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Amnoranisi. Ha ocHosi Hecrapnaprhoi reopil nosiza fAura—Misica orpu-
MaHO AGeJieBl MOTEHIIsI PYXOMUX TOYKOBUX J1zKepesi. BoHu BUKOpPHC-
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YJaCTUHKOBOI CUCTEMH 3 YTPUMYIOYOIO B3aE€MOIi€0. Haco-acuMeTpuIny
MOIeJTh IepeOPMYTHOBAHO B PAMKY raMiIbTOHOBOTO hopMmaJizmy. Bin-
MOBiAHY 3aJady ABOX TiJ 3BEIEHO 10 KBaaparyp. B paMkax kBasiksia-
CHYHOTO PO3IJIALY OIIHIOETLCA MOBEMIHKA TPAEKTOpiil Pemxe.

Fokker—type Confinement Models from Effective Lagrangian in
Classical Yang—Mills Theory

A. Duviryak

Abstract. Abelian potentials of pointlike moving sources are obtained
from the nonstandard theory of Yang—Mills field. They are used for the
construction of the time-symmetric and time-asymmetric Fokker-type
action integrals describing the dynamics of two-particle system with con-
finement interaction. The time-asymmetric model is reformulated in the
framework of the Hamiltonian formalism. The corresponding two-body
problem is reduced to quadratures. The behaviour of Regge trajectories
is estimated within the semiclassical consideration.
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1. Introduction

Potential models of hadrons originate from the quantum chromodynam-
ics (QCD), but they are not rigorously deducible from the theory. Rather,
these models are substantiated by various approximate approaches and
estimates in QCD [1]. Various models have their own areas of applica-
tion. In particular, the linear potential which follows from area law in
the lattice approximation of QCD, describes, by construction, the static
interaction of quarks [2]. Thus it can lawfully be exploited only in non-
relativistic potential models [3].

The description of light meson spectroscopy needs the development
of appropriate relativistic models. They frequently are built as single-
particle wave equations [4-8] which is not satisfactory. Actually, mesons
should be treated as composite two—quark relativistic systems. The re-
liable basis for this purpose is the relativistic direct interaction theory
(RDIT) presented by various approaches and formalisms [9], such as La-
grangian formalism with higher derivatives [10], relativistic Hamiltonian
mechanics [11,12], canonical formalism with constraints [13], Fokker-type
action formalism [14] etc.

Given a nonrelativistic potential, RDIT determines the general struc-
ture of its relativistic counterpart. In so going the great arbitrariness
arises in the choice of concrete relativistic interaction. Consequently, the
variety of relativistic potential models has appeared in the literature [15—
25]. Each of them has its own advantages and areas of application, but
these models are not substantiated by QCD better than nonrelativistic
models.

A possible way to substantiate relativistic direct interactions leads
through classical field theory. Especially, we mean the Fokker-type ac-
tion formalism which, among other approaches to RDIT, is most closely
related to this theory. There exists the class of Fokker actions which cor-
respond to particle interactions via linear fields, such as scalar, vector,
and other tensor fields [26-28]. These actions are built on the solutions
to relevant wave equations. In the nonrelativistic limit they lead to the
same Coulomb (or Yukawa) potential.

Working within this scope for the confinement case, one could try
to proceed from some solution to classical Yang—Mills equations. But
no such solutions leading to confining potentials are known in the lit-
erature. Moreover, they are believed to not exist due to the essentially
quantum nature of confinement. This is concerned with standard Yang—
Mills theory while there exist various nonstandard theories which involve
effective Yang—Mills fields arising from QCD. These theories may be used
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as sources of confining potentials.

In the present paper we find the relation between certain nonstan-
dard classical theory of Yang—Mills field and the Fokker-type confine-
ment model. The former is developed in [29]. This theory describes non-
Abelian gauge field averaged over quantum fluctuations. It is based on
the effective Lagrangian obtained from the study of infrared behaviour
of gluon Green’s functions in QCD [30]. Field equations following from
this Lagrangian are of 4th order, and some static non-Abelian solutions
to them have been used in a sort of bag confinement model [31,32].

Here we obtain from this theory the Abelian retarded and time-
symmetric potentials of moving pointlike source. Both of them are of
confining type and reduce in the nonrelativistic limit to the linear po-
tential. Then, using these potentials, we construct the time-asymmetric
and time-symmetric Fokker-type actions. The latter is already known
in the literature. Two equivalent versions of this action have been pro-
posed by Rivacoba [33] and Weiss [34]. It is noteworthy that both the
authors proceeded from general preliminaries of RDIT, without referring
to field—theoretical interpretation of particle interaction.

The time-symmetric action leads to difference—differential equations
of motion which are difficult to deal with. The only circular—orbit solu-
tions to these equations are found in [33,34]. Contrastingly, the dynam-
ics following from the time-asymmetric action is well defined in terms
of second-order differential equations of motion. Thus this action can be
considered as the classical background model of relativistic two-quark
quantum dynamics. Following [35,36], we reformulate this model into
the Lagrangian formalism. Then we transit to the Hamiltonian formal-
ism, and integrate the two-body problem in quadratures.

The time-asymmetric analogue of Rivacoba-Weiss model is the sim-
plest version of relativistic confinement model. It can be appropriate for
the classical description of light mesons for which the confinement in-
teraction dominates. To include into consideration also heavy mesons
one can modify the present model by adding to the action the vector-
type interaction term from the time—asymmetric version of the Wheeler-
Feynman electrodynamics. This corresponds to the taking account of
Abelian solution to the standard Yang—Mills equations (i.e., the classi-
cal analogue of one-loop correction in QCD). In the nonrelativistic limit
this mixture leads to the well known Coulomb plus linear potential. The
modified model becomes appreciably cumbersome but still remains solv-
able.

Here we do not propose a quantum version of the present model. In-
stead, we make some estimates of the Regge trajectory from classical and
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semiclassical considerations and obtain a physically reasonable result.

