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Dynamics and thermodynamics of the model with local anhar-
monism in the case of absence of the electron Hubbard corre-
lation. I. The analytical consideration.
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Abstract. Dynamics and thermodynamics of the model with local an-
harmonism in the case of absence of the electron (Hubbard) correlation
is investigated in the present work. The correlation functions, mean val-
ues of pseudospin and particle number as well as the thermodynamical
potential are calculated. The calculation is performed by diagrammatic
method in the mean field approximation. Single—particle Green functions
are taken in the Hubbard-I approximation.
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1. Introduction.

The model considering the interaction of electrons with the local anhar-
monic mode of lattice vibrations is used in the last years in the theory of
high—temperature superconducting crystals. Particularly, such property
is characteristic for the vibrations of the so—called apex oxygen ions Ory
along c—axis direction of the layered compounds of YBay;CuszO7—type
structure (see, [1-3]). An important role of the apex oxygen and its an-
harmonic vibrations in the phase transition into superconducting state
has been already mentioned [4,5] and the possible connection between
the superconductivity and lattice instability of ferroelectric type in high—
T, superconducting compounds is under discussion [6,7]. In the case of
local double—well potential, the vibrational degrees of freedom can be
presented by pseudospin variables. The Hamiltonian of the derived in
this way pseudospin—electron model has the following form [8]

H = ZH; + Ztijb;—bja ) (1.1)

ijo

and includes besides the terms describing electron transfer (~ t;;), the
electron correlation (U—term), interaction with anharmonic mode (g-
term), the energy of the tunnelling splitting (2-term) and energy of the
anharmonic potential asymmetry (h—term) in the single-site part

H; = Unyngy + Eo(nn + ’I’Lu) + g(nn + nu)Sf - QSf - h,Sf . (1.2)

Here, E, gives the origin for energies of the electron states at lattice site
(Eo = _:u)'

In this paper, which consists of two parts, our aim is to obtain the
expressions for correlation functions which determine the dielectric sus-
ceptibility, mean values of pseudospin and particle number operators as
well as the thermodynamical potential in the case 2 = 0 and absence of
the Hubbard correlation U = 0.

In the second part of the paper we shell perform numerical calcula-
tions for the analytical expressions obtained in the first part. We shall
investigate values of pseudospin and particle number operators with the
change of the asymmetry parameter h (I' = const) or with the change of
temperature T' (h = const) for the cases of the fixed chemical potential
value (regime u = const) and constant mean value particle number. We
shell present also some result for the case 7' = 0.
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2. Hamiltonian and initial relations.

We shall write the Hamiltonian of the model and the operators which
correspond to physical quantities in the second quantized form using
the operators of the electron creation (annihilation) at the site with the
certain pseudospin orientation

agi = bsi(1/2+57) ,
Goi = boi(1/2 — S7)

= bi@(1/2+szz) ’

bhi(1/2 - S7) . @1

+
Gg}-
[

Then we obtain the following expression for the initial Hamiltonian

H =3 {e(nir + niy) + E(Rir + niy) — hS7 +

+ S tii(af ajo +alajo +aiaj, +alaj,) = (2.2)
ijo
= Ho + Hint:
where
e=E,+g/2,é=E,—g/2, (2.3)

are energies of the single—site states; H, is the single—site (diagonal)
term, H;y; is the hopping terms.
The introduced operators satisty following commutation rules

{(Nl;-;,dja—/} = 6ij6wz(1/2 - SZZ) 5 {d?;,ajgr} =0 5

{a;,ajgz} = (Sij(sggl (1/2 + Slz) s {az;, ajgr} =0.
In order to calculate pseudospin mean values we shall use the standard
representation of the statistical operator in form

(2.4)

e P = =Pl (B) | (2.5)
B

6(B) =Trexp{ — | Hiu(r)dr 5 . (2.6)
/

Which gives the following expressions for (Sf)
_ 1
(G(8))o

Here, the operators are given in the interaction representation

A(r) = eTHe AemHe (2.8)

(i) (57

Q>

(B))o = (S7a(B))s - (2.7)

the averaging (...), is performed over the statistical distribution with
Hamiltonian H,, and symbol (...)¢ denotes the keeping of the connected
diagrams.
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3. Perturbation theory for pseudospin mean values
and diagram technique.

