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Anoranisi. B mabiuxenni quHamMivHOro cepennboro nosis (rpamuns d = oo)
PO3IVIANAETHCA €HEPreTHYHNH CIIeKTD Ta TePMOAMHAMIKA IICEBIOCIIH—€JIeKT-
pouHOI Momesti, ska Oysia BBeIeHa IPHU PO3IJIALl AHTAPMOHITHHAX e(EeKTiB y BH-
COKOTEeMIIepaTypHUX HAAIPOBiTHIKaxX. B rpanumi Hy/I50B0i €1€eKTPOHHOI KOpe-
JIAnii 1A MOIEsIb € TOYHOPO3B A3yBAHOI0 B PAMKAX HAHOIO ILAXOLY: B PEXKUMIL
[ = const Mae Micie ¢a30Buil mepexin Iepuoro poay i3 CrpubKOM CepeIHbOro
3HaYeHHs ncespoctina (S*) 1 mepebynoBoI0 €JIEKTPOHHOTO CHEKTPY, TOIL AK B
pexumi n = const npu IHeBHUX 3HAYEHHAX HapaMeTpiB Moxke Bindyrucs da-
30Be pO3IMIapyBaHHA B €JIEKTPOHHI# mincucremi. Ha ocHOBI oTpuMaHuX pe3ysib-
TaTiB OOrOBOPIOIOTHCA MeXKi 3aCTOCOBHOCTI HAOJ/IMKEHHUX MiIXONIB, AKI paHimre
BUHKOPHUCTOBYBAJIUCA MIPU TOCJILIKEHH] ICEBIOCIIH—€IEKTPOHHOI MOIEJTL.

Pseudospin—electron model in large dimensions
I.V. Stasyuk, A.M. Shvaika

Abstract. Energy spectrum and thermodynamics of the pseudospin—electron
model introduced at the consideration of the anharmonicity effects in high—T,
superconductors are investigated in the dynamical mean field approximation
(d = oo limit). In the limit of zero electron correlation U — 0 this model
is analytically exactly soluble within this approach: in the p = const regime
the first order phase transition with the jump of the pseudospin mean value
(S8*) and reconstruction of the electron spectrum can realize, while in the
n = const regime the phase separation in electron subsystem can take place for
certain values of the model parameters. On the basis of the obtained results the
applicability of the approximate schemes previously used for the investigation
of the pseudospin—electron model are discussed.
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1. Introduction

The theoretical investigation of the strongly correlated electron systems
is an enduring subject of interest in condensed matter physics especially
during last ten years after the discovery of high—T. superconductivity.
Recent studies of strongly correlated Hubbard type models elucidate
some important features of high—T,, namely the d—wave pairing and the
role of antiferromagnetic fluctuations [1]. However some features of the
cuprates are not well understood (e.g. the existence of an “optimal” dop-
ing, the effect of charge fluctuations, strong electron—phonon interaction,
lattice dynamics and instabilities of ferroelectric type). Thus the exten-
sions of the Hubbard model by the van Hove scenario concept, the incor-
poration of the local electron—phonon interaction (the Hubbard-Holstein
model for harmonic phonons and the pseudospin—electron model [2] for
anharmonic ones), generalization to a two or three band model, the in-
clusion of intersite electron interaction, etc. are under consideration.

Within these models the pseudospin—electron one [2] in a simplest
way includes the interaction of correlated electrons with some local lat-
tice excitations described by pseudospins (e.g. anharmonic vibrations of
apex oxygen in YBaCuO type HTSC’s), and shows the possibility of
dipole (pseudospin) and charge density instabilities [3,4] and phase sep-
aration [5] due to the effective retarded interaction between pseudospins
via conducting electrons. All these results were obtained within the gen-
eralized random field approximation (GRPA) [6] which is a realization
of the appropriate perturbation theory for correlation functions in the
case of strong coupling (U > t) and corresponds to the mean field ap-
proximation in calculation of mean values. There are no good criteria of
its applicability and it is supposed that GRPA gives correct description
in the case of large dimensionality of local (site) states.

In recent years the essential achievements of the theory of strong
correlated electron systems are connected with the development of the
dynamical mean field theory (DMFT) proposed by Metzner and Voll-
hardt [7] for Hubbard model (see also [8] and references therein). DMFT
is a nonperturbative scheme which allows to project Hubbard model on
the single impurity Anderson model and is exact in the limit of infinite
space dimensions (d = co). Moreover, some class of models (e.g. Falicov—
Kimball model [9]) can be studied almost analytically within DMFT.