The paper is organized as follows. In Section 2 we obtain the Abelian
potentials of moving pointlike sources from the standard and nonstan-
dard theories of Yang-Mills field. The formers are the Lienard-Wiechert
potentials and their causal modifications while the latters turn out to
be the modifications of potentials proposed by Weiss. They are obtained
with the Green’s functions found in Appendix A. In Section 3 we present
equations of particle motion following from the standard and nonstan-
dard theories, and construct corresponding time-symmetric and time-
asymmetric Fokker-type integrals. The latter is used as the base of time-
asymmetric confinement model. In Section 4 this model is reformulated
in the framework of the Hamiltonian formalism. Various special cases of
two-body problem are considered in Subsections 4.1-4.3 and Appendix
B. Estimates of Regge trajectory are quoted in Section 5. Section 6 is
devoted to general discussion of the model.

2. Abelian potentials from the standard and nonstan-
dard theories of Yang-Mills field

We shall consider both the standard and nonstandard classical theories
of the Yang-Mills field. The standard theory (ST) is based on the well
known Yang-Mills Lagrangian [2]

EST = _L<FW/’FNV> - (JﬂaAu>' (1)

The nonstandard theory (NT) proceeds from the effective Lagrangian
[30,29]

— 1 Appy 5 v Ap
ENT - ]_67”‘62 (V)\F;,Llla v F > + 2471’/412 <FN ) [Fl/)\a F ]>
— (J,AL). (2)

Here the components of the gauge field A,(z) (p = 0,3) and the cur-
rent of sources J¥(z) take values in the Lie algebra G of gauge group;
X,Y], (X,Y), and V,X = 0,X—[A,, X] are the Lie brackets, the Killing-
Cartan metrics, and the covariant derivative, respectively, defined for any
X,Y € G; Fu =0,A, — 0,A, — [AL, A] is the tension tensor; & is some
parameter of the dimension of inverse length, and £ is meant here as an
arbitrary dimensionless parameter. We suppose that the gauge group is
the semi-simple compact group, so that the Killing—Cartan metrics is
nondegenerate and positively defined. In the real matrix representation
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it can be presented in the form
1
X,Y) = ——tr(XY
(X,Y) = —5-tr(XY),

where the number Ngi depends on the representation chosen. Greece
indices move due to the metrics 7,, of the Minkowski space-time M,y

which is chosen timelike, i.e., |9 || = diag(+, —, —, —).
Field equations following from the Lagrangians (1) and (2) are
V,F# = dn (3)
and
{2V, V2 — (L + VAV, VA +EV2V, } P = drk? -, (4)

respectively. Both of them are compatible provided the current J* is
covariantly conserved,

V.t =0. (5)

In the present paper we are interested in the relativistic system of

N pointlike charged particles interacting via the Yang—Mills field. The
current J# corresponding to this system is [37]

@)= 3 1) = Z/draQaz'ga(x ). (6)

Here 2#(1,) (1 = 0,3, a = 1, N) are the space-time coordinates of ath
particle world line in My parametrized by an arbitrary evolution pa-
rameter 7, 24(1,) = dz¥ /dr,, and Qq(7,) is the charge of ath particle.
Substituting (6) into (5) one obtains the Wong equations [37] determin-
ing the evolution of charges,

Qa = 201AL(24), Qal, a=1,N. (7)

The total action corresponding to field + particle system can be
written down as follows:

I:/d‘*:c/:—za:ma/dm\/%, (8)

where £ is Lst or LnT, and m, is the rest mass of ath particle. The
variation of the action (8) over A, yields the field equations (3) or (4).
Varying this action with respect to particle positions z# and taking ac-
count of (7) one can obtain the following equations of particle motion:

d mig,

= (Qa; Fuv (24)) 25 (9)
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In order to determine motion of particles it is necessary to solve the
total set of linked equations, namely, the field equations [(3) or (4)], the
Wong equations (7), and the equations of motion (9).

We intend to formulate a particle dynamics in the scope of RDIT.
For this purpose one should eliminate field variables A, (x) in favour of
their expressions in terms of particle positions z# and, possibly, charges
Q.. In other words, it is necessary to find a solution to field equations.
But this task is very complicated because of nonlinearity of the problem.

Here we limit ourselves by search of Abelian solutions to field equa-
tions. Let us suppose that

Au(@) =ndu(z),  J(2) =nJ"(z),  Qa(ra) =nQu(ra)  (10)

etc., where n is a unit constant vector in G. In this case all Lie-bracketed
expressions vanish, in particular,

Fuu () = 0B (), Fu(@) = 0,A4,(0) — 0,A4,(0), (1)
and V, reduces to 9,. The Wong equations (7) yield
Qo =0 = Qo = qq = const. (12)
Then the field equations (3) and (4) reduce to
Oy F"F = 4nJ*, (13)

and
0, OF"" = 4xk? JH, (14)

respectively, where the current
YHEOEDIPAGOEDY qa/dTaz'ga(a; — 24) (15)

is conserved identically, i.e., d,J# = 0. Due to this fact both the
equations (13) and (14) are gauge invariant with respect to the one-
parametric (compact) group of residual symmetry.

At this point we have come to the linear field equations which can be
solved by means of the Green’s function method. In the standard case we
deal exactly with the electromagnetic problem. Using the Lorentz gauge
fixing condition,

0, A" =0, (16)

we reduce the equation (13) to d’Alembert equation,

O A* = 4z J*, (17)
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and immediately obtain its solution,
At =Dy x J*, (18)
where % denotes the convolution, and
Dy(z) = (1+nsgna®)d(z?), (19)

is one of the retarded (yp = +1), advanced (n = —1), or time-symmetric
(n = 0) Green’s functions of d’Alembert equation.

