
îÁÃ¦ÏÎÁÌØÎÁ ÁËÁÄÅÍ¦Ñ ÎÁÕË õËÒÁ§ÎÉ���������	
� ¶îóôéôõôæ¶úéëéëïîäåîóï÷áîéèóéóôåí'
&

$
%M.Vavrukh�, V.Paslavs'kiiModel of the fermion liquid with a short-range interaction.The local-�eld correction function, thermodynamic and dynamiccharacteristics�L'viv State University, 290005, L'viv,Kyrylo and Methodii 8

ICMP{98{14E
ìø÷¶÷

õäë: 537.31; 538.945PACS: 05.30.FkðÏÐÒÁ×ËÁ ÎÁ ÌÏËÁÌØÎÅ ÐÏÌÅ ÆÅÒÍ¦-ÓÉÓÔÅÍÉ Ú ËÏÒÏÔËÏÓÑÖ-ÎÏÀ ×ÚÁ¤ÍÏÄ¦¤À÷Á×ÒÕÈ í., ðÁÓÌÁ×ÓØËÉÊ ÷.áÎÏÔÁÃ¦Ñ. úÁÐÒÏÐÏÎÏ×ÁÎÏ ÕÚÁÇÁÌØÎÅÎÕ ÍÏÄÅÌØ ÆÅÒÍ¦-ÓÉÓÔÅÍÉ Ú ËÏ-ÒÏÔËÏÓÑÖÎÏÀ ×ÚÁ¤ÍÏÄ¦¤À Í¦Ö ÞÁÓÔÉÎËÁÍÉ, ÑËÁ ÏÐÉÓÕ¤ÔØÓÑ ÐÏÔÅÎ-Ã¦ÁÌÏÍ ×¦ÄÛÔÏ×ÈÕ×ÁÎÎÑ àËÁ×É. äÏÓÌ¦ÄÖÅÎÏ ÚÁÌÅÖÎ¦ÓÔØ ÄÉÎÁÍ¦ÞÎÏ§ÐÏÐÒÁ×ËÉ ÎÁ ÌÏËÁÌØÎÅ ÐÏÌÅ, ÅÎÅÒÇÅÔÉÞÎÉÈ ÔÁ ÄÉÎÁÍ¦ÞÎÉÈ ÈÁÒÁËÔÅ-ÒÉÓÔÉË ÍÏÄÅÌ¦ ×¦Ä ÐÁÒÁÍÅÔÒ¦× ÐÏÔÅÎÃ¦ÁÌÕ. òÏÚÒÁÈÏ×ÁÎÏ ÏÂÌÁÓÔØ ÔÅÒ-ÍÏÄÉÎÁÍ¦ÞÎÏ§ ÓÔÁÂ¦ÌØÎÏÓÔ¦ ÍÏÄÅÌ¦ ÑË ÆÕÎËÃ¦À ÒÁÄ¦ÕÓÁ ÐÏÔÅÎÃ¦ÁÌÕ×ÚÁ¤ÍÏÄ¦§ ÔÁ ÇÕÓÔÉÎÉ ÞÁÓÔÉÎÏËModel of the fermion liquid with a short-range interaction. Thelocal-�eld correction function, thermodynamic and dynamiccharacteristicsVavrukh M., Paslavs'kii V.Abstract. A generalized Fermi liquid model with a short-range interac-tion potential, which is simulated by the Yukawa repulsion potential isproposed. It is investigated how the dynamic local-�eld correction andother characteristics of the model depend on the parameters of the in-teraction potential. The thermodynamical stability region as a functionof the interaction range and the particle density are calculated.ðÏÄÁ¤ÔØÓÑ × phys. stat. sol. (b)Submitted to phys. stat. sol. (b)c ¶ÎÓÔÉÔÕÔ Æ¦ÚÉËÉ ËÏÎÄÅÎÓÏ×ÁÎÉÈ ÓÉÓÔÅÍ 1998Institute for Condensed Matter Physics 1998



1 ðÒÅÐÒÉÎÔ1. IntroductionThe local-�eld conception holds a prior place in the modern electronliquid theory and the local-�eld correction function is believed to bethe fundamental characteristic of any many-particle system with a lo-cal interaction potential. The local-�eld correction function was studiedin detail for the electron liquid case [1, 2]. Up to the present, the in-vestigation of this function for the case of Coulomb repulsion cannot beconsidered to be completed. We do not know an investigation of the local-�eld correction function of many-particle systems with a non-Coulombinteraction potential.Being a functional of the interaction potential, the local-�eld correc-tion function must possess features, which are inherent to a particularphysical system. But the local-�eld correction function of a degenerateFermi system also must possess common features caused by a Fermi sur-face. In this paper we want to investigate the inuence of the interactionpotential on the local-�eld correction function and the ground state en-ergy. We shall use a reference system approach [3, 4, 5] for investigatingof the model with a non-Coulomb interaction potential between parti-cles, and as a reference system the model of the ideal fermion gas willbe used.We consider the degenerate Fermi system model of N fermions withcharge Ae, which are located in a volume V with compensated back-ground charge �NV Ae. We describe the interaction between particles andbackground charge by the Yukawa repulsion potentialV (rij) = A2e2(rij)�1 exp[��rij=a0]: (1)Here e is the charge of an electron, a0 is the Bohr radius. Let us considerthe thermodynamical limit, N; V !1; N=V = const. Here suggestedpotential has two parameters, which control the coupling strength andthe interaction