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1 ðÒÅÐÒÉÎÔ1. IntroductionPotential models of hadrons originate from the quantum chromodynam-ics (QCD), but they are not rigorously deducible from the theory. Rather,these models are substantiated by various approximate approaches andestimates in QCD [1]. Various models have their own areas of applica-tion. In particular, the linear potential which follows from area law inthe lattice approximation of QCD, describes, by construction, the staticinteraction of quarks [2]. Thus it can lawfully be exploited only in non-relativistic potential models [3].The description of light meson spectroscopy needs the developmentof appropriate relativistic models. They frequently are built as single-particle wave equations [4{8] which is not satisfactory. Actually, mesonsshould be treated as composite two{quark relativistic systems. The re-liable basis for this purpose is the relativistic direct interaction theory(RDIT) presented by various approaches and formalisms [9], such as La-grangian formalism with higher derivatives [10], relativistic Hamiltonianmechanics [11,12], canonical formalism with constraints [13], Fokker-typeaction formalism [14] etc.Given a nonrelativistic potential, RDIT determines the general struc-ture of its relativistic counterpart. In so going the great arbitrarinessarises in the choice of concrete relativistic interaction. Consequently, thevariety of relativistic potential models has appeared in the literature [15{25]. Each of them has its own advantages and areas of application, butthese models are not substantiated by QCD better than nonrelativisticmodels.A possible way to substantiate relativistic direct interactions leadsthrough classical �eld theory. Especially, we mean the Fokker-type ac-tion formalism which, among other approaches to RDIT, is most closelyrelated to this theory. There exists the class of Fokker actions which cor-respond to particle interactions via linear �elds, such as scalar, vector,and other tensor �elds [26{28]. These actions are built on the solutionsto relevant wave equations. In the nonrelativistic limit they lead to thesame Coulomb (or Yukawa) potential.Working within this scope for the con�nement case, one could tryto proceed from some solution to classical Yang{Mills equations. Butno such solutions leading to con�ning potentials are known in the lit-erature. Moreover, they are believed to not exist due to the essentiallyquantum nature of con�nement. This is concerned with standard Yang{Mills theory while there exist various nonstandard theories which involvee�ective Yang{Mills �elds arising from QCD. These theories may be used
ICMP{98{24E 2as sources of con�ning potentials.In the present paper we �nd the relation between certain nonstan-dard classical theory of Yang{Mills �eld and the Fokker-type con�ne-ment model. The former is developed in [29]. This theory describes non-Abelian gauge �eld averaged over quantum uctuations. It is based onthe e�ective Lagrangian obtained from the study of infrared behaviourof gluon Green's functions in QCD [30]. Field equations following fromthis Lagrangian are of 4th order, and some static non-Abelian solutionsto them have been used in a sort of bag con�nement model [31,32].Here we obtain from this theory the Abelian retarded and time-symmetric potentials of moving pointlike source. Both of them are ofcon�ning type and reduce in the nonrelativistic limit to the linear po-tential. Then, using these potentials, we construct the time-asymmetricand time-symmetric Fokker-type actions. The latter is already knownin the literature. Two equivalent versions of this action have been pro-posed by Rivacoba [33] and Weiss [34]. It is noteworthy that both theauthors proceeded from general preliminaries of RDIT, without referringto �eld{theoretical interpretation of particle interaction.The time{symmetric action leads to di�erence{di�erential equationsof motion which are di�cult to deal with. The only circular{orbit solu-tions to these equations are found in [33,34]. Contrastingly, the dynam-ics following from the time-asymmetric action is well de�ned in termsof second-order di�erential equations of motion. Thus this action can beconsidered as the classical background model of relativistic two-quarkquantum dynamics. Following [35,36], we reformulate this model intothe Lagrangian formalism. Then we transit to the Hamiltonian formal-ism, and integrate the two-body problem in quadratures.The time-asymmetric analogue of Rivacoba-Weiss model is the sim-plest version of relativistic con�nement model. It can be appropriate forthe classical description of light mesons for which the con�nement in-teraction dominates. To include into consideration also heavy mesonsone can modify the present model by adding to the action the vector-type interaction term from the time{asymmetric version of the Wheeler-Feynman electrodynamics. This corresponds to the taking account ofAbelian solution to the standard Yang{Mills equations (i.e., the classi-cal analogue of one-loop correction in QCD). In the nonrelativistic limitthis mixture leads to the well known Coulomb plus linear potential. Themodi�ed model becomes appreciably cumbersome but still remains solv-able.Here we do not propose a quantum version of the present model. In-stead, we make some estimates of the Regge trajectory from classical and