Let us consider the equation (14) of the nonstandard theory. Using
the Lorentz condition (16) one reduces it to the following equation:

02 A" = dxk2J*, (20)

which is of 4th order. In Appendix A the corresponding retarded, ad-
vanced, and time-symmetric Green’s functions are calculated. They are:

E,(z) = 1k*(1 + nsgna?)O(z?). (21)

Thus the solution to (20) reads as (18), but with E, instead of D,,.
Actually, the linearity of equations (17) and (20) allows solutions of
more general structure,

A=A =Gy, T, (22)

where G, = D,, for ST, and G,, = E,, for NT. Here n, take values
+1, -1, or 0, each own for different particles.
In an explicit form the solutions (22) can be written down as follows:

A (a) =S A @) =Y g / G (2 — 24), (23)

where the quantity A¥(x) represents the relativistic potential created by
ath particle. In both the ST- and NT—cases each particle potential (as
well as the total sum (23)) satisfies the Lorentz condition (16).

Up to the numerical factor, the only difference between (19) and (21)
is that the function §(x?) is replaced by ©(z?). This substitution was
guessed by Weiss in [34] where the time-symmetric potential (in our case,
Eqgs (23) with Gy, = Eo, a =1, N) has been proposed for the model of
the action-at-a-distance linear confinement.
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3. Equations of motion and Fokker-type action inte-
grals

Now the equations of particle motion can be obtained in a closed form by
substitution of the relativistic potentials (23) and the constant charges
(12) into the right-hand side (r.h.s.) of (9). In the standard case this
procedure leads to an appearance of divergent self-action terms which
can be regularized in usual way [38]. The resulting equations of motion
can be presented in the form:

d mi, .
P20 — 40y Fusn 2 + Rags (24)

drg /32 el

where
Fabm/ = 2qb/dTb(1 + Ty Sg1 Zgb)(sl(zzb) {Zabpébu - Zabu'ébu} ) (25)

Zab = Za — 2p, and

(26)

2 . ZapZ¥) d 1 d Zg
R, = gnaqj {6; — DA }

22 dry \/22 dTo \ /32
The self-action terms R, correspond to radiation reaction. They disap-
pear if fields generated by particles are time-symmetric (i.e., if 7, = 0).

In the nonstandard case no divergences and self-action terms arise.

Thus the equations of motion are calculated immediately. They are de-
scribed by (24) with R,, = 0 and

Foppr = %HQQb/dTb(l + 15 580 205)0(253) {zabuier — ZabwZen} . (27)

We have obtained the closed set of equations of particle motion which
are not obvious to be directly deducible from the variacion principle.
Below we construct the relevant Fokker-type version of the theory and
examine it consistency with the equations obtained above.

The purpose is to eliminate field variables from the total action (8).
Using (10)—(12) in (1), (2), and then in (8), one obtains the action

I = Itree + Iing + Ifeld, (28)

where

Ifree = — Zma/dTa\/%a (29)
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L = —/d4$ JH A, (30)
are the same for ST and NT while Ige1q is different:
1 4 nwv
Iﬁeld = _ﬂ d CUF F!“’? (31)
for ST, and
_ 4 A v
Iﬁeld - W/d T (a F* )(aAFuV)a (32)
for NT. The term Igelq can be transformed to the form
T = — / d'e A,0, 5V ST (33)
field = g nev terms

where H"* = F"* for ST, and H"* = OF"#/k? for NT. Taking into
account the field equations (13) and (14) in r.h.s. of (33) and omitting
surface terms, we obtain

I= Ifree + %Iint- (34)

Now substituting the current (15) and the potential (23) into (30), one
can present the second term in r.h.s. of (34) in the following form:

i =D v+ 3D o, (35)

a < b a

where
Iop = _Qaqb/ dradty 2020 G, (2ab), (36)

and np, = %(Ub —1a). In the ST—case the self-action term I,, diverges.
It can be regularized and unified with ath term of Ifee. In the NT—case
this term vanishes. Thus in the both cases the resulting interaction term
L Iin¢ has the form:

%Iint = - Z Z QEQb//dTadTb ZaZp Gﬂba (Zab)a (37)

a <b

where G,,,, = D,,, for ST, and G,,, = E,, for NT.
In the case of NT each constituent (36) by means of integration via
parts (see [39] for such a technique) can be transformed to the following
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form (here we omit all unessential constant factors):

“+00 +00
/ / dradry Za- 2 (1 + Tpa 581 205) O (25;)
—00 —00
+00 +00
- / / dradry (an - 2a) (zab - 20)(1 + oo sg0 20)0(22)
—00 —O0

Ta="+007 Tp=7400
5 (1 + Mpa sgn Zgb)@(ng)ng] ] . (38)

Tq=—00

Tp=—00

The second term in r.h.s. of (38) is divergent, but it does not contribute
in equations of motion and can be omitted. Then the interaction term
(37) for NT can be put in the equivalent form,

52 . .
%Ii“t = 9 Z Z (Ja%/ dradTy (2ab * 2a)(Zab - Zb)Dnba (2ab)- (39)

a<b

Fokker—type equations of motion following from this action differ
from those (24) directly obtained from the field theory. Firstly, they do
not reproduce the self-action terms R,, which, in general, are present in
r.h.s. of equations (24) for ST. In this paper we suppose that these terms
can be neglected since in QCD a radiation is suppressed by confinement.
Secondly, the sign factors 7, in the expressions (25) and (27) for Fypuw
are replaced by 7,. This changes the causal structure of pair particle
interactions. Namely, while equations (24) correspond to retarded, ad-
vanced, or time-symmetric fields generated by bth particles (and sensed
by ath particle) for n, = +1, -1, or 0, respectively, in the Fokker—type
equations the causality of interactions is its own for different pairs of
particles.

There are only two cases in which the direct interaction can be treated
as a field-type one. The first case corresponds to the time-symmetric
interaction, for which 7, = m, = 0, a,b = 1, N. For ST the action
(34), (29), (37) in this case coincides with the Wheeler—Feynman action
of time-symmetric electrodynamics [40]. For NT it corresponds to the
action-at-a distance confinement model in the form by Weiss [34]. The
Rivacoba’s form of this action integral [33] follows from (39).

The second case which is tractable in terms of field interaction re-
alizes only for two-particle systems. It corresponds to the choice 7, =
—1m = 121 = 1 = x1. For ST this is the case of the time-asymmetric
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electromagnetic interaction proposed by Staruszkiewicz [41], Rudd and
Hill [42], and studied in more detail in [43,44]. For NT the corresponding
time-asymmetric Fokker-type action can be taken as the classical base
for relativistic confinement model.