The expansion of the exponent in (2.6) in powers of H;, (2.2) leads, after
the substitution in equation (2.7), to the expression that has the form of
the sum of infinite series with the terms presented by the averages of the
T-products of the electron creation (annihilation) operators at the site
with the certain pseudospin orientation in the interaction representation.
The evaluation of such averages can be performed using Wick’s theorem.

In our case this theorem has some differences from the standart for-
mulation. Namelly, result of each pairing of operators (2.1) contains an
operator factors, i.e.

ai(r)af (1)= g(r' = 1)8i P, ai(r')ad (1)= g(r' —7)di Py, (3.1)

af (ai(r')= ~4(r' — TP, (1)a(r)= ~i(r’ — 78 Py

Finally, this gives the possibility to express result in term of the products
of nonperturbated Green functions

(Pat 1.
Gio(T—7") = (Trai(m)ag (1)) = eE(TI_T)éoi { Lhe® T/> ™ (3.2)
({aias })o There ~ T 2T
Gio(r—1') = (Lrai(r)g (M)o _ 716, { H;T : T/> T
Ha;at})o Trer (T >T,

gio(T_Tl) :g(T_TI)(SiOa gio(T_Tl) :Q(T—Tl)éio,
and averages of the certain number of the projection operators

1 1
Pt = §+Sf, P = E—Sf. (3.3)
Let us demonstrate this procedure for the case of evaluation of (S7), for
one of the terms which appear in the fourth order of the perturbation
theory

/dT1 /dT2 /dT3 /dT4 Z Z ti]tllh injo ,3]3 (34)

iji1J1 12721373

<T Sia (Tl)ay(Tl)aJr (r2)aj, (T2)a (73)aj, (13)af, (Ta)ajzs (11))o -
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The stepwise pairing of the certain operator with the other ones gives
the possibility to reduce expression (3.4) to the sum of the averages of
the smaller number of operators

(T-Sfaf (m)aj(m)a; (r2)ay, (r2)af (13)ag, (13)a) (1a)aj, (1a))o =

=(T+S[ a (Tl)aJ(Tl)a+(T2)%(T2) T (13)ag, (13)af (T4)a;, (1a)) o+

HT+S) a (Tl)ag(ﬁ)f(fz)ajl(ﬁ)a+(73)a32(73) T (a)aj, (14))0 =

= —Gijs (11 — )T S7 Pifaj(m)af (1a)aj, (ra)af, (13)a, (13)a; (14))o—
(3.5)

—9ij, (11 = 72 )(T7 SF Py aj(m)af (r2)af (15)a, (13)af (1a) ajz, (73))o -

The successive applications of the pairing procedure for (3.5) leads, fi-
nally, to

—Gijs (11 —=72) Gir 1o(T2 = T8) i f(T4 —T1) §in ju (T3 = 2)(T7- Sf P P Pf Pyl o —

—9ijs(T1 = Ta) Gin 3o(To = 3) Gin (T3 = T1) i ju(Ta — T2) (T7- S P} P Py PiE) o+

+9ij5(T0 = T4) Gi (T2 — 73) Gin o (T3 = T2) §is (Ta — 10 )(T-S{ PP PPy P,
(3.6)

We introduce the diagrammatic notations

ARAA A A AT AN EES S e O el —(gne++§ne') O-8°

and diagrams

C e (e
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correspond to the expression (3.6).

The expansion of (3.6) in semi-invariants leads to the multiplication
of diagrams (semi-invariants are represented by the ovals surrounding
corresponding vertices with diagonal operators and contain the —symbol
on site indexes). For example,

=9 =0

c =

We shall neglect diagrams of types 2, 3, 5 i.e. the types including semi—in-
variants of the higher than first order in the loop (this means that chain
fragments form the single-electron Green functions in the Hubbard-
I approximation) and also the connection of two loops by more than
one semi-invariant (this approximation means that selfconsistent field is
taken into account in the zero approximation).

Let us proceed to the momentum—frequency representation in the
expressions for the Green functions determined on finite interval 0<7</
when they can be expanded in Fourier series with discrete frequencies

i) = 5 3 e glun):

~ 1 W T

g(r) = 526 " g(wn); (3.7)
. _ 1 5 _ 1 _2n+1
glwn) = Rt g(wn) = iy, — & Wn = 3 .