3 ðÒÅÐÒÉÎÔsemiclassical considerations and obtain a physically reasonable result.The paper is organized as follows. In Section 2 we obtain the Abelianpotentials of moving pointlike sources from the standard and nonstan-dard theories of Yang-Mills �eld. The formers are the Lienard-Wiechertpotentials and their causal modi�cations while the latters turn out tobe the modi�cations of potentials proposed by Weiss. They are obtainedwith the Green's functions found in Appendix A. In Section 3 we presentequations of particle motion following from the standard and nonstan-dard theories, and construct corresponding time-symmetric and time-asymmetric Fokker-type integrals. The latter is used as the base of time-asymmetric con�nement model. In Section 4 this model is reformulatedin the framework of the Hamiltonian formalism. Various special cases oftwo-body problem are considered in Subsections 4.1{4.3 and AppendixB. Estimates of Regge trajectory are quoted in Section 5. Section 6 isdevoted to general discussion of the model.2. Abelian potentials from the standard and nonstan-dard theories of Yang-Mills �eldWe shall consider both the standard and nonstandard classical theoriesof the Yang-Mills �eld. The standard theory (ST) is based on the wellknown Yang-Mills Lagrangian [2]LST = � 116� hF�� ;F��i � hJ�;A�i: (1)The nonstandard theory (NT) proceeds from the e�ective Lagrangian[30,29]LNT = 116��2 hr�F�� ;r�F��i+ �24��2 hF �� ; [F��;F��]i� hJ�;A�i: (2)Here the components of the gauge �eld A�(x) (� = 0; 3) and the cur-rent of sources J�(x) take values in the Lie algebra G of gauge group;[X;Y], hX;Yi, and r�X � @�X� [A�;X] are the Lie brackets, the Killing{Cartan metrics, and the covariant derivative, respectively, de�ned for anyX;Y 2 G; F�� � @�A� � @�A� � [A�;A� ] is the tension tensor; � is someparameter of the dimension of inverse length, and � is meant here as anarbitrary dimensionless parameter. We suppose that the gauge group isthe semi-simple compact group, so that the Killing{Cartan metrics isnondegenerate and positively de�ned. In the real matrix representation
ICMP{98{24E 4it can be presented in the formhX;Yi = � 1NR tr(XY);where the number NR depends on the representation chosen. Greeceindices move due to the metrics ��� of the Minkowski space{time M 4which is chosen timelike, i.e., k���k = diag(+;�;�;�).Field equations following from the Lagrangians (1) and (2) arer�F�� = 4�J�; (3)and �2r�r2 � (1 + �)r�r�r� + �r2r�	F�� = 4��2J�; (4)respectively. Both of them are compatible provided the current J� iscovariantly conserved, r�J� = 0: (5)In the present paper we are interested in the relativistic system ofN pointlike charged particles interacting via the Yang{Mills �eld. Thecurrent J� corresponding to this system is [37]J�(x) �Xa J�a(x) =Xa Z d�aQa _z�a�(x � za): (6)Here z�a (�a) (� = 0; 3; a = 1; N) are the space-time coordinates of athparticle world line in M 4 parametrized by an arbitrary evolution pa-rameter �a, _z�a (�a) � dz�a=d�a, and Qa(�a) is the charge of ath particle.Substituting (6) into (5) one obtains the Wong equations [37] determin-ing the evolution of charges,_Qa = _z�a [A�(za);Qa]; a = 1; N: (7)The total action corresponding to �eld + particle system can bewritten down as follows:I = Z d4xL �Xa maZ d�aq _z2a; (8)where L is LST or LNT, and ma is the rest mass of ath particle. Thevariation of the action (8) over A� yields the �eld equations (3) or (4).Varying this action with respect to particle positions z�a and taking ac-count of (7) one can obtain the following equations of particle motion:dd�a m _za�p _z2a = hQa;F��(za)i _z�a : (9)



5 ðÒÅÐÒÉÎÔIn order to determine motion of particles it is necessary to solve thetotal set of linked equations, namely, the �eld equations [(3) or (4)], theWong equations (7), and the equations of motion (9).We intend to formulate a particle dynamics in the scope of RDIT.For this purpose one should eliminate �eld variables A�(x) in favour oftheir expressions in terms of particle positions z�a and, possibly, chargesQa. In other words, it is necessary to �nd a solution to �eld equations.But this task is very complicated because of nonlinearity of the problem.Here we limit ourselves by search of Abelian solutions to �eld equa-tions. Let us suppose thatA�(x) = nA�(x); J�(x) = nJ�(x); Qa(�a) = nQa(�a) (10)etc., where n is a unit constant vector in G. In this case all Lie-bracketedexpressions vanish, in particular,F��(x) = nF��(x); F��(x) � @�A�(x) � @�A�(x); (11)and r� reduces to @�. The Wong equations (7) yield_Qa = 0 =) Qa = qa = const: (12)Then the �eld equations (3) and (4) reduce to@�F �� = 4�J�; (13)and @� � F �� = 4��2J�; (14)respectively, where the currentJ�(x) �Xa J�a (x) =Xa qaZ d�a _z�a �(x� za) (15)is conserved identically, i.e., @�J� � 0. Due to this fact both theequations (13) and (14) are gauge invariant with respect to the one-parametric (compact) group of residual symmetry.At this point we have come to the linear �eld equations which can besolved by means of the Green's function method. In the standard case wedeal exactly with the electromagnetic problem. Using the Lorentz gauge�xing condition, @�A� = 0; (16)we reduce the equation (13) to d'Alembert equation,�A� = 4�J�; (17)
ICMP{98{24E 6and immediately obtain its solution,A� = D� � J�; (18)where � denotes the convolution, andD�(x) = (1 + � sgnx0)�(x2); (19)is one of the retarded (� = +1), advanced (� = �1), or time-symmetric(� = 0) Green's functions of d'Alembert equation.Let us consider the equation (14) of the nonstandard theory. Usingthe Lorentz condition (16) one reduces it to the following equation:�2 A� = 4��2J�; (20)which is of 4th order. In Appendix A the corresponding retarded, ad-vanced, and time-symmetric Green's functions are calculated. They are:E�(x) = 14�2(1 + � sgnx0)�(x2): (21)Thus the solution to (20) reads as (18), but with E� instead of D�.Actually, the linearity of equations (17) and (20) allows solutions ofmore general structure,A� =Xa A�a =Xa G�a � J�a ; (22)where G�a = D�a for ST, and G�a = E�a for NT. Here �a take values+1, -1, or 0, each own for di�erent particles.In an explicit form the solutions (22) can be written down as follows:A�(x) =Xa A�a(x) =Xa qaZ d�a _z�aG�a(x� za); (23)where the quantity A�a(x) represents the relativistic potential created byath particle. In both the ST{ and NT{cases each particle potential (aswell as the total sum (23)) satis�es the Lorentz condition (16).Up to the numerical factor, the only di�erence between (19) and (21)is that the function �(x2) is replaced by �(x2). This substitution wasguessed by Weiss in [34] where the time-symmetric potential (in our case,Eqs (23) with G�a = E0; a = 1; N) has been proposed for the model ofthe action-at-a-distance linear con�nement.