Here we apply DMFT to the investigation of pseudospin—electron
model in the limit of zero electron correlation (U = 0) which can be
treated analytically.
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2. Perturbation theory in terms of electron transfer

The Hamiltonian of pseudospin—electron model in the absence of electron
correlations can be written in the form:

H= Z Hi+ Ztijazgajm (1)
i ijo

where

H; =45} an - Mznia — hS; (2)

is single—site Hamiltonian, and includes local interaction of conducting
electrons with pseudospins placed in longitudinal field kA (asymmetry
parameter of anharmonic potential).

In general, one—electron Green’s function G, (wy,, k)

G5 (1 =) = (Taig(Mal, (1)o(8)) /(o(8)), 3)

0

o(B) = T exp { - /0 BdTZtijaja(T)ajg (T)} (4)

ijo
satisfies Larkin’s equation
G —1") = E5(r = 7') + EG(1 — 7" )tim G (7" = T'), (5)

where summation (integration) over repeated indices is supposed. The
formal solution of eq. (5) can be written in the form
1

Gl B TG R e

(6)

and the task is to calculate the irreducible according to Larkin parts

Eo(wn, k).
It is convenient to introduce projective operators on pseudospin states
1 .
+ + + -
P; :§i5iza (Pi )Z:Pi7 Pi+Pi =0 (7)

and by substitution P;" = ¢;, P, = 1 — ¢; Hamiltonian (1), (2) can be
transformed into the Hamiltonian of binary alloy. On the other hand, if
we keep in (1), (2) only electrons with one orientation of spin by removing
the sum over spin indices and putting o =1 and consider electrons with
o =] as localised P;" = n;, P, = 1—n;, we get the Hamiltonian of the
Falicov—Kimball model where h plays a role of the chemical potential
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for the localized |—electrons. As a rule the common chemical potential
is introduced for both electron subsystems but the case of two chemical
potentials was also considered (see, e.g. [10]) and the first consideration
of Falicov—Kimball model within DMFT was done by Brandt and Mielsch
[9].

Formally diagrammatic series for the irreducible part Z¢; (w,,) are the
same for all these models

=5 on) = (S +1

+:

S

and includes both single-site and intersite contributions. Here, arrows

indicate electron propagators gfi (wn) = 7 in the subspaces pro-

Pi
twn+pF 5
jected on the pseudospin states of site ¢ and ovals represent semi—
invariant averaging of projection operators.

The main difference between these models is in the way how an aver-
aging procedure over projection operators is performed (thermal statis-
tical averaging in the case of pseudospin—electron and Falicov—Kimball
models and configurational averaging for binary alloy) and how self-
consistency is achieved (fixed value of longitudinal field h for pseudospin—
electron model, fixed value of the component concentration ¢ for binary
alloy and fixed value of the electron concentration — total or for both
electron subsystems — for Falicov—Kimball model).

3. The limit of large dimensions (d — oc)

In the case of high dimensions (d — o0) one should scale hopping integral
i
Vd
in order to obtain finite density of states (the Gaussian one for d = oo
hypercubic lattice p(¢) = ﬁe_fz/ W* and semi-elliptic d.o.s. for d = 0o
Bethe lattice p(g) = —2=VW? — €2 [8]). Due to such scaling only single—

- W32
site contributions survive in the expression for irreducible parts =,

(9)

tij —

o

EY; (1—7)=0;2:(1—7'), Eo(wn,k)=ZEs(wn) (10)
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and such site—diagonal function, as it was shown by Brandt and Mielsch
[9], can be calculated by mapping the infinite-dimensional lattice prob-
lem on the atomic model

e BH _y o=PHer — ,—FHo (11)

XTexp{ — /Oﬁdr /Oﬁdr' Z Jo (1 — T')al—(T)aa(Tl)}

with auxiliary Kadanoff-Baym field J, (7 — 7') [11] which has to be self
consistently determined from the condition that the same function =,
defines Green’s functions for lattice (6) and atomic limit

1

Egl(wn) - Jo(wn) -

Gy (wn) = (12)

“Dynamical” mean field J, (7 —7") describes the hopping (transfer) of
electron from atom into environment at moment 7, propagation in envi-
ronment without stray into atom until moment 7'. Connection between
these “dynamical” mean field of atomic problem and Green’s function
of the lattice can be obtained using standard CPA approach [8]:

Jo(wn) =25 (wn) = G5 (wn), (13)

where

G (W) = Gy (wn) = /mdt__lp(t)

s (14)
oo Zo o (wp)—t

is a single—site Green’s function both for atomic limit and lattice. Here
summation over wave vector was changed by the integration with the
density of states p(t).

