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1 ðÒÅÐÒÉÎÔ1. IntroductionThe theoretical investigation of the strongly correlated electron systemsis an enduring subject of interest in condensed matter physics especiallyduring last ten years after the discovery of high{Tc superconductivity.Recent studies of strongly correlated Hubbard type models elucidatesome important features of high{Tc, namely the d{wave pairing and therole of antiferromagnetic uctuations [1]. However some features of thecuprates are not well understood (e.g. the existence of an \optimal" dop-ing, the e�ect of charge uctuations, strong electron{phonon interaction,lattice dynamics and instabilities of ferroelectric type). Thus the exten-sions of the Hubbard model by the van Hove scenario concept, the incor-poration of the local electron{phonon interaction (the Hubbard{Holsteinmodel for harmonic phonons and the pseudospin{electron model [2] foranharmonic ones), generalization to a two or three band model, the in-clusion of intersite electron interaction, etc. are under consideration.Within these models the pseudospin{electron one [2] in a simplestway includes the interaction of correlated electrons with some local lat-tice excitations described by pseudospins (e.g. anharmonic vibrations ofapex oxygen in YBaCuO type HTSC's), and shows the possibility ofdipole (pseudospin) and charge density instabilities [3,4] and phase sep-aration [5] due to the e�ective retarded interaction between pseudospinsvia conducting electrons. All these results were obtained within the gen-eralized random �eld approximation (GRPA) [6] which is a realizationof the appropriate perturbation theory for correlation functions in thecase of strong coupling (U � t) and corresponds to the mean �eld ap-proximation in calculation of mean values. There are no good criteria ofits applicability and it is supposed that GRPA gives correct descriptionin the case of large dimensionality of local (site) states.In recent years the essential achievements of the theory of strongcorrelated electron systems are connected with the development of thedynamical mean �eld theory (DMFT) proposed by Metzner and Voll-hardt [7] for Hubbard model (see also [8] and references therein). DMFTis a nonperturbative scheme which allows to project Hubbard model onthe single impurity Anderson model and is exact in the limit of in�nitespace dimensions (d =1). Moreover, some class of models (e.g. Falicov{Kimball model [9]) can be studied almost analytically within DMFT.Here we apply DMFT to the investigation of pseudospin{electronmodel in the limit of zero electron correlation (U = 0) which can betreated analytically.

ICMP{98{20E 22. Perturbation theory in terms of electron transferThe Hamiltonian of pseudospin{electron model in the absence of electroncorrelations can be written in the form:H =Xi Hi +Xij� tijayi�aj� ; (1)where Hi = gSzi X� ni� � �X� ni� � hSzi (2)is single{site Hamiltonian, and includes local interaction of conductingelectrons with pseudospins placed in longitudinal �eld h (asymmetryparameter of anharmonic potential).In general, one{electron Green's function G�(!n;k)G�ij(� � � 0) = DT ai�(�)ayj�(� 0)�(�)E0 = h�(�)i0 (3)�(�) = T exp�� Z �0 d�Xij� tijayi�(�)aj�(�)� (4)satis�es Larkin's equationG�ij(� � � 0) = ��ij(� � � 0) + ��il(� � � 00)tlmG�mj(� 00 � � 0); (5)where summation (integration) over repeated indices is supposed. Theformal solution of eq. (5) can be written in the formG�(!n;k) = 1��1� (!n;k)� tk (6)and the task is to calculate the irreducible according to Larkin parts��(!n;k).It is convenient to introduce projective operators on pseudospin statesP�i = 12 � Szi ; (P�i )2 = P�i ; P+i P�i = 0 (7)and by substitution P+i = ci, P�i = 1 � ci Hamiltonian (1), (2) can betransformed into the Hamiltonian of binary alloy. On the other hand, ifwe keep in (1), (2) only electrons with one orientation of spin by removingthe sum over spin indices and putting � =" and consider electrons with� =# as localised P+i = ni#, P�i = 1�ni# we get the Hamiltonian of theFalicov{Kimball model where h plays a role of the chemical potential



3 ðÒÅÐÒÉÎÔfor the localized #{electrons. As a rule the common chemical potentialis introduced for both electron subsystems but the case of two chemicalpotentials was also considered (see, e.g. [10]) and the �rst considerationof Falicov{Kimball model within DMFT was done by Brandt and Mielsch[9]. Formally diagrammatic series for the irreducible part ��ij (!n) are thesame for all these models��ij(!n) = � +
i i i i