4. Time—asymmetric model with confinement inter-
action

In this section we consider the two-particle model available for the classi-
cal description of mesons. It is based on the time-asymmetric Fokker-type
action which combines interaction terms (37) from ST and (39) from NT.
Since mesons are chargeless systems, we put ¢y = —g2 = ¢. Then the
time-asymmetric Fokker-type action has the form:

2
I = — Zma/dTa\/z'g +//d7'1dT2D,7(z12) X
a=1

x{azi 22 — B(z12 - 21) (212 - 22) }, (40)

where a = ¢, 3 = 3¢*k?, and n = 1. In the nonrelativistic limit this

action leads to the well known interquark potential U = —a/r + fBr.

Integrating the second term of the action (4) once, we reduce the
latter to a single-time form [35,36]. Thus we obtain the description of our
model in the framework of a manifestly covariant Lagrangian formalism
with the Lagrangian function

LZQF(O'l,O'Q,(S), (41)

where 0 =ny-2 >0, z2=21 — 22, y = (21 +22)/2, 0, = \/2/0 > 0,
§ = 21-%2/6% > 0, and with the holonomic constraint z? = 0, nz° > 0. All
variables in (41) depend on an arbitrary common evolution parameter
7. In our case the function F' has the form:

2
F= Zmaaa —ad + 0. (42)
a=1

We note that quantities 6, 0,,d in r.h.s. of (41) and (42) are well defined
and positive if particle world lines are timelike.

The transition to the manifestly covariant Hamiltonian description
with constraints leads to the mass-shell constraint which determines the
dynamics of the model and has the following form [35,36]:

¢(P2: U27 pP- Z, U: Z) = ¢free + ¢int =0. (43)
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Here v, = w,—z, Pw/Pz; P, and w, are canonical momenta conjugated
to y* and z*, respectively; the function

v-z

Giree = 1% — 5(m +m3) + (mi —m3) 5— +0* (44)
corresponds to the free-particle system,
2
e = a(P? —m?} —m3) n a? Z m?2
nP-z nP-z ot b, +
b1 b
—28 (7;113-22 + a> (45)

describes the interaction, and

b=y (3Pt (us), a=12 a

3—a. (46)

We note, that the quantities o, are related to canonical variables by
the equations:

00 =mg/(bs + @), a=1,2. (47)
Since o, must be positive, the following conditions arise:
by +a >0, a=1,2. (48)

They restrict the whole phase space to a physical domain in which the
Hamiltonian description is equivalent to the Lagrangian one.

In order to study the dynamics of the present model it is conve-
nient, following [35,36], to transit from the manifestly covariant to three-
dimensional Hamiltonian description in the framework of the Bakamjian-
Thomas model [45-47]. Within this description ten generators of the
Poincaré group P, J,. as well as the covariant particle positions z/ are
the functions of canonical variables Q, P, r, k. The only arbitrary func-
tion appearing in expressions for canonical generators is the total mass
|P| = M(r, k) of the system which determines its internal dynamics. For
the time-asymmetric models this function is defined by the mass-shell
equation [35,36] which can be derived from the mass-shell constraint via
the following substitution of arguments on the 1.-h.s. of (43):

P?— M?* v*— —k* P-z—nMr, v-z— —k-1; (49)

here r = |r|.
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Due to the Poincaré-invariance of the description it is sufficient to
choose the centre-of-mass (CM) reference frame in which P=0, Q=0.
Accordingly, Py = M, Jo; = 0 (i = 1,2,3), and the components S; =
%sij k Jji, form a 3-vector of the total spin of the system (internal angular
momentum) S = r x k which is the integral of motion. At this point the
problem is reduced to the rotation invariant problem of some effective
single particle; such a problem is integrable in terms of polar coordinates,

r=re., k==ke +Se,/r (50)

Here S = |S|; the unit vectors e,, e, are orthogonal to S, they form
together with S a right-oriented triplet and can be decomposed in terms
of Cartesian unit vectors i, j:

e, =icosp+jsing, e, = —isingp+jcosyp, (51)

where ¢ is the polar angle.
The corresponding quadratures read:

t—to :/dr Ok, (r,M,S)/0M, (52)
o — o= — / dr Ok.(r, M, S) /08, (53)

where ¢ = (20 + 29)cm is the fixed evolution parameter (unlike the
undetermined one 7), and the radial momentum k,., being the function
of r, M, S, is defined by the mass-shell equation written down in terms
of these variables,

¢)(M2, —k?, nMr, —k-r)

. , 52
= ¢ (MZ, —k2 — o nMr, —krr> =0. (54)

The solution of the problem given in terms of canonical variables
enables to obtain particle world lines in the Minkowski space using the
following formulae [35,36]:

zo =t +5(=)"r, (55)

. k 1, . ke S
Zo = 5(—) vt = <§(—) +77M> rer T g e (56)

Especially, the vector z = z; — z, = r characterizes the relative motion
of particles.
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4.1. Purely confinement model

Hereafter we restrict ourselves to the system of equal rest masses, m; =
ms = m. The case a = 0 corresponds to purely confinement interaction.
The mass-shell equation in this case reads:

2
f—2+m2— (1—2%) (1M*-k) =0. (57)

It easy to obtain from (57) the expression for k,.(r, M, S),

kr:6\/ f(’f‘,M,S), e=+1, (58)

m2 + 82/T2
T—2pr/ar = (59)

Besides, we must take into account the condition:

f('I",M,S) = %M2 -

IM? - K2 >0 (60)
which follows from (48). Then from (58)—(60) we obtain the restriction:
0<r<sM/pB. (61)

The quadratures (52), (53) with (58), (59) can be reduced to the el-
liptic integrals. Here we omit their expressions. The integration is spread
over the domain of possible motions (DPM) which is determined by the
conditions (59) and (61). In the case S > 0 DPM consists of the con-
nected interval r; < r < ro, where r1, 79 are positive roots of the equa-
tion f(r,M,S) = 0. The latter can be presented as the reduced cubic
equation with respect to 1/r:

1 M2 am2\'1  M§B
ﬁ‘@(‘ﬁ)?‘Lﬁ_o‘ (62)

It has two real positive solutions provided the following condition holds:
M > M.(S), (63)

where the function M. (S) is defined in the implicit form

M? < _4m2

— c M2

3/2
S = . M, >2m. 64
6v/3 > = (64
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The equality in (63) corresponds to the case 11 = ro = r. of circular
particle orbits with the distance between particles

M, 4m?
satisfying the set of equations:
f(re, M., S) =0, of(re, M., S)/0r. = 0. (66)

In the limit S — 0 the quadrature (53) yields ¢ = g, and a particle
motion becomes one-dimensional (i.e., in the two-dimensional space-time
M, parametrized with z° and, say, z'). Besides, r; — 0. Thus DPM
becomes 0 < r < ry. The point r = 0 corresponds to particle collision.
This point is not singular for the quadrature (52) and particle coordinates
(55), (56). Thus the motion of particles can be smoothly continued as if
they pass through one another.

4.2. General model, S >0

Let us consider the general case @ > 0, 3 > 0. The corresponding mass-
shell equation can be written down as follows:

f—jA—(A—i—j){(l—?%)A—?mﬁQ (%JP%)}ZO. (67)

It is quadratic equation with respect to

_ (M  «a ’ 2
A:(7+;> —kr>0, (68)

where A must be positive because of the conditions (48). As to k, the
equation (67) is biquadratic. Its solution can be presented in the following

form:
krze\/fﬂ:(r;Mas)a 6::|:]_, (69)
where
_ 12 Q_hi(T;M;S)
JelrnM,5) = s Mo+ Mo = o0 (70)
he(r,M,S) = g(r,M,S)F/d(r,M,S) (71)
Br\ o?S?
w8 = @08+ (1-200) O, (72

m? (M « Br\ o? S?
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Among two solutions fi for k? we choose that one which is smooth in
DPM and reduces to f (59) in the limit @ — 0.

DPM is analyzed in Appendix B. In the case S > 0 we have
d(r,M,S) > 0, r > 0. Thus both the functions fi(r, M,S) are smooth
provided r # 1M/B, and f_(r,M,S) reduces to f (59) in the limit
a — 0. DPM in this case is determined by inequality f_(r,M,S) > 0
provided the condition (68) holds. Similarly to the purely confinement
case we obtain r; < r < r9, where ry, ry are positive roots of the equa-
tion:

S2 /M « Py
ﬁ(7+?>—GM*“%JX

x{(l—Q%) <%+%>—2mﬁ2}:0 (74)

It can be reduced to a fourth-order algebraic equation which has two

T

particle 1

Figure 1. General model, S > 0. Typical example of phase (left) and particle (right)
trajectories. Arrows show the direction of evolution; + — centre of mass.

real positive solutions provided (63), where the function M.(S) can be
presented in a parametric form,

2 A4+ 5X+ 207 + v(1 + 1?4+ 3))]
(1+ AP ’
- M2+ 221+ v(1+N)?]
SO = e e a3
_ ap

’
m2

MZ2(\) = 2m

0 <A< o (75)
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The condition M = M. (S) corresponds to circular orbits with r. =
2a\/M. to be the distance between particles.

Our attempts to express the quadratures (52), (53) with (69)—(73)
in terms of known (elementary and special) functions have not met
with success. Thus we calculated them with a computer. Nevertheless
by means of analytic calculations it can be shown that particle world
lines in My are timelike and smooth curves. They represent a bound mo-
tion of particles for all values of M allowed by (63), (75), and S > 0. The
typical example of phase and particle trajectories are shown in figure 1.

4.3. General model, S =0

In the case S = 0 we have d(r, M,0) = g*(r, M,0). Since there exists the
point ro < a/m such that g(ro, M,0) = 0, the functions fy(r, M,0) are
not smooth. Moreover, in the domain r < rg the function f_(r, M,0) has
not the proper form in the limit « — 0. Thus the evolution of particles
cannot straightforwardly be continued farther.

We point out that the distance rg at which the smoothness of
fx(r, M,0) violates is smaller than «/m. The latter is an analogue of the
classical electron radius. In the case of strong interaction the distance
ro and the Compton length of quarks can be commensurable quanti-
ties. Thus the classical description of particle motion at r < r¢ may
be important for the construction of quantum theory. Especially, this
is concerned with the case of S—states. Below we propose the way to
continue the particle motion in the domain r < rg. It leads beyond the
rigorous treatment of analytical mechanics and therefore cannot be a
reliable basis of quantum-mechanical description. But it will be noted
that this method arises naturally from the present model itself.

Let us choose in r.h.s. of (69) the function:

er(’I“,M,O), r<To
M) =
fO(r7 ) {f_(T,M,O), 74>740
M o\ (M « 2m? /M

(7*?){5+;‘f?ﬁﬁﬂ}v (76)
which is smooth provided r # M/, and reduces to (59) if « — 0.
DPM in this case is 0 < r < ry while the point r = 0 is critical: A — oo,
r — 0. This means that the equivalence between the Lagrangian and
Hamiltonian formalisms violates. It can be shown that at the collision
one of particles reaches (but not exceeds) the speed of light while another

does not. Again, the particle world lines should be somehow continued
farther.
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Figure 2. General model, S = 0. Typical example of phase trajectory continued in
the non-Lagrangian domain r < 0. Arrows show the direction of evolution.

particle 1

.T,'l

Figure 3. General model, S = 0. Typical example of particle world lines. LS —
Lagrangian segments; NS — non-Lagrangian segments; e — collision: one of particles
reaches the light speed; * — particles reach the light speed.
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The existence of a singular collision point is due to the time-
asymmetric vector interaction from ST. The confinement interaction
does not change qualitatively the behaviour of particles in the neighbour-
hood of collision. Specific features of the time-asymmetric model with
attractive vector interaction in My have been analyzed in [48]. Following
this work, in the framework of Hamiltonian description the interesting
possibility exists to continue smoothly world lines through the collision
point. In our terms it is sufficient for this purpose to suppose formally
that after the collision the variable r becomes negative. Then we have
fo(r,M) >0, r € [-2a/M,0), and the motion of particles can be con-
tinued up to the distance |r| = 2a/M. At this point which is also critical
both particles reach (but not exceed) the speed of light. Again, one can
smoothly continue world lines up to the next collision e.t.c. We note
that A <0, r € (—2a/M,0). Thus the segments of world lines obtained
as above do not follow from the Lagrangian description. The resulting
world lines combine the Lagrangian and non-Lagrangian segments sepa-
rated by the collision points. They describe the bound periodic motion of
particles. The corresponding phase trajectory and world lines are shown
in figure 2 and 3 respectively.

