) and the terms which are linear and quadratic in ¢/E arise
from the pure band transitions.

Let us calculate the scattering tensor. A spin polaron approach can be
used for the ¢ — J model in the region of small hole concentrations [7,8].
We introduce for electron operators a,g the following representation on
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two sublattices with spin up (i €1) and spin down (i €J):
Gy =hi, ey =hlSHGe)sey = fl.Gr = f1S7 (i el), (26)

here h; is a hole spinless operator and S}i are spin operators. Employing
the linear spin-wave approximation, we can write
St b (i €1), S ~ b (i €]); (27)

(3

b1, b2 are magnon operators on two sublattices. Performing the canon-
ical transformation for the Fourier components

br1 = vkak + upBly, bro = vk B + upal (28)
we obtain the following Hamiltonian of the spin polaron model:
Hyy = k,a(hy fi—glg(k, @)aq + g(a — k,q) 871+ h.c.) —(29)
—py (Wl + fif f) + D wolag aq + B By).-
k q

Here

g(k,q) = 4t/\/N/2(ugVr—q + vgk), ur = 1/ (1 + vy) /21, (30)

vk = —sign()\/(1 = v) /20y, vk = \/1 =7,

Vi = 1/428“",(,‘);c =2J(1 - 6)*vg,

S=<hTh>+<ftf>. (31)

This representation excludes doubly occupied states and takes into ac-
count strong antiferromagnetic spin correlations at the electron hopping.
To simplify the calculations we will consider only the last diagonal term
in the Hamiltonian.

Now we have to rewrite the Raman scattering tensor in terms of the
hole spinless operators and the magnon operators:

eAh2ded®’ dPdP 2rm((T. TP, )

HP P (1 wo L ULL b 32
s (@102) = (P — 1) (hw) — E)”(hws — E)” (32)
here the operator Tnﬁl _ has a form:
T’I’?llgil,nll_jl [Jaﬁ‘smn 111 Z 2Jmi yn1il (bmlbmu + b+ b:”l)(g'?')
m,l
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+MP ,.(bnlilbnllj1+b b+ + Mgy + N jy) +

n121,1 J1 niiy

2
+ ZKTIJH ml ”lilbml + bmlb;1z1 + Mnyiy + nml)](l - 6) .

Here we consider the low values of magnon concentration and do not
consider the term n;n; ; we have also used the approximation: hihzr —
(1 = 4). So we have to find Green’s function built on the magnon oper-
ators, using the diagonal magnon Hamiltonian. For instance, let us cal-
culate Green’s function ((bs1 bQ22|bq+31b;;2>>. Using the above mentioned
canonical transformation, we can write

((bqlqu2|b;_31b;;2)) = ((ag, @ —q2|a (g, ))Uqy Ugy Vg Vg, + (34)
+<<ﬂ+q1 By 18- q35q4))uq2uq4vq1vq3 +

+{(ag, ﬁq2|0‘Jr Jr>>uq1“qauqzuq4 +
+<<6i_q10‘7q2|ﬂ*qaa7q4>>vq1vqaquvq4

The obtained functions can be easy calculated using the standard tech-
nique of the equations of motion:

(om0 o)) = gebundm o (a9
(883 BB = b T 2 (30
(o Bl ) = syl g
(CAN [CHP ) SSRC N M L eat STV

41939294
2m hw + wg, + wy,
W =w; — ws.

By analogy with this Green’s functions we can find all other functions.
Considering a two-dimensional volume centered lattice, we can write the
diagonal components of the scattering tensor as follows:

(1 —6)*2retn2d=* y
(efhw — 1) (hwy — E)*(hws — E)®

> (0} +u})*8(w — 2wi)cos® (ky /2)cos? (K /2) X
k

64(M*™ + J + K**)2(2ng + 1) +

+ 3 dvfuid(w — 2wi) (M + K™)? (20 + 1)],
k

H”;yy(wl,wQ) = (39)
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The nondiagonal components of the tensor have a form

eyiny B (1-0)'2metnd*
AP w1,92) = G = 1) (haoy — B)2(han — B)E
[Z(vfc +u3)? 8 (w — 2wy )sin® (ky /2)sin® (ky /2) X

k
64(M™ + K®)?(2ny +1)]. (40)

The main contribution comes from Green’s function ((STS~|STS7));
Green’s function ((S*S™|S*S*%)), ((S*S*|STS™)) do not lead to new
terms and give contribution only to the diagonal components of the
tensor.

The obtained results are similar to that obtained for antiferromag-
netics [1] but the condition of homeopolarity is not valid for the t — J
model and so the hole doping level is not equal to zero. It has led to
the appearance of the factor (1 — 6)* in the expression for the scattering
tensor. If we do not use the approximation h;h! — (1 —§), the influence
of the hole doping on the scattering will be more complicated.