range. A2 is an interaction constant and ��1 de�nes thee�ective range of the potential. Such a choice of the potential was causedby our wish to have a look on the features of the electron liquid modelwith a general position, and we mention a possible its using for thedescription of nuclear matter. A third parameter of the model is particlemass m.A dimensionless coupling parameter of this model, de�ned as theratio of an average potential energy of the particle to its kinetic one, hasthe form a = �35"F��1 NV Z drV (r)jgid2 (r)� 1j ' (2)
ICMP{98{14E 2' 20�A2e23"F NV RFZ0 dr r exp [��r=a0] = 10A2rs�4 m�f(��);f(��) = (��)�2f1� [1 + ��] exp(���)g:Here "F = �h2k2F2m is the energy of a free particle on the Fermi surface,m� = m=m0 (m0 is the mass of an electron, gid2 (r) is a pair distributionfunction of the ideal fermion system (without interaction) [6], RF =k�1F is a correlation length of the degenerate ideal fermion system, rs =(3V=4�N )1=3a�10 is the Wigner parameter, �� = �rs=�, where� = (9�=4)1=3. Taking into account the asymptotic behavior of f(��),one can see that the coupling parameter � changes from 10A2rs��4(at�� ! 0) to 10A2rs��4(��)�2 (at �� � 1). The electron liquid modelis a limiting case of the model under consideration in the limit A !1; � ! 0. Its coupling parameter rs is the Wigner parameter. Varyingthe parameters A; �;m�, we can change the coupling parameter � in awide region. For example, the weakly non-ideal limit can be obtained indi�erent pathways 1)rs ! 0; A; �;m� = const;2)A! 0; rs; �;m� = const; (3)3)� !1; A; rs;m� = const:The principle aim of our paper is to investigate the inuence of the in-teraction potential on the local-�eld correction function and other modelcharacteristics.The local-�eld approximation in the electron liquid theory generalizesexpressions, which occur in the random phase approximation, to systemswith any value of the coupling parameter rs. In general, the dynamiclocal-�eld correction function G(x) can be de�ned by the generalizationof the two-particle correlation function �RPA2 (x;�x)�RPA2 (x;�x) = ~�02(x;�x)�1 + VqV ~�02(x;�x)��1 : (4)Here ~�02(x;�x) is the ideal system pair correlation function [3]. Substi-tuting Vq the Fourier-transform of the interaction potential (1.1) by thee�ective one Vq [1�G(x)], we obtain the pair correlation function in theform �2(x;�x) = ~�02(x;�x)�1 + VqV ~�02(x;�x)[1�G(x)]��1 : (5)



3 ðÒÅÐÒÉÎÔwhich de�nes the pair distribution functiong2(r) = 1 + [�N (N � 1)]�1X� Xq 6=0 �2(x;�x) exp(iqr); (6)where � is the reciprocal temperature, x = (q; �);q is the wave vector,� is the Bose-Matsubara frequency [7], r is the distance between twoparticles.2. Local-Field Correction Function of the Model witha Short-Range Interaction PotentialAn integral equation set for the local-�eld correction function G(x) ofthe electron liquid model has been obtained in [4]. The positive valueof the Fourier-transform of the interaction potential has been appliedin this procedure. Therefore the equation set is valid for any potential,which satis�es the condition Vq > 0,G(x) = G1(x) + G2(x);G1(x) = �(2�Vq )�1[~�02(x;�x)]�2Xx1 [V0(x1)� Vq1G2(x1)]� ~�04;1(x;�x; x1;�x1); (7)G2(x) = (2�V Vq)�1[~�02(x;�x)]�2� Xx1 V0(x1 + x)[V0(x1)� Vq1G2(x1)]� ~�03(x; x1;�x1 � x) ~�03(�x;�x1; x1 + x):Here ~�03(:::) is the three-particle correlation function, ~�4;1(:::) is the nor-mal