7 ðÒÅÐÒÉÎÔ3. Equations of motion and Fokker-type action inte-gralsNow the equations of particle motion can be obtained in a closed form bysubstitution of the relativistic potentials (23) and the constant charges(12) into the right-hand side (r.h.s.) of (9). In the standard case thisprocedure leads to an appearance of divergent self-action terms whichcan be regularized in usual way [38]. The resulting equations of motioncan be presented in the form:dd�a m _za�p _z2a = qaXb 6=a Fab�� _z�a +Ra�; (24)whereFab�� = 2qbZ d�b(1 + �b sgn z0ab)�0(z2ab) fzab� _zb� � zab� _zb�g ; (25)zab � za � zb, andRa� = 23�aq2a���� � _za� _z�a_z2a � dd�a 1p _z2a dd�a _za�p _z2a ; (26)The self-action terms Ra� correspond to radiation reaction. They disap-pear if �elds generated by particles are time-symmetric (i.e., if �a = 0).In the nonstandard case no divergences and self-action terms arise.Thus the equations of motion are calculated immediately. They are de-scribed by (24) with Ra� = 0 andFab�� = 12�2qbZ d�b(1 + �b sgn z0ab)�(z2ab) fzab� _zb� � zab� _zb�g : (27)We have obtained the closed set of equations of particle motion whichare not obvious to be directly deducible from the variacion principle.Below we construct the relevant Fokker-type version of the theory andexamine it consistency with the equations obtained above.The purpose is to eliminate �eld variables from the total action (8).Using (10){(12) in (1), (2), and then in (8), one obtains the actionI = Ifree + Iint + I�eld; (28)where Ifree = �Xa maZ d�aq _z2a; (29)
ICMP{98{24E 8Iint = �Z d4x J�A�; (30)are the same for ST and NT while I�eld is di�erent:I�eld = � 116�Z d4xF��F�� ; (31)for ST, and I�eld = 116��2Z d4x (@�F��)(@�F��); (32)for NT. The term I�eld can be transformed to the formI�eld = 18�Z d4xA�@�H�� +� surfaceterms � ; (33)where H�� = F �� for ST, and H�� = �F ��=�2 for NT. Taking intoaccount the �eld equations (13) and (14) in r.h.s. of (33) and omittingsurface terms, we obtain I = Ifree + 12Iint: (34)Now substituting the current (15) and the potential (23) into (30), onecan present the second term in r.h.s. of (34) in the following form:12 Iint =XXa < b Iab + 12 Xa Iaa; (35)where Iab = �qaqbZ Z d�ad�b _za � _zbG�ba(zab); (36)and �ba � 12 (�b � �a). In the ST{case the self-action term Iaa diverges.It can be regularized and uni�ed with ath term of Ifree. In the NT{casethis term vanishes. Thus in the both cases the resulting interaction term12Iint has the form:12Iint = �XXa < b qaqbZ Z d�ad�b _za � _zbG�ba(zab); (37)where G�ba = D�ba for ST, and G�ba = E�ba for NT.In the case of NT each constituent (36) by means of integration viaparts (see [39] for such a technique) can be transformed to the following



9 ðÒÅÐÒÉÎÔform (here we omit all unessential constant factors):+1Z�1 +1Z�1 d�ad�b _za � _zb (1 + �ba sgn z0ab)�(z2ab)= �2 +1Z�1 +1Z�1 d�ad�b (zab � _za)(zab � _zb)(1 + �ba sgn z0ab)�(z2ab)�12""(1 + �ba sgn z0ab)�(z2ab)z2ab#�a=+1�a=�1#�b=+1�b=�1: (38)The second term in r.h.s. of (38) is divergent, but it does not contributein equations of motion and can be omitted. Then the interaction term(37) for NT can be put in the equivalent form,12Iint = �22 XXa < b qaqbZ Z d�ad�b (zab � _za)(zab � _zb)D�ba(zab): (39)Fokker{type equations of motion following from this action di�erfrom those (24) directly obtained from the �eld theory. Firstly, they donot reproduce the self-action terms Ra� which, in general, are present inr.h.s. of equations (24) for ST. In this paper we suppose that these termscan be neglected since in QCD a radiation is suppressed by con�nement.Secondly, the sign factors �b in the expressions (25) and (27) for Fab��are replaced by �ba. This changes the causal structure of pair particleinteractions. Namely, while equations (24) correspond to retarded, ad-vanced, or time-symmetric �elds generated by bth particles (and sensedby ath particle) for �b = +1, {1, or 0, respectively, in the Fokker{typeequations the causality of interactions is its own for di�erent pairs ofparticles.There are only two cases in which the direct interaction can be treatedas a �eld-type one. The �rst case corresponds to the time-symmetricinteraction, for which �a = �ba = 0, a; b = 1; N . For ST the action(34), (29), (37) in this case coincides with the Wheeler{Feynman actionof time-symmetric electrodynamics [40]. For NT it corresponds to theaction-at-a distance con�nement model in the form by Weiss [34]. TheRivacoba's form of this action integral [33] follows from (39).The second case which is tractable in terms of �eld interaction re-alizes only for two-particle systems. It corresponds to the choice �2 =��1 = �21 � � = �1. For ST this is the case of the time-asymmetric
ICMP{98{24E 10electromagnetic interaction proposed by Staruszkiewicz [41], Rudd andHill [42], and studied in more detail in [43,44]. For NT the correspondingtime-asymmetric Fokker-type action can be taken as the classical basefor relativistic con�nement model.4. Time{asymmetric model with con�nement inter-actionIn this section we consider the two-particle model available for the classi-cal description of mesons. It is based on the time-asymmetric Fokker-typeaction which combines interaction terms (37) from ST and (39) from NT.Since mesons are chargeless systems, we put q1 = �q2 � q. Then thetime-asymmetric Fokker-type action has the form:I = � 2Xa=1maZ d�aq _z2a +Z Z d�1d�2D�(z12)��f� _z1 � _z2 � �(z12 � _z1)(z12 � _z2)g ; (40)where � � q2, � � 12q2�2, and � = �1. In the nonrelativistic limit thisaction leads to the well known interquark potential U = ��=r + �r.Integrating the second term of the action (4) once, we reduce thelatter to a single-time form [35,36]. Thus we obtain the description of ourmodel in the framework of a manifestly covariant Lagrangian formalismwith the Lagrangian functionL = �F (�1; �2; �); (41)where � � � _y �z > 0, z � z1 � z2, y � (z1 + z2)=2, �a � p _z2a=� > 0,� � _z1 � _z2=�2 > 0, and with the holonomic constraint z2 = 0, �z0 > 0. Allvariables in (41) depend on an arbitrary common evolution parameter� . In our case the function F has the form:F � 2Xa=1ma�a � �� + �: (42)We note that quantities �; �a; � in r.h.s. of (41) and (42) are well de�nedand positive if particle world lines are timelike.The transition to the manifestly covariant Hamiltonian descriptionwith constraints leads to the mass-shell constraint which determines thedynamics of the model and has the following form [35,36]:�(P 2; �2; P � z; � � z) � �free + �int = 0: (43)