+ : : :��ij+i

j

+ : : : (8)and includes both single{site and intersite contributions. Here, arrowsindicate electron propagators g��i(!n) = P�ii!n+�� g2 in the subspaces pro-jected on the pseudospin states of site i and ovals represent semi{invariant averaging of projection operators.The main di�erence between these models is in the way how an aver-aging procedure over projection operators is performed (thermal statis-tical averaging in the case of pseudospin{electron and Falicov{Kimballmodels and con�gurational averaging for binary alloy) and how self{consistency is achieved (�xed value of longitudinal �eld h for pseudospin{electron model, �xed value of the component concentration c for binaryalloy and �xed value of the electron concentration | total or for bothelectron subsystems | for Falicov{Kimball model).3. The limit of large dimensions (d!1)In the case of high dimensions (d!1) one should scale hopping integraltij ! tijpd (9)in order to obtain �nite density of states (the Gaussian one for d = 1hypercubic lattice �(") = 1Wp� e�"2=W 2 and semi{elliptic d.o.s. for d =1Bethe lattice �(") = 2�W 2pW 2 � "2 [8]). Due to such scaling only single{site contributions survive in the expression for irreducible parts ����ij(� � � 0) = �ij��(� � � 0); ��(!n;k) = ��(!n) (10)
ICMP{98{20E 4and such site{diagonal function, as it was shown by Brandt and Mielsch[9], can be calculated by mapping the in�nite{dimensional lattice prob-lem on the atomic modele��H ! e��Heff = e��H0 (11)�T exp�� Z �0 d� Z �0 d� 0X� J�(� � � 0)ay�(�)a�(� 0)�with auxiliary Kadano�{Baym �eld J�(� � � 0) [11] which has to be selfconsistently determined from the condition that the same function ��de�nes Green's functions for lattice (6) and atomic limitG(a)� (!n) = 1��1� (!n)� J�(!n) : (12)\Dynamical" mean �eld J�(��� 0) describes the hopping (transfer) ofelectron from atom into environment at moment � , propagation in envi-ronment without stray into atom until moment � 0. Connection betweenthese \dynamical" mean �eld of atomic problem and Green's functionof the lattice can be obtained using standard CPA approach [8]:J�(!n) = ��1� (!n)�G�1� (!n); (13)where G(a)� (!n) = G�(!n) = Z +1�1 dt �(t)��1� (!n)� t (14)is a single{site Green's function both for atomic limit and lattice. Heresummation over wave vector was changed by the integration with thedensity of states �(t).In order to complete our self{consistent set of equations we should�nd expression for Green's function in the atomic limit (12). Due to theproperties of the projection operators (7) one can rewrite Hamiltonianof atomic problem (11) in the forme��Heff = P+e��H(+) + P�e��H(�) (15)and our space of states splits into two independent subspaces hence allprojection operators (7) act at the same site and in any order of theperturbation theory expansion all projection operators can be replacedby their product result and there are no necessity to make semi{invariantexpansions.



5 ðÒÅÐÒÉÎÔSingle{electron Green's function is a sum of Green's functions insubspaces and is equalG(a)� (!n) = hP+ii!n + �� J�(!n)� g2 (16)+ hP�ii!n + �� J�(!n) + g2 :Partition functions in subspaces areZ� = Sp e��H� = e� �h2 �Q� (17)= e� �h2 Y� �1 + e��(�� g2 )�Yn �1� J�(!n)i!n + �� g2 �and presents the partition functions of the non{interacting fermions withfrequency dependent hopping placed in the external �eld formed by pseu-dospin.Pseudospin mean value is determined by equationhSzi = 12 Z+ � Z�Z+ + Z� (18)= 12 tanh 12 (�h� (Q+[hSzi]�Q�[hSzi]))which is an analogue of the well known equation of state for Ising modelin mean{�eld approximation: hSzi = 12 tanh �2 (h+ J0 hSzi). It should benoted that in the case of Lorentzian density of states �(") = W�(W 2+"2) ,which is frequently used in some applications of DMFT, one can easilyobtain a simple result J�(!n) = iW [8], quantities Q� do not dependon hSzi and equation (19) transforms into an expression for hSzi thatindicates the sensitivity of the equation of state to the shape of d.o.s.Electron concentration mean value is determined byhni = 1� Xm� G� (!m) (19)and the functional of thermodynamic potential can be derived in thesame way as it was done in [9] for Falicov{Kimball model
N = 
(a) � 1�Xn� � lnG(a)� (!n)� 1N Xk lnG�(!n;k)�; (20)
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Figure 1. Electron bands boundaries (semi{elliptic d.o.s., W = 0:4,hSzi = 0:2).where 
(a) = � 1� ln(Z+ + Z�) (21)is a thermodynamic potential for atomic problem.Below, all calculations will be performed for semi{elliptic density ofstates when the auxiliary �eld is determined by the simple cubic equationJ�(!n) = W 24 � hP+ii!n + �� J�(!n)� g2 (22)+ hP�ii!n + �� J�(!n) + g2 � :In a usual way we perform analytical continuation on real axis (i!n !!�i�) and only solutions of (22) with =mJ�(!) > 0 must be considered.Band boundaries are determined from the condition =mJ�(!)! 0 andin Fig. 1 their dependence on coupling constant g are presented. One cansee that there exists critical value of coupling constant g � W when agap in spectrum appears. It should be noted that within GRPA as well asin other approaches where single{electron Green's function is calculatedin Hubbard{I approximation, when we keep only the �rst term of the