part of the four-particle one for the ideal Fermi system [3], x1 =(q1; �1). They can be represented in terms of elementary functions in thecase T = 0K (see [3, 8]). In Eq. (2.1) V0(x) = Vqh1+ VqV ~�02(x;�x)i�1 isthe screened interaction potential in the random phase approximation.As one can see from (2.1) the ratio G2(x)G�11 (x) is proportional to �in a weakly nonideal region (see (1.3)). Therefore we can neglect thecomponent G2(x) in this region. Representing G1(x) in integral form,we obtain the following expression:GRPA1 (x) = �(4�)�1[q2 + (��)2]I�22;0(q; ��=q)� 1Z0 dq1 q21 1Z0 d��1 +1Z�1 dt I4;1(q; q1; ��=q; ��1=q1; t) (8)
ICMP{98{14E 4� [q21 + (��)2 + 4A2m�rs(��)�1 I2;0(q1; ��1=q1)]�1:The dimensionless variables q � jqj=kF ; �� � �(2"F )�1m� andfunctions I2;0(q; ��=q) = 2"F (3Nm�)�1 ~�02(x;�x); I4;1(q; :::; t) =(3N )�1(m�)�3(2"F )3 ~�04;1(x;�x; x1;�x1) have been used (t is the cosineof the angle between the vectors q and q1). As one can see GRPA1 (x) be-comes the local-�eld correction function of the Fermi system in the limitrs ! 0 and A; � = const, which coincides with the local-�eld correctionfunction of the ideal degenerate electron gas GELid (x) in the variablesq; �� (Fig. 1). This is a universal function, which does not depend on anyparameter. It has the following asymptotic behaviorGELid (x) = � (��)q2 + ::: for q� 1;1=3 + ::: for q� 1; (9)where (��) is a monotonous function of the dimensionless frequency ��[6, 8]. It decreases from 1=4(at�� =1).The function G1(x) depends only on the parameter �� in the limitA ! 0, at rs; � = const. Let us use the representation (2.7) from [5]for ~�04;1(x;�x; x1;�x1) to investigate the asymptotic behavior of G1(x).We can obtain the following asymptotic Gid(x) in the short-wavelengthregion Gid(q; ��=q) = 12[q2 + (��)2]q�2 f1�D(��) + 2D(��) (10)� h ��(��=q)2 + q2=4i2�at q � 4; �� � 2q, whereD(��) = 13 � 34(��)2 + 18(��)4 + (��)3 arctan 2�� (11)� 38(��)4h1 + 112(��)2i lnh1 + 4(��)2i;and Gid(q; 0) = C0(��) +C2(��)q2 + :::; (12)Gid(q; ��=q) = B0(��) +B2(��)q2 + :::; �� � q;C0(��) = 14(��)2�1� (��)24 lnh1 + 4(��)2 i� ; (13)B0 = 320(��)2�1� (��)2 + (��)24 [1 + (��)2] lnh1 + 4(��)2 i�



5 ðÒÅÐÒÉÎÔin the long-wavelength region. As one can see from (2.4), (2.7) the long-wavelength region asymptote changes from 0 to 1/2, when �� changesfrom zero to in�nity and the short-wave one from 1/3 to 1/2. The func-tionGid(x) changes very essentially near the point jqj = 2kF . All featuresof Gid(q; 0) are depicted in Fig. 2.As one can see from the asymptotes (2.3), (2.7) the behavior of thelocal-�eld correction function is de�ned by the e�ective range of theinteraction between particles R0 = ��1a0 in the long-wavelength re-gion. The local-�eld correction function of any short-range potentialhas a �nite value at q = 0, which rises, when the parameter �� rise.The asymptote (��)q2 + ::: occurs only in the Coulomb potential limit(R0 = 1; C0(��) = 0). In this way, the local-�eld correction functionof the system with short-range interaction potential is more importantthan the one of the Coulomb system.Approximations Gid(x) and GELid (x) correspond to the result of [9],in which, for the �rst time, the dynamic local-�eld correction functionof the electron-liquid model GELid (q; !) in terms (q; !), where ! is theHeisenberg frequency, has been investigated. As a function of ! the ex-pression