11 ðÒÅÐÒÉÎÔHere �� � w��z� P�w=P�z; P� and w� are canonical momenta conjugatedto y� and z�, respectively; the function�free = 14P 2 � 12 (m21 +m22) + (m21 �m22) v �zP �z + v2 (44)corresponds to the free-particle system,�int = �(P 2 �m21 �m22)�P �z + �2�P �z 2Xa=1 m2aba + �� 2�� b1b2�P �z + �� (45)describes the interaction, andba � � � 12P �z + (�)�av �z� ; a = 1; 2; �a � 3� a: (46)We note, that the quantities �a are related to canonical variables bythe equations: �a = ma=(ba + �); a = 1; 2: (47)Since �a must be positive, the following conditions arise:ba + � > 0; a = 1; 2: (48)They restrict the whole phase space to a physical domain in which theHamiltonian description is equivalent to the Lagrangian one.In order to study the dynamics of the present model it is conve-nient, following [35,36], to transit from the manifestly covariant to three-dimensional Hamiltonian description in the framework of the Bakamjian-Thomas model [45{47]. Within this description ten generators of thePoincar�e group P�, J�� as well as the covariant particle positions z�a arethe functions of canonical variablesQ; P; r; k. The only arbitrary func-tion appearing in expressions for canonical generators is the total massjP j =M(r;k) of the system which determines its internal dynamics. Forthe time-asymmetric models this function is de�ned by the mass-shellequation [35,36] which can be derived from the mass-shell constraint viathe following substitution of arguments on the l.-h.s. of (43):P 2!M2; v2! �k2; P �z!�Mr; v �z!�k�r; (49)here r � jrj.

ICMP{98{24E 12Due to the Poincar�e-invariance of the description it is su�cient tochoose the centre-of-mass (CM) reference frame in which P=0; Q=0.Accordingly, P0 = M , J0i = 0 (i = 1; 2; 3), and the components Si �12" jki Jjk form a 3-vector of the total spin of the system (internal angularmomentum) S = r�k which is the integral of motion. At this point theproblem is reduced to the rotation invariant problem of some e�ectivesingle particle; such a problem is integrable in terms of polar coordinates,r = rer ; k = krer + Se'=r: (50)Here S � jSj; the unit vectors er, e' are orthogonal to S, they formtogether with S a right-oriented triplet and can be decomposed in termsof Cartesian unit vectors i; j:er = i cos'+ j sin'; e' = �i sin'+ j cos'; (51)where ' is the polar angle.The corresponding quadratures read:t� t0 =Z dr @kr(r;M; S)=@M; (52)'� '0 = �Z dr @kr(r;M; S)=@S; (53)where t = 12 (z01 + z02)CM is the �xed evolution parameter (unlike theundetermined one �), and the radial momentum kr, being the functionof r; M; S, is de�ned by the mass-shell equation written down in termsof these variables,� �M2; �k2; �Mr; �k � r�� ��M2; �k2r � S2r2 ; �Mr; �krr� = 0: (54)The solution of the problem given in terms of canonical variablesenables to obtain particle world lines in the Minkowski space using thefollowing formulae [35,36]: z0a = t+ 12 (�)�a�r; (55)za = 12 (�)�ar+ �r kM � �12(�)�a + � krM� rer + � SM e': (56)Especially, the vector z = z1 � z2 = r characterizes the relative motionof particles.



13 ðÒÅÐÒÉÎÔ4.1. Purely con�nement modelHereafter we restrict ourselves to the system of equal rest masses, m1 =m2 � m. The case � = 0 corresponds to purely con�nement interaction.The mass-shell equation in this case reads:S2r2 +m2 ��1� 2�rM �� 14M2 � k2r� = 0: (57)It easy to obtain from (57) the expression for kr(r;M; S),kr = �pf(r;M; S); � = �1; (58)f(r;M; S) = 14M2 � m2 + S2=r21� 2�r=M � 0: (59)Besides, we must take into account the condition:14M2 � k2r > 0 (60)which follows from (48). Then from (58){(60) we obtain the restriction:0 < r < 12M=�: (61)The quadratures (52), (53) with (58), (59) can be reduced to the el-liptic integrals. Here we omit their expressions. The integration is spreadover the domain of possible motions (DPM) which is determined by theconditions (59) and (61). In the case S > 0 DPM consists of the con-nected interval r1 � r � r2, where r1; r2 are positive roots of the equa-tion f(r;M; S) = 0. The latter can be presented as the reduced cubicequation with respect to 1=r:1r3 � M24S2 �1� 4m2M2 � 1r + M�2S2 = 0: (62)It has two real positive solutions provided the following condition holds:M �Mc(S); (63)where the function Mc(S) is de�ned in the implicit formS = M2c6p3� �1� 4m2M2c �3=2 ; Mc � 2m: (64)
ICMP{98{24E 14The equality in (63) corresponds to the case r1 = r2 � rc of circularparticle orbits with the distance between particlesrc = Mc3� �1� 4m2M2c � (65)satisfying the set of equations:f(rc;Mc; S) = 0; @f(rc;Mc; S)=@rc = 0: (66)In the limit S ! 0 the quadrature (53) yields ' = '0, and a particlemotion becomes one-dimensional (i.e., in the two-dimensional space-timeM 2 parametrized with x0 and, say, x1). Besides, r1 ! 0. Thus DPMbecomes 0 < r � r2. The point r = 0 corresponds to particle collision.This point is not singular for the quadrature (52) and particle coordinates(55), (56). Thus the motion of particles can be smoothly continued as ifthey pass through one another.4.2. General model, S > 0Let us consider the general case � > 0, � > 0. The corresponding mass-shell equation can be written down as follows:S2r2 ����� �2r2 ���1� 2�rM ��� 2m2M �M2 + �r �� = 0: (67)It is quadratic equation with respect to� � �M2 + �r �2 � k2r > 0; (68)where � must be positive because of the conditions (48). As to kr theequation (67) is biquadratic. Its solution can be presented in the followingform: kr = �pf�(r;M; S); � = �1; (69)where f�(r;M; S) = 14M2 +M�r � h�(r;M; S)1� 2�r=M ; (70)h�(r;M; S) = g(r;M; S)�pd(r;M; S) (71)d(r;M; S) = g2(r;M; S) +�1� 2�rM� �2S2r4 ; (72)g(r;M; S) = m2M �M2 + �r ���1� 2�rM � �22r2 + S22r2 : (73)