7 ðÒÅÐÒÉÎÔsingle{site contribution in the expression for the irreducible part (8),these gap in spectrum always exists.In the case of strong coupling (g � W ) an analytical solutions canbe obtainedJ�(!) = 12 �! � g2�+ i2rW 2hP�i � �! � g2�2 (23)for upper and lower subbands, respectively, and one can see that sub-bands halfwidth is equal toWq 12 � hSzi whereas in Hubbard{I approx-imation it is W � 12 � hSzi�. This result clearly shows that even for thecase of strong coupling when subbands are well separated and one ofthem become narrow (hSzi ! � 12 ) Hubbard{I approximation is unsuf-�cient and can not be derived from the exact solution in any way, e.g.due to the subbands halfwidth square root dependence on the localizedstates occupance (hP�i ! 0).Presented above expressions were obtained for the �xed value of thechemical potential � when stable states are determined from the mini-mum of the thermodynamical potential (20). This regime � = const cor-responds to the case when the charge redistribution between conductingsheets CuO2 and other structural elements (charge reservoir, e.g. nonsto-ichiometric in oxygen CuO chains in YBaCuO type structures) which �xthe value of the chemical potential is allowed. On the other hand, in theregime of the �xed electron concentration value one should solve equa-tion for chemical potential n = hni (19) and stable states are determinedby the minimum of the free energy F = 
+ �n.4. Results and discussionIntegrals in Eqs. (17) and (20) can be calculated analytically for stateswith hSzi = � 12 at zero temperature and corresponding phase diagrams��h which indicate stability regions for these states are shown in Fig. 2aand b for g > W and g < W , respectively. One can see two regions of �and h values where the states with hSzi = � 12 coexists. In the vicinity ofthese regions the phase transitions of �rst order with the change of thelongitudinal �eld h and/or chemical potential � take place (see Fig. 3)and they are shown by thick lines on phase diagrams (Fig. 2).There are no any speci�c behaviour when chemical potential is placedout of bands. If chemical potential is placed in upper subband the graphspresented in Fig. 3 transform according to the internal symmetry of the
ICMP{98{20E 8Hamiltonian:�! ��; h! 2g � h; n! 2� n; Sz ! �Sz: (24)With the temperature increase the region of the phase coexistencenarrows and the corresponding phase diagram Tc�h is shown in Fig. 4.One can see that with respect to Ising model the phase coexistence curveis shifted in �eld and distorted from the vertical line and hence thepossibility of the �rst order phase transition with the temperature changeexists in pseudospin{electron model for the narrow range of h values.As it was mentioned above, the band structure is determined bythe pseudospin mean value and its change is accompanied by the corre-sponding changes of the electron concentration and for the (�; h) values�xed on the �rst order phase transition line there are three solutions forelectron concentration one of which is unstable.In the case of the �xed value of the electron concentration value(regime n = const) this �rst order phase transition transforms into thephase separation. One can see regions with d�=dn � 0, which correspondto this e�ect in electron subsystem, on the concentration dependencies(Figs. 5 and 6a).The corresponding dependencies of free energy F = 
+�n are givenin Fig. 6b. In the phase separated region free energy deects up andconcentration values at binodal points are determined by the tangentline touch points or from the chemical potential dependencies (Fig. 6a)using Maxwell construction. Resulting phase diagram T � n is shown inFig. 7.For the �rst time the possibility of phase separation in pseudospin{electron model was marked in [5] where it was obtained within GRPAin the limit of strong correlation U ! 1. Here it is observed for theopposite case of U = 0.The problem of phase separation in strongly correlated systems isnot new (see [1] and references therein). It was shown for Hubbardand t� J models [12] that for some parameter values system separatesinto hole{rich and hole{poor regions with paramagnetic and antiferro-magnetic orders, respectively, and long{range interaction between thesecharged regions is considered as an origin of the appearance of stripestructures. In Ref. [10] the phase segregation for some parameter val-ues was reported for the annealed binary alloy with diagonal disorderdescribed by Falicov{Kimball model. In our case of pseudospin{electronmodel without electron correlations system separates into regions withdi�erent values of electron concentration and pseudospin mean valueand electron spectrum contains both wide empty electron band and oc-