The characteristic feature of the already presented diagrams and dia-
grams that correspond to other orders of the perturbation theory is the
presence of chain fragments. The simplest series of chain diagrams is

(3.8)
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where
(P) (P7)

— 8 =glwn) = o= T (3.9)

and corresponds to Hubbard-I approximation for single—electron Green
function. The expression

= = Glwn) = m , (3.10)

k

in the momentum—frequency representation corresponds to the sum of
graphs (3.8). The poles of function G(w;,) determine the spectrum of
the single—electron excitations

emi(ty) = 1/2Q2E, +t;) T 1/2\/5]2 +4t(S7)g + 12, (3.11)

Let us now return to the problem of summation of the diagram series for
average (S7) taking into account the above mentioned arguments. The
diagram series has the form

f = (3.12)
i %! Q *
The analytical expressions for loop has the next form
2 _
_ 2 tE Pi+ P _
= =Y — . +—t—) =
N 29 (wn) —tg \iwp —&  dw, — €
= Bla P +aeP7), (3.13)

where we used the following notations
2 £ 1
o = — - ,
‘T NB zk; (97" (wn) — tg) (iwp —€)
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~ 1
= Nﬁz )—t)(iwn—a'

Using decomposition into simple fractions and summation over frequency
we obtained

a = NZt (Ain(er(ty)) + Bin(en(ty)))
k:

as = NZt (Aon(er(t)) + Ban(en(ty))),

where
A = erfty) — ¢ By = enlty) — €
er(tp) —enlty)’ eu(ty) —erlty)’
o il g _cultp) =
er( E)_gll tk), EII(t )—¢€ (E)

t
The equation for (Sf) can be presented in the form
(SF)=A(Si)o = (SiBlar " + 2Py ))oct
1 -
(ST (@ P+ aaP)Yoe — .. = (Sfem Tl

oc -

Let us introduce

E MF
F = H; )
i

where
HZ-JMF :Hi0+041Pi++062Pi7

Then the analytical equation for (S7) can be expresed in the form

Sp(Sie 1)

(S0) =S\ mr = Sp(e—FEE) = (3.14)
1 B 14+eP¢
_§tanh{§(h+az—a1)+lnm}.

Difference as — a; corresponds to the internal effective self—consistent
field acting on pseudospin

Qz —ap = Zt W{”(é‘l(t;})) —n(en(ty)}. (3.15)
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4. Mean value of particle number.

The diagram series for average (n;) (using the perturbation theory,
Wick’s theorem and expansion in semi-invariants) can be presented in
the form

(4.1)

where

P = (Pt P7),

Ea = (8;5) )

and the last term appears due to the pairing of the electron creation
(annihilation) operators with the operator of particle number.

Analytical expression for (4.1) can be obtained starting from formulas
(3.8), (3.9)

i (P?)
(i) = <n’>MF+NﬂZ o) ) G — ey’ 42

n,k,a

where
Sp(n;ePHur)

Sp(e=FHmr)

After simple transformation we obtain next relation

(v —n(e) —n(E) = 2(57)(n(e) —n(@)), (4.3)

<ni>MF =
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(n)mr = 2(PF)n(e) +2(P7)n(e)

1 . e e -
——=— is Fermi distribution.
1+ e

Using decomposition into simple fractions, summation over frequency
and relation (4.3) we can present average (n) in the form

where n(e) =

Z{n (e1(tp) +nlen ()} — 2P )n(E) — 2(P7)n(e) . (44)

5. Thermodynamical potential.

In order to calculate the thermodynamical potential let us introduce the
parameter A € [0,1] in the initial Hamiltonian

Hy,=H,+ /\Hint ’ (51)

such that H — H, for A\ =0 and H — H, + H;,; for A = 1.
Hence

Zx = Sple” ) = Sp(e”e6,(8)) = Zo(6:(0))o

where
B
6x(B) = T exp —/\/Hmt(T)dT ,
0
and 1 1
O, = —Bln Zy— B In(ax(8))o, (5.2)
1

AQy=Qy - Q, = _E ln(&)\(ﬂ))o .

Here €, is the thermodynamical potential calculated with the single—site
(diagonal) part of the initial Hamiltonian.

Therefore )
dQy
AQ = .
/ d/\< L ) (5.3)
0
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For the value d2)/d\, we can write immediately the diagram series in
the next form

where : — At and also

®-0-C & ;T o B -

1
@l

The expression (5.3) can be presented in the form (using the diagram
series (5.4))

1
Nﬂz/ ) T T

e w9 (wn)
2 g doalon)
= —— In(1 — Wn)) / —Fr @A d\. 5.5
NG zk: (= tzglon)) = 575 Z 1- AtkgA (@n) (5:5)

The first term in expression (5.5) may be written in the diagram form
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1 1

The series (5.6) describes an electron gas which energy spectrum is de-
fined by the total pseudospins field. This series is in conformity with the
so—called one loop—approximation.