15 ðÒÅÐÒÉÎÔAmong two solutions f� for k2r we choose that one which is smooth inDPM and reduces to f (59) in the limit �! 0.DPM is analyzed in Appendix B. In the case S > 0 we haved(r;M; S) > 0, r > 0. Thus both the functions f�(r;M; S) are smoothprovided r 6= 12M=�, and f�(r;M; S) reduces to f (59) in the limit� ! 0. DPM in this case is determined by inequality f�(r;M; S) � 0provided the condition (68) holds. Similarly to the purely con�nementcase we obtain r1 � r � r2, where r1; r2 are positive roots of the equa-tion: S2r2 �M2 + �r �� � 14M2 +M�r �����1� 2�rM��M2 + �r �� 2m2M � = 0 (74)It can be reduced to a fourth-order algebraic equation which has two
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particle 2Figure 1. General model, S > 0. Typical example of phase (left) and particle (right)trajectories. Arrows show the direction of evolution; + { centre of mass.real positive solutions provided (63), where the function Mc(S) can bepresented in a parametric form,M2c (�) = 2m2�[4 + 5�+ 2�2 + �(1 + �)2(4 + 3�)](1 + �)3 ;S2(�) = �2 �(2 + �)2[1 + �(1 + �)2]4 + 5�+ 2�2 + �(1 + �)2(4 + 3�) ;� � ��m2 ; 0 < � <1: (75)
ICMP{98{24E 16The condition M = Mc(S) corresponds to circular orbits with rc =2��=Mc to be the distance between particles.Our attempts to express the quadratures (52), (53) with (69){(73)in terms of known (elementary and special) functions have not metwith success. Thus we calculated them with a computer. Neverthelessby means of analytic calculations it can be shown that particle worldlines in M 4 are timelike and smooth curves. They represent a bound mo-tion of particles for all values ofM allowed by (63), (75), and S > 0. Thetypical example of phase and particle trajectories are shown in �gure 1.4.3. General model, S = 0In the case S = 0 we have d(r;M; 0) = g2(r;M; 0). Since there exists thepoint r0 < �=m such that g(r0;M; 0) = 0, the functions f�(r;M; 0) arenot smooth. Moreover, in the domain r < r0 the function f�(r;M; 0) hasnot the proper form in the limit � ! 0. Thus the evolution of particlescannot straightforwardly be continued farther.We point out that the distance r0 at which the smoothness off�(r;M; 0) violates is smaller than �=m. The latter is an analogue of theclassical electron radius. In the case of strong interaction the distancer0 and the Compton length of quarks can be commensurable quanti-ties. Thus the classical description of particle motion at r < r0 maybe important for the construction of quantum theory. Especially, thisis concerned with the case of S{states. Below we propose the way tocontinue the particle motion in the domain r < r0. It leads beyond therigorous treatment of analytical mechanics and therefore cannot be areliable basis of quantum-mechanical description. But it will be notedthat this method arises naturally from the present model itself.Let us choose in r.h.s. of (69) the function:f0(r;M) � �f+(r;M; 0); r < r0f�(r;M; 0); r > r0= �M2 + �r ��M2 + �r � 2m2=M1� 2�r=M � ; (76)which is smooth provided r 6= 12M=�, and reduces to (59) if � ! 0.DPM in this case is 0 < r � r2 while the point r = 0 is critical: �!1,r ! 0. This means that the equivalence between the Lagrangian andHamiltonian formalisms violates. It can be shown that at the collisionone of particles reaches (but not exceeds) the speed of light while anotherdoes not. Again, the particle world lines should be somehow continuedfarther.
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Figure 2. General model, S = 0. Typical example of phase trajectory continued inthe non-Lagrangian domain r < 0. Arrows show the direction of evolution.
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Figure 3. General model, S = 0. Typical example of particle world lines. LS {Lagrangian segments; NS { non-Lagrangian segments; � { collision: one of particlesreaches the light speed; � { particles reach the light speed.