The formal continuation of evolution proposed above permits some
reinterpretation in terms of the Lagrangian description. Expressing the
quantities 6, o, and ¢ in terms of canonical variables one can examine
that some of them have wrong (i.e., negative) sign if r < 0, i.e., if particles
pass non-Lagrangian segments of world lines. Equivalently, one can keep
r > 0 changing signs of some constants m,, a, and 5 in the Lagrangian
(41), (42). In such a manner one can realize that particles move as if each
one changes signs of its rest mass and charge, m, = —mg, ¢o = —qa,
once it passes a critical point with the speed of light. We note that at the
collision point one of world lines is timelike. Thus the mass and charge of
this particle remain unchanged up to the next critical point. As a result,
after having passed the non-Lagrangian segment each particle returns
its proper values of mass and charge.

5. Semiclassical estimates of Regge trajectory

It is well known that nonrelativistic potential model with the linear
potential leads to the Regge trajectory with the unsatisfactory asymptote
M ~ S2/3_ Here we do not propose a quantum version of the present
model, but we make the estimates of the Regge trajectory from what
follows.

Usually the Regge trajectories in the potential models are calculated
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in the oscillator approximation [3]. Then the leading Regge trajectory
originates from the classical mechanics: it is close to the curve of circular
motions on the (M2, S)-plane.

In our case this curve follows from the equation (64) for @« = 0 or
from (75) in the general case. The latter has in the ultrarelativistic limit
M. — oo the desirable linear asymptote:

M? ~ 6V3BS + 6 (m* — 3ap) . (77)

It is remarkable that this asymptote is achieved only by taking account
of a relativity.

BS 10 4 2 1
2
154 ™M

1.0 4 -~ 0

0.5

0.0 T T T T T
0 1 2 3 4

Figure 4. Classical Regge trajectories;

— from general time-asymmetric model

at various rates of parameters; — — — from time-symmetric model.

Let us compare the classical Regge trajectory (64) of purely con-
finement time-asymmetric model to that which follows from the time-
symmetric Fokker-type confinement model with the same parameters
mi1 = me = m and (. Considering the circular orbit solution, given in
[33]%, for large M one can obtain:

M? ~ 4(1 + sin¥){2 cos ¥ BS + m?}, (78)

where the angle
¥ = 0.7391 =~ 0.23537 (79)

1Such a solution given in [34] seems to contain a miscount.
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is the solution of the transcendental equation
¥ = cos . (80)

The only difference between the asymptotes (77) (with a = 0, of course)
and (78) consists in slightly different numerical factors at the linear and
constant terms

linear terms constant terms
6v/3 ~ 10.3923 6 (81)
8cos (1 + sind) =~ 9.8955 4(1 + sinv) =~ 6.6944

Moreover, it turns out that by the substitution ¢ = 7/6 instead of (79)
into the r.h.s. of (78), the latter reduces to (77) (with & = 0). In the non-
relativistic limit both the time-symmetric and time-asymmetric (purely
confinement) models lead to the same relation:

N 35 \? /3
M, 2m~3<2\/ﬁ> (82)
which is known from the nonrelativistic linear confinement model. Clas-
sical Regge trajectories from the general time-asymmetric model as well
as one from time-symmetric model are shown in figure 4.

These purely classical results give us the base to consideration of
semiclassical quantization of the model. By analogy with WKB approx-
imation method we put

S=h{l+1), (=0,1,... (83)

for the quantized internal momentum, and
%krdr =27h(n, + 3), n,=0,1,... (84)

for radial excitations; the integral runs over the classical phase trajectory.
In the case of purely confinement model we have:

T2

/dr\/f(r, LS = 7h(n, + 1), (85)

T1

Using the oscillator approximation [3,6] we expand the function
f(r,M,S) (59) about the circular orbit to first nonvanishing orders in
AM = M — M. and Ar =r — r.. The result is as follows:

f(r,M,S) = a*(M,S) — b*(S)(Ar)?, (86)
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where
of(r,M,S) M (M2 + 2m?)
2 _ 3 ’ — [4
a”*(M,S) = i CAM —(MCZ T 8m?) AM, (87)
2 M 2732 M2
(s) = - LA M SNES
2 0r? . A(M2—4m?2)(M?2 + 8m?)

and the function M. (S) is defined in (64). Then the integral in L.h.s. of
(85) is easily calculated:

a/b )
| dan Ve w35 (89)
—a/b

Using (85)—(89) and assuming that AM is small compared to M, we
obtain for M? the expression:

6v3Bh [ M2 + 8m?2 .
M2+ om2\ M2 — am? (n + E) (90)

M? = M? {1 +
which together with (83) and the definition (64) of the function M.(S)
describes the leading (for n,. = 0) and daughter (for n, = 1,2,...) Regge
trajectories.
Similarly, in the case of general model we obtain the Regge trajecto-
ries determined in the implicit form by the equations

M2 = M) {1+ Fey (n, + )}, (91)
() = \/[1+2)\+l/(1+‘)\)2] [3+(1+1/)(1+/\)2+31/(1+/\)4], (92)
T+ A21+vA+N]VA2+A)
and (75), (83). At large £ these trajectories reduce to linear ones,
M? = 6V3Bh(L + n, + 1) + 6 (m* — 3a) , (93)

so that the daughters are parallel to leading trajectory. Moreover, states
of unit internal momentum differences form into degenerate towers at a
given mass. This tower structure is of interest for the meson spectroscopy,
as it is intimated in [6]. The number of relativistic potential models based
on single-particle wave equations [4,6-8] as well as two-particle models
with oscillator interaction [15,12] lead to degeneracy of £+ 2n,. type, but
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Figure 5. Semiclassical Regge trajectories; m = 1.27 GeV, a = 0.5, 8 = 0.2 GeV?;
a) oscillator approximation; b) numerical solution.
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M? [GeV?]