The second term in expression (5.5) can be integrated to the following
diagram series

SRR

as

(5.6)

N[

)

and appears due to the presence of pseudospin subsystem.

Finally, the diagram series for SA) may be written as the sum of
expressions (5.6) and (5.7), the corresponding analytical expression is
the following

2 Z In (cosh gsj(t,g))(cosh gell(t,;))

AQ=——
Ng (cosh %6) (cosh gé)

- (5.8)
i

1 1 —Pe
——1ncosh{§(h+ag —aq) +1HL}+

Jé] 1+ e 5
1 1+e P :
+Blncosh{gh+lnm} + (S*) (a2 — a1) .

Here, the decomposition in simple fractions and summation over fre-
quency were done.

Then, since the thermodynamical potential is the function of argu-
ment (S*), let us check the consistency of approximations made for (S*),

ICMP-98-21E 12

(n) and thermodynamical potential Q. For this purpose one should ob-
tain average (S?%) and average (n) from the expression for grand ther-
modynamical potential

e D) + o)) =28 )a(e) =2 e,
dQ) 1 I6] 14 e Pe
m = Etanh{g(h-l—az —aq) -I—lnm} }
We thus obtain
dQ dQ .
Zer A

Therefore, the calculation of the mean values of the pseudospin and
particle number operators as well as the thermodynamical potential is
performed in the same approximation which corresponds to the mean
field one.

6. Pseudospin, electron, and mixed correlators.
In this section our aim is to calculate correlators

Kis (1 = 7) = (T5; ()55, ()

K (r = 7') = (TS (1)t (T'))e

Ky (1 = 7') = (T7u(7)71m (1"))e

constructed of the operators given in the Heisenberg representation with
imaginary time argument.

Let us present the diagram series for correlation function (in the
momentum—{requency representation) within the generalized random
phase approximation. In our case (absence of the Hubbard correlation)
this approximation is reduced, because the so—called ladder diagrams
(see.[10]) with antiparallel lines disappear. This reduce allow to take
into account mean values of pseudospin found self-consistently within
the mean field approximation.

We would like to remind that we have neglected diagrams which
include semi-invariants of the higher than first order in the loop and
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also connection of two loops by more than one semi—invariant.

where, we define

L D==(=FD= , H=D=) = T+ =>§ =T (k,wn);

P*=(PH,P)ia=(0,1); " =(58); @ =P": O=§

Here, the first term in equation (6.1) takes into account the direct influ-
ence on pseudospins of the internal effective self—consistent field and is
given by

(6.2)

Series (6.2) means second-order semi-invariant which renormalized due
to the ’single—tale’ parts, and thus is calculate by Hpsp.

The second term in equation (6.1) describes the interaction between
pseudospins which is mediated by electrons (energy of electron spectrum
is defined by the total pseudospin field).
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We introduce the shortened notations

Solution of equation (6.1) can be written in the analytical form

1/4-(S 2)2

(S*S%)¢ = , (6.4)
1+ E a—i—ﬁ. ﬂ Sz
where "
.ti” N Z titig gl ( (B, wn)T? (K + ¢,wn) (6.5)
— 1 1
Lk, wn) = . (6.6)

(iwn — &) (1 = tzg(wn))

Decomposition of the function I'* (E, wy,) into simple fractions and subse-
quent evaluation of the sum over frequency leads to the next expression

OH’B o, 2ﬂ t]'g‘_,’_q»(ﬁ —5)2
2y [, Z — ety — enlte, )l
nler(tp)] —nler(ty )l | nlen()] —nlen(ty 9]
% { EI(tE) —61(tk+§) + 6[[(tk) —6[[(tlg+§) (6.7)

EI(t];) _EII( k+q) EII(tE) _EI(tl_s‘-‘r(T

nler(tp)] —nlen(ty o)l nlen(tp)] - n[sz(t,;+,;)]}
) .