ICMP{98{24E 18The existence of a singular collision point is due to the time-asymmetric vector interaction from ST. The con�nement interactiondoes not change qualitatively the behaviour of particles in the neighbour-hood of collision. Speci�c features of the time-asymmetric model withattractive vector interaction in M 2 have been analyzed in [48]. Followingthis work, in the framework of Hamiltonian description the interestingpossibility exists to continue smoothly world lines through the collisionpoint. In our terms it is su�cient for this purpose to suppose formallythat after the collision the variable r becomes negative. Then we havef0(r;M) � 0, r 2 [�2�=M; 0), and the motion of particles can be con-tinued up to the distance jrj = 2�=M . At this point which is also criticalboth particles reach (but not exceed) the speed of light. Again, one cansmoothly continue world lines up to the next collision e.t.c. We notethat � < 0, r 2 (�2�=M; 0). Thus the segments of world lines obtainedas above do not follow from the Lagrangian description. The resultingworld lines combine the Lagrangian and non-Lagrangian segments sepa-rated by the collision points. They describe the bound periodic motion ofparticles. The corresponding phase trajectory and world lines are shownin �gure 2 and 3 respectively.The formal continuation of evolution proposed above permits somereinterpretation in terms of the Lagrangian description. Expressing thequantities �, �a and � in terms of canonical variables one can examinethat some of them have wrong (i.e., negative) sign if r < 0, i.e., if particlespass non-Lagrangian segments of world lines. Equivalently, one can keepr > 0 changing signs of some constants ma, �, and � in the Lagrangian(41), (42). In such a manner one can realize that particles move as if eachone changes signs of its rest mass and charge, ma ! �ma, qa ! �qa,once it passes a critical point with the speed of light. We note that at thecollision point one of world lines is timelike. Thus the mass and charge ofthis particle remain unchanged up to the next critical point. As a result,after having passed the non-Lagrangian segment each particle returnsits proper values of mass and charge.5. Semiclassical estimates of Regge trajectoryIt is well known that nonrelativistic potential model with the linearpotential leads to the Regge trajectory with the unsatisfactory asymptoteM � S2=3. Here we do not propose a quantum version of the presentmodel, but we make the estimates of the Regge trajectory from whatfollows.Usually the Regge trajectories in the potential models are calculated



19 ðÒÅÐÒÉÎÔin the oscillator approximation [3]. Then the leading Regge trajectoryoriginates from the classical mechanics: it is close to the curve of circularmotions on the (M2; S){plane.In our case this curve follows from the equation (64) for � = 0 orfrom (75) in the general case. The latter has in the ultrarelativistic limitMc !1 the desirable linear asymptote:M2c � 6p3�S + 6 �m2 � 3��� : (77)It is remarkable that this asymptote is achieved only by taking accountof a relativity.
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Figure 4. Classical Regge trajectories; ||{ from general time-asymmetric modelat various rates of parameters; { { { from time-symmetric model.Let us compare the classical Regge trajectory (64) of purely con-�nement time-asymmetric model to that which follows from the time-symmetric Fokker-type con�nement model with the same parametersm1 = m2 � m and �. Considering the circular orbit solution, given in[33]1, for large M one can obtain:M2c � 4(1 + sin#)f2 cos#�S +m2g; (78)where the angle # � 0:7391 � 0:2353� (79)1Such a solution given in [34] seems to contain a miscount.
ICMP{98{24E 20is the solution of the transcendental equation# = cos#: (80)The only di�erence between the asymptotes (77) (with � = 0, of course)and (78) consists in slightly di�erent numerical factors at the linear andconstant termslinear terms constant terms6p3 � 10:3923 68 cos# (1 + sin#) � 9:8955 4(1 + sin#) � 6:6944 (81)Moreover, it turns out that by the substitution # = �=6 instead of (79)into the r.h.s. of (78), the latter reduces to (77) (with � = 0). In the non-relativistic limit both the time-symmetric and time-asymmetric (purelycon�nement) models lead to the same relation:Mc � 2m � 3� �S2pm�2=3 (82)which is known from the nonrelativistic linear con�nement model. Clas-sical Regge trajectories from the general time-asymmetric model as wellas one from time-symmetric model are shown in �gure 4.These purely classical results give us the base to consideration ofsemiclassical quantization of the model. By analogy with WKB approx-imation method we putS = ~(`+ 12 ); ` = 0; 1; : : : (83)for the quantized internal momentum, andI krdr = 2�~(nr + 12 ); nr = 0; 1; : : : (84)for radial excitations; the integral runs over the classical phase trajectory.In the case of purely con�nement model we have:r2Zr1 drpf(r;M; S) = �~(nr + 12 ): (85)Using the oscillator approximation [3,6] we expand the functionf(r;M; S) (59) about the circular orbit to �rst nonvanishing orders in�M �M �Mc and �r � r � rc. The result is as follows:f(r;M; S) � a2(M;S)� b2(S)(�r)2; (86)



21 ðÒÅÐÒÉÎÔwhere a2(M;S) � @f(r;M; S)@M ����c�M = Mc(M2c + 2m2)(M2c + 8m2) �M; (87)b2(S) � � @2f(r;M; S)2 @r2 ����c = 27�2M4c4(M2c � 4m2)(M2c + 8m2) ; (88)and the function Mc(S) is de�ned in (64). Then the integral in l.h.s. of(85) is easily calculated:a=bZ�a=b d(�r)pa2 � b2(�r)2 = �2 a2b : (89)Using (85){(89) and assuming that �M is small compared to Mc weobtain for M2 the expression:M2 =M2c (1 + 6p3�~M2c + 2m2sM2c + 8m2M2c � 4m2 (nr + 12 )) (90)which together with (83) and the de�nition (64) of the function Mc(S)describes the leading (for nr = 0) and daughter (for nr = 1; 2; : : :) Reggetrajectories.Similarly, in the case of general model we obtain the Regge trajecto-ries determined in the implicit form by the equationsM2 =M2c (�)n1 + ~� �(�) (nr + 12 )o ; (91)�(�) = p[1+2�+�(1+�)2] [3+(1+�)(1+�)2+3�(1+�)4](1 + �)2[1 + �(1 + �)]p�(2 + �) ; (92)and (75), (83). At large ` these trajectories reduce to linear ones,M2c � 6p3�~(`+ nr + 1) + 6 �m2 � 3��� ; (93)so that the daughters are parallel to leading trajectory. Moreover, statesof unit internal momentum di�erences form into degenerate towers at agiven mass. This tower structure is of interest for the meson spectroscopy,as it is intimated in [6]. The number of relativistic potential models basedon single-particle wave equations [4,6{8] as well as two-particle modelswith oscillator interaction [15,12] lead to degeneracy of `+2nr type, but
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Figure 5. Semiclassical Regge trajectories; m = 1:27GeV, � = 0:5, � = 0:2GeV2;a) oscillator approximation; b) numerical solution.
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Figure 6. Semiclassical Regge trajectories; m = 0:005GeV, � = 0:8, � = 0:2GeV2;a) oscillator approximation; b) numerical solution.