0 5 10 15 20 25 30

Figure 6. Semiclassical Regge trajectories; m = 0.005GeV, a = 0.8, = 0.2 GeV?;

a) oscillator approximation; b) numerical solution.
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not of £+ n, type?. The latter cannot be reproduced by single-particle
relativistic models with the vector and scalar potentials, as it is shown
in [6].

Figures 5 and 6 present two examples of semiclassical Regge trajec-
tories which are characteristic for heavy and light mesons respectively.
Trajectories in figures 5a and 6a are calculated in the oscillator approx-
imation which is good for n, < ¢. Thus curved segments of daughters
at n, > £ are not sure. This is evident by comparison to trajectories of
the same case which are shown in figures 5b and 6b. They are obtained
by the numerical solving of the equation (84) where the integral in Lh.s.
of (84) runs over phase trajectories of general model. We note that due
to (83) phase trajectories in this case correspond to S > 0 (see figure
1), and thus they are free of critical points discussed in Subsection 4.3.
It is remarkable that numerical solutions for mass spectrum is well de-
scribed by the asymptotic formula (93) even at small ¢. This is especially
concerned with the case of light mesons (figure 6b).

6. Conclusion

In the present paper we have traced the relation between the nonstan-
dard classical Yang-Mills field theory which arises from the consideration
of QCD in the infrared region [30] and the classical relativistic two-
particle models with confinement interaction formulated in the frame-
work of Fokker formalism. It is notable that the use of Abelian poten-
tials following from NT provides the confining interaction of particles.
The time-symmetric (purely confinement) model turns out known in the
literature [33,34] where, although, it was constructed as a priori action-
at-a-distance model.

The present time-asymmetric confinement model could be regarded
as a classical relativisation of the primitive quarkonium model. It has a
number of features which are expected for models of this kind but which
usually are not realized together.

1. The model is a self-consistent relativistic two-particle model. It
allows the Lagrangian and Hamiltonian formulations. The quantities in
terms of which the model is built have clear physical meaning. In the
case S > 0 solutions of this model lead to smooth timelike particle world
lines. If S = 0, the collision critical points occur in which particles reach
the speed of light. In this case, although, world line can be smoothly
continued as well. In both cases a particle motion is bound.

2In the models presented in [7,8] the degeneracy appears if to neglect the spin of
quarks.
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2. Estimates of Regge trajectory from classical mechanics shows that
it has a proper asymptote while the corresponding nonrelativistic poten-
tial is linear. This feature is not derivable from nonrelativistic models.
The parameters of a linear rise following from the time-symmetric and
time-asymmetric models differ from one another by near 5 %. One can
hope that other long-range effects which should follow from the forth-
coming study of purely retarded, time-symmetric and time-asymmetric
confinement interactions differ slightly as well.

The semiclassical consideration leads to the interesting degenerate
tower structure of meson spectrum which probably exists in nature.

3. The interpretation of an interaction in terms of some field theory
is very important in RDIT. Hopefully, the knowledge of field equations
and corresponding variational principle underlying the model allows to
include properly into consideration spinning particles and then to con-
struct the quantum-mechanical description.

Appendix

A. Green’s functions for field equation of NT.

Let us consider the equation (20) (here we omit unessential Greece in-
dices and the factor x?),

0% A(z) = 4nJ (). (A1)
It can be recast into the set of two d’Alembert equations,
O A(z) = B(x), (A.2)

O B(z) = 4nJ(z). (A.3)
Solving them yields the following formal expression for A(x):

A= %Dn * B = %Dn % Dy % J, (A4)
where 17 and 7’ can independently take values +1, -1, or 0.

Since the convolution of distributions is not guaranteed to be a well
defined operation [49], we have to examine all possible combinations of
n and 7’. Actually, it is sufficient to consider the cases n = +1, n' = £1;
other cases where = 0 or/and ' = 0 reduce to the previous ones
due to the linearity of equations (A.2), (A.3) and the equality Dy =
1D+ +Do).
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Let us write down the expression (A.4) in the explicit form,

1
Alw) = 4 [dy [a=D,0Dy (I -y -2 (A5)
Representing D, in the form
D, (@) = 20(na®)3(a®) = 6(° — nlx/Ixl,  n==%1, (A6

where x = {2%,i = 1,2, 3}, yields for (A.5) the expression

1 J($0—77|Y|—77'|Z| X—y—1)
Alz) = — /d3 /d3z ’ ) A7

or, in terms of new variablesu=y +z, v=y — z,

A(x) = i/d3u/d3v><
8w

J(@° = snu+v|—3n'lu—v|, x —u)

(A.8)

lu+v||u-—v|

Let us calculate the internal integral over d®v in r.h.s. of (A.8). Ex-
pressing Cartesian coordinates vy, v, vs of v in terms of ellipsoidal
coordinates,

v = |ul\/(6%2 = 1)(1 = 72)cosy,

vy = |ul\/(62 —1)(1 —72)siny,

vy = |uloT, (A.9)
c>1>71> -1, 0<p<2m,

we obtain

00 1 2m
1
Alxz) = —/d3u|u|/da/d7'/d<p><
8w
1 10

0 _ o, n'=m _
><J<x 7]|u|><{7_7 n,:_n},x u>. (A.10)

If n’ = —n this integral diverges due the factor flooda. In the case ' =7
it reads:

Az) = %/d3u [u] /dUJ(xO —nluo, x — u). (A.11)
1
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Using the change of the variable ¢ — u® = n|u|o we obtain the final
expression for A(zx):