5. General case.

Now let us consider the Hubbard model, which includes the higher en-
ergetic states:

H= thczacjv'*‘UZ”zT”w_Zlmz (41)
+(E—u Zaywayw+ZM)“’a>\JU,a,,”zc;ra,c]0

and the polarizability operator has a form:

Pl-a = GR?[’RT,' +ny; + Z(’n)\ﬁ + ’n)\u] +d° Z[azwcw + hC] (42)
A o
Here the operators ¢,n refer to the ground state, the operators ay,ny
refer to the excited states. We do not consider the term connected with
KZ-’B becouse it does not lead to the new contributions to the scattering
tensor in comparison with that obtained from the term connected with
M2P
1)
By analogy to the previous cases we can obtain the following expres-
sion for operator Green’s function {{M®|M#?}:

e2d>df 1

MY = v = (G B g =T o

(43)

ICMP-98-28E 10

- Z 6k’lti7k(X?1X,%3 + X:MX]%AL) -

K3
—Myp(XPXP + XX + XX+ XX +

heszR
ti 0in) (850 —6s1) X
27rh 1wy zj; ijt ,J zk J,k)( Jil ,l)
(XPXHXP + XPXPX - XPXNXP - XXX -
e2d*dP 1
27 (hwy — E+U)(hwe — E)(hws — E)

1
~ (hwy + E — U)(hw, + E)(hw, + E)
(XXX + XM XX - XXX - XPTXP XY —
e2dedP 1 N

21 (hw) — E+ U)(hwy — E)(fws — E +U)
N 1

(hw1 + E — U)(hw; + E — U)(hw1 + E)
(XP XX + XXX - XXX - XU XX,

Yoritirti ¥

—2h

VOritinti ¥

So we can see that there are resonant terms with the frequencies:
hwy = E;hwy =U;hwy =E -U;fw; =U — E. (44)

For the case of large U(U >> hw — E) and ¢ = j one of the terms has a
form:

-

J(SS = nn/4), (45)

which is analogous to the term of Green’s function {{M,S‘|Mlﬁ}} (25)
obtained for the ¢t — J model.

Let us consider the first and the second resonant terms and use the
diagonal magnon Hamiltonian to calculate Green’s function. Then the
formula for the diagonal components of the scattering tensor can be
written as follows:

_ 5t 442
Haa,aa(ﬁﬁ,ﬁﬁ)(whw?) _ (1 (S) 2me*h

@ =)
Z(U,% +ui)?5(w — 2wy) (0052(ky/2)cos2(kz/2) X
k
4de> Mee 20212 ?

Tior — B)(han —B) T Tenfuo (o — 1)) Pt D +
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+sin?(ky /2)sin®(ky /2)sin®(27)(2ny + 1) x
4d=* MY 2a°t?
- — + — ) (46)
(hwl E) (th E) hwl h(UQ (hwl U)

2

The components H**#8 [AB.2e differ from H**** only by the sign
of the second term. The nondiagonal components can be written in the
form:

ap,« a,pa e4h2 2
HOB2Ba,00) () ()Y = 2wm D wi+up) x (47
k
4d*> MY N 2a°t? ]
(hw1 — E) (th - E) hwthQ (hw1 - U)
(2ny, + 1)cos®(27y)sin® (ky /2)sin®(k; /2)(1 — &*.

2

O(w — 2wy)[ X

Here v is the angle between the crystal axes and the polarization axes
(see fig. 1.). This angle is equal to zero in the previous cases. We can see

a |y
Y

Figure 1. Dark filled circles depict atoms; x,y are crystal axes; a, 3 are
polarization axes.

that if it is not so, the diagonal components of the tensor have the term
which is proportional to sin(k,/2)sin(k,/2); this term lead to the peak
at the edge of the Brillouin zone ( [1]).

6. Summary

The method of the construction of the polarizability operator for systems
with the strong short-range correlation between electrons is developed in
this work. The expressions for the polarizability operator in terms of the

ICMP-98-28E 12

correlation functions calculated on the Hubbard operators are obtained
for the cases of the Hubbard and ¢t —J models. It is shown that in the case
of the Hubbard model the frequency change is caused by the electron
transitions in the band. In the case of the ¢ — J model the frequency
change is due to the creation of the pair of magnons.

Two different contributions to the polarizability operator were taken
into account, one is connected with the nonhomeopolarity of filling of the
electron states on a site, another is responsible for the dipole transitions
to the excited states. This two mechanisms lead to similar contributions
to the scattering tensor. The comparison with the formulae derived in the
framework of the method used in [1,2] is done. Using the obtained results
we can investigate the electron and magnon contributions to Raman
scattering in the systems with the strong short-range interaction between
electrons and study the influence of the hole doping on this scattering.
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