In order to complete our self—consistent set of equations we should
find expression for Green’s function in the atomic limit (12). Due to the
properties of the projection operators (7) one can rewrite Hamiltonian
of atomic problem (11) in the form

e~PHet = pte=AHT | p=—pH) (15)

and our space of states splits into two independent subspaces hence all
projection operators (7) act at the same site and in any order of the
perturbation theory expansion all projection operators can be replaced
by their product result and there are no necessity to make semi—invariant
expansions.
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Single—electron Green’s function is a sum of Green’s functions in
subspaces and is equal

(Pr)

Gl (wp) = - 16
7" (@n) iwn + p— Jo(wn) — § (16)
(P~)
iwn 4+ pt— Jo(wn) + 47
Partition functions in subspaces are
Zy =Spe PHx = et Qs (17)

— AT H (1 te B(u:Fz)) 1;[ <1 — ﬁ)

o

and presents the partition functions of the non—interacting fermions with
frequency dependent hopping placed in the external field formed by pseu-
dospin.

Pseudospin mean value is determined by equation

1z -Z
27, + 7

_ %tanh% (Bh — (Q+[(S™)] - Q=[(5*)])

(57) (18)

which is an analogue of the well known equation of state for Ising model
in mean-field approximation: (S*) = & tanh £ (h + Jy (S*)). It should be
noted that in the case of Lorentzian density of states p(e) = %,
which is frequently used in some applications of DMFT, one can easily
obtain a simple result J, (w,) = iW [8], quantities Q* do not depend
on (S*) and equation (19) transforms into an expression for (S?) that
indicates the sensitivity of the equation of state to the shape of d.o.s.

Electron concentration mean value is determined by
1
(n) = 3 > Go (wm) (19)
mo

and the functional of thermodynamic potential can be derived in the
same way as it was done in [9] for Falicov—Kimball model

Q 1 1
N =%~ 3 %: { In G (wn) = zk:lnag(wn,k)}, (20)
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Figure 1. Electron bands boundaries (semi-elliptic d.o.s., W = 04,
(8%) =0.2).

where 1
Q(a) = _B In(Zy +2_) (21)

is a thermodynamic potential for atomic problem.
Below, all calculations will be performed for semi—elliptic density of
states when the auxiliary field is determined by the simple cubic equation

w2 { (P)

Jo(wn) = )
4 |iwp +p—Jo(wn) — 5

(22)

(r-) }
iwn = Jo(wn) +4 [

In a usual way we perform analytical continuation on real axis (iw, —
w—1d) and only solutions of (22) with Sm.J, (w) > 0 must be considered.
Band boundaries are determined from the condition SmJ,(w) — 0 and
in Fig. 1 their dependence on coupling constant g are presented. One can
see that there exists critical value of coupling constant g ~ W when a
gap in spectrum appears. It should be noted that within GRPA as well as
in other approaches where single—electron Green’s function is calculated
in Hubbard-I approximation, when we keep only the first term of the
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single-site contribution in the expression for the irreducible part (8),
these gap in spectrum always exists.

In the case of strong coupling (g > W) an analytical solutions can
be obtained

Ja(w):%(wxg)-{—%’\/W?(Pi)— (w;tg)2 (23)

for upper and lower subbands, respectively, and one can see that sub-
bands halfwidth is equal to Wy/1 + (9%) whereas in Hubbard-I approx-

imation it is W (4 £ (S?)). This result clearly shows that even for the
case of strong coupling when subbands are well separated and one of
them become narrow ((S*) — +3) Hubbard-I approximation is unsuf-
ficient and can not be derived from the exact solution in any way, e.g.
due to the subbands halfwidth square root dependence on the localized
states occupance ((PT) — 0).

Presented above expressions were obtained for the fixed value of the
chemical potential g when stable states are determined from the mini-
mum of the thermodynamical potential (20). This regime p = const cor-
responds to the case when the charge redistribution between conducting
sheets CuQO3 and other structural elements (charge reservoir, e.g. nonsto-
ichiometric in oxygen CuO chains in YBaCuO type structures) which fix
the value of the chemical potential is allowed. On the other hand, in the
regime of the fixed electron concentration value one should solve equa-
tion for chemical potential n = (n) (19) and stable states are determined
by the minimum of the free energy F' = Q) + un.