ICMP{98{24E 24not of `+ nr type2. The latter cannot be reproduced by single-particlerelativistic models with the vector and scalar potentials, as it is shownin [6].Figures 5 and 6 present two examples of semiclassical Regge trajec-tories which are characteristic for heavy and light mesons respectively.Trajectories in �gures 5a and 6a are calculated in the oscillator approx-imation which is good for nr � `. Thus curved segments of daughtersat nr � ` are not sure. This is evident by comparison to trajectories ofthe same case which are shown in �gures 5b and 6b. They are obtainedby the numerical solving of the equation (84) where the integral in l.h.s.of (84) runs over phase trajectories of general model. We note that dueto (83) phase trajectories in this case correspond to S > 0 (see �gure1), and thus they are free of critical points discussed in Subsection 4.3.It is remarkable that numerical solutions for mass spectrum is well de-scribed by the asymptotic formula (93) even at small `. This is especiallyconcerned with the case of light mesons (�gure 6b).6. ConclusionIn the present paper we have traced the relation between the nonstan-dard classical Yang-Mills �eld theory which arises from the considerationof QCD in the infrared region [30] and the classical relativistic two-particle models with con�nement interaction formulated in the frame-work of Fokker formalism. It is notable that the use of Abelian poten-tials following from NT provides the con�ning interaction of particles.The time-symmetric (purely con�nement) model turns out known in theliterature [33,34] where, although, it was constructed as a priori action-at-a-distance model.The present time-asymmetric con�nement model could be regardedas a classical relativisation of the primitive quarkonium model. It has anumber of features which are expected for models of this kind but whichusually are not realized together.1. The model is a self-consistent relativistic two-particle model. Itallows the Lagrangian and Hamiltonian formulations. The quantities interms of which the model is built have clear physical meaning. In thecase S > 0 solutions of this model lead to smooth timelike particle worldlines. If S = 0, the collision critical points occur in which particles reachthe speed of light. In this case, although, world line can be smoothlycontinued as well. In both cases a particle motion is bound.2In the models presented in [7,8] the degeneracy appears if to neglect the spin ofquarks.



25 ðÒÅÐÒÉÎÔ2. Estimates of Regge trajectory from classical mechanics shows thatit has a proper asymptote while the corresponding nonrelativistic poten-tial is linear. This feature is not derivable from nonrelativistic models.The parameters of a linear rise following from the time-symmetric andtime-asymmetric models di�er from one another by near 5 %. One canhope that other long-range e�ects which should follow from the forth-coming study of purely retarded, time-symmetric and time-asymmetriccon�nement interactions di�er slightly as well.The semiclassical consideration leads to the interesting degeneratetower structure of meson spectrum which probably exists in nature.3. The interpretation of an interaction in terms of some �eld theoryis very important in RDIT. Hopefully, the knowledge of �eld equationsand corresponding variational principle underlying the model allows toinclude properly into consideration spinning particles and then to con-struct the quantum-mechanical description.AppendixA. Green's functions for �eld equation of NT.Let us consider the equation (20) (here we omit unessential Greece in-dices and the factor �2), �2 A(x) = 4�J(x): (A.1)It can be recast into the set of two d'Alembert equations,�A(x) = B(x); (A.2)�B(x) = 4�J(x): (A.3)Solving them yields the following formal expression for A(x):A = 14�D� �B = 14�D� �D�0 � J; (A.4)where � and �0 can independently take values +1, {1, or 0.Since the convolution of distributions is not guaranteed to be a wellde�ned operation [49], we have to examine all possible combinations of� and �0. Actually, it is su�cient to consider the cases � = �1, �0 = �1;other cases where � = 0 or/and �0 = 0 reduce to the previous onesdue to the linearity of equations (A.2), (A.3) and the equality D0 =12 (D+ +D�).

ICMP{98{24E 26Let us write down the expression (A.4) in the explicit form,A(x) = 14� Z d4y Z d4z D�(y)D�0(z)J(x� y � z): (A.5)Representing D� in the formD�(x) = 2�(�x0)�(x2) = �(x0 � �jxj)=jxj; � = �1; (A.6)where x � fxi; i = 1; 2; 3g, yields for (A.5) the expressionA(x) = 14� Z d3y Z d3z J(x0 � �jyj � �0jzj; x� y � z)jyj jzj ; (A.7)or, in terms of new variables u = y + z, v = y � z,A(x) = 18� Z d3u Z d3v ��J(x0 � 12�ju+ vj � 12�0ju� vj; x� u)ju+ vj ju� vj : (A.8)Let us calculate the internal integral over d3v in r.h.s. of (A.8). Ex-pressing Cartesian coordinates v1, v2, v3 of v in terms of ellipsoidalcoordinates, v1 = jujp(�2 � 1)(1� �2) cos';v2 = jujp(�2 � 1)(1� �2) sin';v3 = juj��; (A.9)� � 1 � � � �1; 0 � ' < 2�;we obtainA(x) = 18� Z d3u juj 1Z1 d� 1Z�1d� 2�Z0 d'��J �x0 � �juj �� �; �0 = ��; �0 = ��� ; x� u� : (A.10)If �0 = �� this integral diverges due the factor R11 d�. In the case �0 = �it reads: A(x) = 12 Z d3u juj 1Z1 d�J(x0 � �juj�; x� u): (A.11)