After the substitution (6.7) in equation (6.4) we obtain, finally, expres-
sion for (S*S%).
This formula for the uniform case (¢ = 0) can be rewritten as

(575%)g=0 = (1/4 = (5°)*)x (6.8)
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i {1_ (%Zté o i el = nlen (Rl +

-1
2 t2(e—€)? 1 1 1
+tov k + —(S*P)p .
2N%: [5[(t,;)—gH(t,;)]2 coshmaslT(t’:) cosh2ﬂ6+(t’z) (4 (557

Expression (6.8) can be obtained from the derivative d(S*)/d(5h). This
means that mean values of pseudospin and pseudospin correlators are
derived in the same approximation.

For mixed correlator the diagram series has the form

(Sn) = - + () (6:9)

where

and
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Solution of equation (6.10) can be written in the analytical form
I =2(n(e) —n(é))(S*S%);. (6.12)
Here we start from formula (6.4) and from the next relation

(S*n)mr — (S*)(n)
% _ (Sz>2

= 2(n(e) — n(8)). (6.13)
The second term in the diagram series (6.9) we can present as

X

2, s tx(e =€)
II:N(SS),;Z k

P EI(t,‘c‘) — EII(t,'C‘)

nler(tp)] —nler(ty )l nler(tp)] —nlen(ty ;)]

(6.14)

s 6[(t,;) —6[[(t,;+q.
Cnlen ()] —nler(tiy Pl nlen ()] = nleun ()]
E[[(t,-g') _EI(tE+q') Ejj(tk*) _EII(tE+q')

Let us introduce the shortened notations for the expression (6.14)
II = (S°S%); x [®]7- (6.15)
In this way we obtain
(§%n)g = 2(n(e) = n(€))(S*5%)g + (5°5%)z x [®l7- (6.16)

From our diagram series we can see: the correlators containing pseu-
dospin variable S* are different from zero only in the static case. This is
due to the fact that the operator S* commutes with Hamiltonian being
the integral of motion.

For electron correlator our diagram series has the form

| I 11 Y
\

+

(6.17)
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and only last term is not equal to zero for non—zero frequencies. Let us
consider series (6.17) term by term

(6.18)
After simple transformation we can obtain the next relation

(nn)pr — (n)? — % < () + ) ) = (6.19)

cosh? % cosh? %

((nS*)mr — (n)(S*))?
(P)(P~)

This relation makes possible to write immediately the simple analytic
expression for series (6.18)

I= {[Z(n(e) —n(é))]2<5252)q~+% ( P ) }5(w).

cosh? % cosh? %
(6.20)

Analytical expressions for II-term can be obtained starting from formu-
lae (6.11) — (6.15)

IT = {2[n(e) — n(&)(S*5%)7 x [©]5}0(w). (6.21)

Using the expression (6.16) we can unite (6.21) and (6.20)

I+1= {2(71(6) —n(é))(SZn),;%-% ( ) + (L) > }(5(w).

cosh? % cosh? %
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The diagram series for the fourth term in (6.17) has form

4

_ B 4,0 )
@ Zé /) ’ zﬁ %\
@D
3q
’ uz,; } -2

And can be written as

V= @ = @l x (5°5%)7 x [8ly-6(w).  (6.23)

Ones more using the formula (6.16) we unite IIF-term and IV—term

I+ IV = (nS7)4 x [®]7- 6(w). (6.24)

Last term can be presented in the form

~ Y/
A
= -2 - Q
Q ; 2%
(6.25)

Let us the take down final formula for electron correlator for the uniform
(7= 0) and static (w = 0) case

(nn) = 2(n(e) — n(£))(S*n)s=o0 + L ( (P) + (P) ) + (6.26)

2 coshz% coshZ%
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Jé] tp(e — &) 1 1
4+ — — S*nYe—o+
2N Z,; S1(t) —n ) | contt? A goup? i) | (5 =0

1 1 1 1 1 1
+W z cosh? ﬂ—EHZ(tE) * cosh® _/3512(t,;) 2| cosh? % * cosh? % ’
Same result we can obtain from the derivative d(n)/(dfp). Thus all our
quantities: mean values of the pseudospin and particle number operators,
thermodynamical potential as well as correlation functions are derived
in the framework of one approximation which corresponds to the mean
field approximation.

In the second part of the paper we shell perform numerical calcula-
tions for the analytical expressions obtained in the first part. We shall
investigate values of pseudospin and particle number operators with the
change of the asymmetry parameter h (T' = const) or with the change of
temperature T' (h = const) for the cases of the fixed chemical potential
value (regime p = const) and constant mean value particle number.
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