4. Results and discussion

Integrals in Eqgs. (17) and (20) can be calculated analytically for states
with (S*) = :i:% at zero temperature and corresponding phase diagrams
p—h which indicate stability regions for these states are shown in Fig. 2a
and b for g > W and g < W, respectively. One can see two regions of u
and h values where the states with (S*) = +1 coexists. In the vicinity of
these regions the phase transitions of first order with the change of the
longitudinal field h and/or chemical potential p take place (see Fig. 3)
and they are shown by thick lines on phase diagrams (Fig. 2).

There are no any specific behaviour when chemical potential is placed
out of bands. If chemical potential is placed in upper subband the graphs
presented in Fig. 3 transform according to the internal symmetry of the

ICMP-98-20E 8

Hamiltonian:
w—>—p, h—=>29g—h, n—>2—-n, S°— -5~ (24)

With the temperature increase the region of the phase coexistence
narrows and the corresponding phase diagram 7. — h is shown in Fig. 4.
One can see that with respect to Ising model the phase coexistence curve
is shifted in field and distorted from the vertical line and hence the
possibility of the first order phase transition with the temperature change
exists in pseudospin—electron model for the narrow range of h values.

As it was mentioned above, the band structure is determined by
the pseudospin mean value and its change is accompanied by the corre-
sponding changes of the electron concentration and for the (u, h) values
fixed on the first order phase transition line there are three solutions for
electron concentration one of which is unstable.

In the case of the fixed value of the electron concentration value
(regime n = const) this first order phase transition transforms into the
phase separation. One can see regions with du/dn < 0, which correspond
to this effect in electron subsystem, on the concentration dependencies
(Figs. 5 and 6a).

The corresponding dependencies of free energy F' = Q2+ un are given
in Fig. 6b. In the phase separated region free energy deflects up and
concentration values at binodal points are determined by the tangent
line touch points or from the chemical potential dependencies (Fig. 6a)
using Maxwell construction. Resulting phase diagram 7" — n is shown in
Fig. 7.

For the first time the possibility of phase separation in pseudospin—
electron model was marked in [5] where it was obtained within GRPA
in the limit of strong correlation U — oo. Here it is observed for the
opposite case of U = 0.

The problem of phase separation in strongly correlated systems is
not new (see [1] and references therein). It was shown for Hubbard
and ¢t — J models [12] that for some parameter values system separates
into hole-rich and hole—poor regions with paramagnetic and antiferro-
magnetic orders, respectively, and long-range interaction between these
charged regions is considered as an origin of the appearance of stripe
structures. In Ref. [10] the phase segregation for some parameter val-
ues was reported for the annealed binary alloy with diagonal disorder
described by Falicov—Kimball model. In our case of pseudospin—electron
model without electron correlations system separates into regions with
different values of electron concentration and pseudospin mean value
and electron spectrum contains both wide empty electron band and oc-
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cupied localized states of the regions with n ~ 0 as well as partially filled
wide electron band and empty localized states of the regions with n ~ 1
(see Fig. 5) the weights of which are determined by the electron con-
centration. Such type localized states (polarons) results from the strong
electron—out of plane apical oxygen vibrations coupling (g > W) in the
case of YBaCuO—type structures and it is supposed that the hopping
between them gives significant contribution in the carrier relaxation ob-
served by the resonant Raman spectroscopy [13].

It should be noted that in the case of spinless fermions Hamiltonian
(1) can be applied for the description of the oxygen vacancies subsystem
in high—T, superconductors, which can be treated as quasiequilibrium,
and it is known that their interaction with some relaxation type lattice
mode leads to the phase separation and appearance of superstructures
and stripes [14].

In this paper we investigated the possible phase transitions in
pseudospin—electron model within DMFT without creation of super
structures (k = 0) and the phase diagrams presented in Figs. 4 and
7 concern only this case. In order to detect instabilities associated with
a specific wave vectors one should calculate response functions which will
be the subject of the further investigations.
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Figure 2. Phase diagram p — h. Dashed and thin solid lines surround
respectively. Thick solid line indicate the first
order phase transition points. a) g =1, W =0.2;b) g =1, W =0.7.
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