GELid (q; !) has strong singularities. In the terms of (q; �) thefunction Gid(x) has no singularities. This is convenient for its furtheruse.Taking into account the existence of extremum of the function~�03(x; x1;�x� x1) and ~�04;1(x;�x; x1;�x1) near the surface x = x1, wecan calculate the local-�eld correction function in the region of middleand strong nonideality [5]. Using the mean-value theorem of the integral,we obtain the approximate solution of the set (2.1),Gi(x) � GRPAi (x)[1 + GRPA2 (x)]�1; i = 1; 2; (14)GRPA1 (x) is computed by (2.2),GRPA2 (x) = [q2 + (��)2]rsm�(�2�)�1[2I2;0(q; u)]�2A2 (15)� +1Z�1 du1 1Z0 dq1q31 +1Z�1 dtP (q1; u1)P (q2; u2)I23;0(q; q1;u; u1; t);where u1 � ��1=q1, u � ��=q,q2 = [q2 + q21 + 2q1qt]1=2, u2 = q�12 [�� + ��1],P (q; u) = [q2 + (��)2 + 4A2rsm�(��)�1I2;0(q; u)]�1, I3;0(q; q1;u; u1; t) =(2"F )2(3N )�1(m�)�2~�03(x; x1;�x�x1). The functions ~�03(x; x1;�x�x1)and ~�04;1(x;�x; x1;�x1) in terms of (q; �) have no singularities, thereforefor the calculation of (2.2) and (2.9) standard numerical methods ofintegral calculations can be used.
ICMP{98{14E 6The results of the local-�eld correction function calculation in theapproximation (2.2), (2.8), (2.9) are depicted in Fig. 3, 4. When the pa-rameter A changes,G(x) changes weakly in the region o � jqj � 2kF ,but a strong dependence is noticed in the region jqj > 2kF . The in-crease of the local-�eld correction function with increasing A is similarto the dependence of the electron liquid local-�eld correction functionon the parameter rs [7]. The dependence of G(x) on the parameter � atA; rs; �� = const is presented in Fig. 3. As one can see G(x) is weaklydependent on the parameter � in the short-wavelength region. The rangeR0 has a strong inuence on the local-�eld correction function in the re-gion of small and medium wave vectors. The dependence of G(x) on theparameter rs at � = const is depicted in Fig. 4. The behavior of G(x) isvery similar to the electron liquid local-�eld correction function in theregion q > 2kF . Comparing GEL(x) with G(x) of our model, we noticethat in the region q � 2kF ; GEL(x) and G(x) are very di�erent. On thewhole, G(x) has the following asymptotic behaviorG(x)! � a(��; rs; ��)[q2 + (��)2] + ::: at q� 1;G1(A; rs; ��) + ::: at q� 1: (16)3. Ground State Energy of the ModelAs is known, the local-�eld correction function de�nes the integral andlocal characteristics of a system with a local two-particle interaction. Inaccordance with (1.5), the ground state energy expression has the formE = E0 + lim�!1Xq 6=0X� 1Z0 d�� V �q ~�02(x;�x) (17)� (1 + V �qV ~�02(x;�x) [1� G�(x)])�1 ;where V �q and G�(x) depend on the coupling parameter �A2; E0 is theground state energy of the ideal system. Extracting the ideal correlationcontribution, we can represent the total energy in the usual dimensionlessform : E = N �Ry "(rs; A; �),"(rs; A; �) = "0(rs) + "HF (rs; A; �) + "c(rs; A; �): (18)Here "0(rs) = 3=5�2r�2s (m�)�1 is the ideal system energy at T = 0K inRy per particle,"HF (rs; A; �) = �2A�(�rs)�1h34 � �� arctan 2�� (19)