(@) = 1 /d4u O ()0 (u2)J (z — ). (A.12)

It follows from (A.12) that fundamental solutions to the equation (A.1)
are:
E,(z) = 10(nz°)0(2?), n==%l1. (A.13)

Since their supports are the interiors of future— and past-oriented light
cones, these distributions are the retarded and the advanced Green’s
functions of the equations (A.1). The time-symmetric Green’s function
is constructed by linearity,

Eo(x) = 3(E(2) + E_(2)) = 10(«?). (A.14)

Egs. (A.13), (A.14) are unified in eq. (21).
We note that some complex fundamental solution to (A.1) is obtained
by means of another technique in [49],

Eu(z) = = In(a? % i0). (A.15)
47
Its real part,
RE.(z) = 1(O(?) — 1), (A.16)

coincides with the symmetric Green’s function (A.15) up to a constant
(which is the solution of homogeneous equation). This solution can be
considered as the analogue of the Feynman propagator in QED,

+i

Del@) = ez oy

(A.17)

real part of which is the symmetric Green’s function of d’Alembert equa-
tion.

B. Analysis of DPM for general model.

Let us introduce the dimensionless positive quantities:

2« M S af
== == == B.1
Mr P o T VT e (B.1)

é-:
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and functions:

Felemo) = 1+2£—§_§/u2h(£ ), (B2)
Ei(f:l‘l‘:a) = g wn, o 7(57/”70' (B 3)
d(& p,0) = (& p,0)+ 0 < f) (B.4)
_ 1 v

maemo) = 3| z0+9% (c- )], @®

which are related to (70)-(73) as follows:
Fel€mo) = rzfa(rM,S) B.6)
heltmo) = 1pzhe(rM,S) B.7)
A€ o) = o, M,S) (B.3)
g*(fauag) = Wg(ra M, S) (Bg)

Then DPM is determined by conditions:
f-(&n,0) >0, (B.10)
A=(1+8*~F (&p0) >0, (B.11)

Although ¢ is positive by definition, it is useful to consider the functions
(B.2)—(B.5) of ¢ for £ € R.

First of all we consider the condition (B.10). It follows from (B.5)
and (B.4) that

§-(€) >0,  £e(0,v/u?, (B.12)
d(€) > g2.(¢), € € (—00,0) U (v/?,00), (B.13)
d(&) = g2.(¢), £=0,v/p?, (B.14)
d(&) < g2.(¢), €€ (0,v/p?). (B.15)
Thus from (B.12)—(B.14) we obtain

d¢) >0, € € (—00,0]U[r/u?, ). (B.16)

Using the equivalent form of d,
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we obviously have

(&) > g1.(¢), £ € (—o0, =1) U (0,v/p?), (B.18)

J( ) :gi(f)a EZ _170=V/:U'2= (Blg)

d(€) < 73.(8), €€ (=1,0)U (v/p?, 00), (B.20)
and then, from (B.16) and (B.18),

) >0, EeR (B.21)

Hence the functions h(€), f+ (&) (as well as h4(r), f+(r)) are real.
Taking into account (B.3), (B.12)-(B.15), and (B.21) one obtains

ﬁ+(£) > 07 f € (07’//“2)7 (B22)
}_7’+(£) =0, f =0, V/:U“Qa (B23)
hi€) <0, €€ (-00,0)U(n/pt,00)  (B.24)
Thus, using (B.2) and (B.22)—(B.24) we conclude that
fe(©) >0,  £e€[-1/2,00). (B.25)

We note that the function f, (€) is smooth at & = v/p?.
In order to clarify the behaviour of the function f_(§) for £ > 0 let
us consider the function fi f . It can be presented in the form:

o 1+4¢
J+(Of-(&) = e V/Mgﬂ(f); (B.26)

where

e = +29 [a+9 (e- %) - e ~furoe @an

is 4th-order polynomial (in terms of original quantities it is written down
in Lh.s. of (74)). It is evident that

) < 0 for |€] large. (B.28)
Moreover, it is easy to examine that

II(¢) <0, ¢ € (—oo0, =1]U[0,v/p?, (B.29)
(1) > 0. (B.30)

Thus II(¢) has two negative roots, & and &, —1 < & < —1/2 < & <0,
which exist at arbitrary (positive) values of u, o, and v. The number of
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positive roots, should they exist, is not more than two. Let us note that
one can choose the sufficiently large value of o such that II(¢) > 0, & > 0.
On the other hand, at S = 0 there exists £+ > 0 such that II(§) > 0,
& > &4 Thus, given p and v, two other roots, & and &4, are positive for
sufficiently small values of o, and v/u? < & < &;. In this case we have:

11(¢) > 0, £ € (§1,6) U (&, 6), (B.31)
H(f) < 07 f € (_00761) U (62763) U (647 OO) (B32)

Hereafter we restrict all functions on £ > 0. Using (B.26), (B.31),
(B.32), and (B.25) one concludes that
f-(© >0, €€ (0,v/u*) Ulgs, &, (B.33)
<0,

f—(f) 56 (V/H2,£3)U(£4,OO), (B34)

and this function has a pole at £ = v/u?.
Now let us consider the condition (B.11) which can be presented in
the following form:

At [g+<f,u,o> n \/d(g,m] S0, (B33)

Using (B.18), (B.20) and the evident inequality

g+(§) > 07 f € (V/:u27 00)7 (B36)
one concludes that

A>0, €€ (/i 00), (B.37)

A <O, €€ (0,v/p?). (B.38)

Finally, taking into account (B.33), (B.34), (B.37), and (B.38), we
find DPM: & < € < &, ie., r1 <7 < 1o, where 1y = 2a/(M&,), ro =
20/ (M&3). It disappear if &3 — &. The degenerated case {3 = & = &,
where £, satisfies the set of equations:

H(fe) =0, H’(fc) =0, (B39)

corresponds to circular orbit motion. The set (B.39) in this case can be
considered as a relation between M and S which is presented by (75),
where A = 1/¢..
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