27 ðÒÅÐÒÉÎÔUsing the change of the variable � ! u0 = �juj� we obtain the �nalexpression for A(x):A(x) = 12 Z d4u�(�u0)�(u2)J(x � u): (A.12)It follows from (A.12) that fundamental solutions to the equation (A.1)are: E�(x) = 12�(�x0)�(x2); � = �1: (A.13)Since their supports are the interiors of future{ and past-oriented lightcones, these distributions are the retarded and the advanced Green'sfunctions of the equations (A.1). The time-symmetric Green's functionis constructed by linearity,E0(x) = 12 (E+(x) +E�(x)) = 14�(x2): (A.14)Eqs. (A.13), (A.14) are uni�ed in eq. (21).We note that some complex fundamental solution to (A.1) is obtainedby means of another technique in [49],Ec(x) = �i4� ln(x2 � i0): (A.15)Its real part, <Ec(x) = 14 (�(x2)� 1); (A.16)coincides with the symmetric Green's function (A.15) up to a constant(which is the solution of homogeneous equation). This solution can beconsidered as the analogue of the Feynman propagator in QED,Dc(x) = �i�(x2 � i0) ; (A.17)real part of which is the symmetric Green's function of d'Alembert equa-tion.B. Analysis of DPM for general model.Let us introduce the dimensionless positive quantities:� = 2�Mr ; � = M2m; � = S� ; � = ��m2 ; (B.1)
ICMP{98{24E 28and functions:�f�(�; �; �) = 1 + 2� � �� � �=�2 �h�(�; �; �); (B.2)�h�(�; �; �) = �g�(�; �; �)�q �d(�; �; �); (B.3)�d(�; �; �) = �g2�(�; �; �) + �2 �� � ��2� �3; (B.4)�g�(�; �; �) = 12 � 1�2 (1 + �)��� � ��2� � + �2�2� ; (B.5)which are related to (70){(73) as follows:�f�(�; �; �) = 4M2 f�(r;M; S) (B.6)�h�(�; �; �) = 4M2h�(r;M; S) (B.7)�d(�; �; �) = 16M4 d(r;M; S) (B.8)�g�(�; �; �) = 4M2 g(r;M; S) (B.9)Then DPM is determined by conditions:�f�(�; �; �) � 0; (B.10)�� � (1 + �)2 � �f�(�; �; �) > 0: (B.11)Although � is positive by de�nition, it is useful to consider the functions(B.2){(B.5) of � for � 2 R.First of all we consider the condition (B.10). It follows from (B.5)and (B.4) that �g�(�) > 0; � 2 [0; �=�2]; (B.12)�d(�) > �g2�(�); � 2 (�1; 0) [ (�=�2;1); (B.13)�d(�) = �g2�(�); � = 0; �=�2; (B.14)�d(�) < �g2�(�); � 2 (0; �=�2): (B.15)Thus from (B.12){(B.14) we obtain�d(�) > 0; � 2 (�1; 0] [ [�=�2;1): (B.16)Using the equivalent form of �d,�d(�; �; �) = �g2+(�; �; �)� 1�2 (1 + �)�� � ��2� �; (B.17)



29 ðÒÅÐÒÉÎÔwe obviously have�d(�) > �g2+(�); � 2 (�1;�1) [ (0; �=�2); (B.18)�d(�) = �g2+(�); � = �1; 0; �=�2; (B.19)�d(�) < �g2+(�); � 2 (�1; 0) [ (�=�2;1); (B.20)and then, from (B.16) and (B.18),�d(�) > 0; � 2 R: (B.21)Hence the functions �h�(�), �f�(�) (as well as h�(r), f�(r)) are real.Taking into account (B.3), (B.12){(B.15), and (B.21) one obtains�h+(�) > 0; � 2 (0; �=�2); (B.22)�h+(�) = 0; � = 0; �=�2; (B.23)�h+(�) < 0; � 2 (�1; 0) [ (�=�2;1) (B.24)Thus, using (B.2) and (B.22){(B.24) we conclude that�f+(�) > 0; � 2 [�1=2;1): (B.25)We note that the function �f+(�) is smooth at � = �=�2.In order to clarify the behaviour of the function �f�(�) for � > 0 letus consider the function �f+ �f�. It can be presented in the form:�f+(�) �f�(�) = 1 + �� � �=�2�(�); (B.26)where�(�) � (1 + 2�) �(1 + �)�� � ��2�� 1�2 ��� �2(1 + �)�3 (B.27)is 4th-order polynomial (in terms of original quantities it is written downin l.h.s. of (74)). It is evident that�(�) < 0 for j�j large: (B.28)Moreover, it is easy to examine that�(�) < 0; � 2 (�1;�1] [ [0; �=�2]; (B.29)�(� 12 ) > 0: (B.30)Thus �(�) has two negative roots, �1 and �2, �1 < �1 < �1=2 < �2 < 0,which exist at arbitrary (positive) values of �, �, and �. The number of
ICMP{98{24E 30positive roots, should they exist, is not more than two. Let us note thatone can choose the su�ciently large value of � such that �(�) > 0, � > 0.On the other hand, at S = 0 there exists �+ > 0 such that �(�) > 0,� > �+. Thus, given � and �, two other roots, �3 and �4, are positive forsu�ciently small values of �, and �=�2 < �3 < �4. In this case we have:�(�) > 0; � 2 (�1; �2) [ (�3; �4); (B.31)�(�) < 0; � 2 (�1; �1) [ (�2; �3) [ (�4;1): (B.32)Hereafter we restrict all functions on � > 0. Using (B.26), (B.31),(B.32), and (B.25) one concludes that�f�(�) � 0; � 2 (0; �=�2) [ [�3; �4]; (B.33)�f�(�) < 0; � 2 (�=�2; �3) [ (�4;1); (B.34)and this function has a pole at � = �=�2.Now let us consider the condition (B.11) which can be presented inthe following form:�� = �� � �=�2 ��g+(�; �; �) +q �d(�; �; �)� > 0: (B.35)Using (B.18), (B.20) and the evident inequality�g+(�) > 0; � 2 (�=�2;1); (B.36)one concludes that �� > 0; � 2 (�=�2;1); (B.37)�� < 0; � 2 (0; �=�2): (B.38)Finally, taking into account (B.33), (B.34), (B.37), and (B.38), we�nd DPM: �3 � � � �4, i.e., r1 � r � r2, where r1 = 2�=(M�4), r2 =2�=(M�3). It disappear if �3 ! �4. The degenerated case �3 = �4 � �c,where �c satis�es the set of equations:�(�c) = 0; �0(�c) = 0; (B.39)corresponds to circular orbit motion. The set (B.39) in this case can beconsidered as a relation between M and S which is presented by (75),where � = 1=�c.
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