9 ðÒÅÐÒÉÎÔcupied localized states of the regions with n � 0 as well as partially �lledwide electron band and empty localized states of the regions with n � 1(see Fig. 5) the weights of which are determined by the electron con-centration. Such type localized states (polarons) results from the strongelectron{out of plane apical oxygen vibrations coupling (g > W ) in thecase of YBaCuO{type structures and it is supposed that the hoppingbetween them gives signi�cant contribution in the carrier relaxation ob-served by the resonant Raman spectroscopy [13].It should be noted that in the case of spinless fermions Hamiltonian(1) can be applied for the description of the oxygen vacancies subsystemin high{Tc superconductors, which can be treated as quasiequilibrium,and it is known that their interaction with some relaxation type latticemode leads to the phase separation and appearance of superstructuresand stripes [14].In this paper we investigated the possible phase transitions inpseudospin{electron model within DMFT without creation of superstructures (k = 0) and the phase diagrams presented in Figs. 4 and7 concern only this case. In order to detect instabilities associated witha speci�c wave vectors one should calculate response functions which willbe the subject of the further investigations.Acknowledgement. This work was partially supported by the Ministryof Ukraine for Science and Technology (project No 2.4/171).References1. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994), cond-mat/9311013.2. K.A. M�uller, Z. Phys. B 80, 193 (1990).3. I.V. Stasyuk, A.M. Shvaika, Physica C 235-240, 2173 (1994); Cond.Matt. Phys. 3, 134 (1994).4. I.V. Stasyuk, A.M. Shvaika, O.D. Danyliv, Molecular Physics Re-ports 9, 61 (1995).5. I.V. Stasyuk, A.M. Shvaika, Czech. J. Phys. 46, Suppl. S2, 961(1996).6. Yu.A. Izyumov, B.M. Letfulov, E.V. Shipitsyn, M. Bartkowiak,K.A. Chao, Phys. Rev. B 46, 15697 (1992).7. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).8. A. Georges, G. Kotliar, W. Krauth, M.J. Rosenberg, Rev. Mod.Phys. 63, 13 (1996), cond-mat/9510091.9. U. Brandt, C. Mielsch, Z. Phys. B 75, 365 (1989); 79, 295 (1990);82, 37 (1991).
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a)
b)Figure 2. Phase diagram � � h. Dashed and thin solid lines surroundregions with Sz = � 12 , respectively. Thick solid line indicate the �rstorder phase transition points. a) g = 1, W = 0:2; b) g = 1, W = 0:7.
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a)
b)Figure 3. Field dependencies of hSzi (a) and thermodynamical potential(b) for � = const regime when chemical potential is placed in the lowersubband � = �0:37 (W = 0:2, g = 1, T = 0).
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Figure 4. Phase diagram Tc � h: solid and dashed lines indicate the�rst order phase transition line and boundaries of the phase stability,respectively (g = 1, W = 0:2, � = �0:5)

Figure 5. Dependence of the chemical potential � and electron bandsboundaries (dashed lines) on the electron concentration n (T = 0:001,g = 1, W = 0:2, h = 0:1).
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a)
b)Figure 6. Dependence of the chemical potential � (a) and deviation offree energy from linear dependence �F = F (n)� n2F (2)� �1� n2 �F (0)(b) on the electron concentration n for di�erent temperatures T (g = 1,W = 0:2, h = 0:1).
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Figure 7. Phase diagram T � n for phase separated state: solid line |binodal, dashed line | spinodal (g = 1, W = 0:2, h = 0:1).
ICMP{98{20E 16
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