7 ðÒÅÐÒÉÎÔ+ (��)28 ��3 + (��)24 � ln�1 + 4(��)2�� 1�iis the Hartree-Fock energy contribution,"c(rs; A; �) = �24�3A4 (m�)2r2s 1Z0 dq q3 1Z0 du rsZ0 dr0s r0s I22;0(q; u)� [1�G(q; u)][q2+ (��)2]�1 (20)� (q2 + (��)2 + 4A2r0sm��� I2;0(q; u)[1� G(q; u)])�1is the correlation energy. The function G(q; u) depends on the parameterr0s � �rs in (3.4) (but �� � �rs=�). The Hartree-Fock energy contributionhas the following asymptote"HF (rs; A; �)!�2A2��rs � 34 at � ! 0;13(��)2 at � !1: (21)The correlation energy "c has been computed by a numerical method ina wide region of its parameters. The dependence of the total energy onthe parameter rs and � is depicted in Fig. 5. The total energy increaseswith the rise of the parameter � at �xed value of rs. The stability regionalso decreases, when the total energy is negative. The curve"(rs; 1; �) = 0 (22)is depicted in Fig. 6 as a solid line (curve 1). The shaded part of the pic-ture corresponds to "(rs; l; �) > 0 and the unshaded part (below curve1) corresponds to "(rs; l; �) < 0. The solid line de�nes the particle equi-librium density in the system with minimum total energy (at a givenmagnitude of the parameter �) (curve 2)ddrs "(rs; 1; �) = 0: (23)As one can see a critical value �c exists. The total energy of thesystem can not become negative at any density, when � > �c. Thereforethe correlation e�ects can not provide the equilibrium of a quantumsystem at small value of the interaction range, contrary to the case ofthe electron liquid.In the limit � ! 0 formula (3.2) de�nes ground state energy of theelectron liquid model.
ICMP{98{14E 8At the case of the model which is consist of neutral fermions withinteraction potential (1.1) expression (3.2) must be supplemented by theterm � "(rs; A; �) = N2V Vq=0 � e22a0��1 = 43� A2�3��2r�3s : (24)This term is signi�cant at the region of small values of the parameters� and rs. It inuence on the ground state energy vanishes in the regionrs; � ! 0.4. Plasmon Excitation SpectrumAs is known, the local-�eld correction function makes it possible forcalculation of the dynamic characteristics. One of them is a spectrum ofthe plasmon excitations ! � !(q). It can be found as a solution of theequation "(q; �h!) = 0; (25)where "(q; �h!) is a real part of the dielectric response function, ! is aHeisenberg frequency (see [9]). Transition for the thermodynamic per-turbation theory to dynamic one be done when one replaces Matsub-ara frequencies � on i�h! � �(� ! +0) in all characteristics. As a result~�02(x;�x) and G(x) transform to ~�02(q; �h!) and G(q; �h!) correspondent-ly, and (4.1) can be written in the form"(q; �h!) = 1 + VqV ~�02(q; �h!) (26)� h1� VqV ~�20(q; �h!) G(q; �h!)i�1:On the basis of (4.2) one can obtain equation for plasmon excitations1 + VqV ~�02(q; �h!)[1� G(q; �h!)] = 0: (27)~�02(q; �h!) was calculated in [7, 10]~�02(q; �h!) = 3N2"F f(q; ~!); (28)f(q; ~!) = 12 (1 + 12q X�=�1[1� t2� ; q; ~!)] ln 1 + t�(q; ~!)1� t�(q; ~!)) ;



9 ðÒÅÐÒÉÎÔwhere t�(q; ~!) = 12�q + �q ~!�, ~! = �h!"�1F , q = jqjk�1F . One may obtainasymptotic behavior of the f(q; ~!) in the region q! 0 :f0(c) = limq!0 f(q; "F cq) = 1 + c4 ln ���c� 2c+ 2���: (29)The constant c can be found as a solution of the equationf0(c) = ��4 rs� � �A�2 (1 �G0(c)); (30)where G0(c) = limq!0 G(q; c"F q): (31)As you can see from (4.6), the constant c in the random phase approx-imation can change in the region c0 � c < 1, where c0 ' 1; 67::: is asolution of the equation f0(c) = 0. Branch of the solution c > 2 corre-sponds to \deformed" plasmons. At the c � 2 in the limit of the smallwave vector (0 � q � �rs=�) one may obtain:�h!q ' �h!0 �Aq � �(�rs)�1; (32)where !0 = (4�e2N=mV )1=2 is a plasmon frequency for the model of theelectron liquid model.Using asymptotic behavior of the f(q; ~!) in the region of the largevalue of the ! and the medium value of the qf(q; ~!) = �43 q2f~!2 � q4g�1 ��1 + 125 q2[~!2 � q4]�1 + :::� ; (33)we obtain in the random phase approximation spectrum for collectiveexcitations in the region � < 1 at q � �rs=��h!q ' �h!ELq �Aq[q2 + (�rs=�)2]�1=2: (34)Here �h!ELq ' �hf!0 + 2�!F q2g (35)is a plasmon excitation spectrum for the model of the electron liquid, �is a dispersion coe�cient, which is equal 3!F (5!0)�1; !F � "F=�h in therandom phase approximation.These solutions were obtained by numerical method. The local-�eldcorrection function G(x) was taken in the form Gid(q; �h!), which corre-sponds to [9] under replacing the Coulomb potential Vq on the Yukawa
ICMP{98{14E 10one: Gid(q; �h!) = [q2 + (�rs=�)2]f�2(q; ~!) +1Z�1 Z dz1 dz2 (36)� X�1;�2 �1; �2�q;~!�z1 + �12 q; z2 + �22 q; 1� z21; 1� z22�;�q;~!(a; b;w; v) = q28 (a� b)J(s2;w; v)�b2q2 � ~!24 ��1� �a2q2 � ~!24 ��2hq2a2b+ ~!24 (2a+ b)i:The function J(s2; w; v) has the some structure as J(s2; w; v) from [9]J(s2; w; v) = 12fW (s2; w; v)� w � v � s2g+ w ln f(2s2)�1[W (s2; w; v) + s2 + v �w]g (37)+ v lnf(2s2)�1[W (s2; w; v) + s2 + w � v]g;but s2 = (a � b)2 + (�rs=�)2. Dependence of the plasmon excitationspectrum on the parameters � and rs is depicted on the Fig. 7A, 7B.As one can see, spectrum of the collective excitations for the general-ized model and the electron liquid model have di�erent behavior in thelongwavelength region and have the some one in the shortwavelengthregion.5. Using the Model System with a Short-Range In-teraction Potential as a Reference System for De-scription of the Electron Liquid ModelModel with a short-range interaction can be used as a reference systemfor the description of the electron liquid model in the region of strongnonideality. The main idea of such a method is the precise descriptionof the short-range correction and the approximative description of thelong-range correlation in a wide region of the parameter rs. For that letus write the Coulomb potential as a sum of two termse2r = VS(r) + VL(r); (38)VS (r) = e2r exp(��r=a0); VL(r) = e2r f1� exp(��r=a0)g:



11 ðÒÅÐÒÉÎÔThe model system with interaction potential VS(r) is used as a referencesystem. Using approximative description of the polarization function asin [4], long-range component VL(r) can be considered within the frame ofthe perturbation theory. The ground state energy of the electron liquidmodel can be written in the formE = ER + lim�!1 12�V Xq 6=0X� VL(q) 1Z0 d� �2(x;�xj�); (39)where ER is a ground state energy of a reference system, VL(q) is theFourier-transform of the potential VL(r) and �2(x;�xj�) is the two-particle correlation function, which describes long-range part of the Cou-lomb potential. The function �2(x;�xj�) can be described by polariza-tion function, which is computed in the post-RPA [4]:�2(x;�xj�) = M (xj�) f1 + V �1VL(q)� M (xj�)g�1;M (xj�) = �R2 (x;�x) +M2;1(xj�) +M2;2(xj�); (40)M2;1(xj�) = �(2�V )�1Xx1 vL(x1j�)�R4 (x;�x; x1;�x1);M2;2(xj�) = (2�V 2)�1Xx1 vL(x1j�)vL(x + x1j�)� [�R3 (x; x1; x� x1)]2:Here vL(xj�) is a screened potential in RPA:vL(xj�) = �VL(q) "�1L (xj�); (41)"L(xj�) = 1 + �V �1VL(q) ~�R2 (x;�x);The n-particle correlation function of a reference system has the form~�R2 (x;�x) = ~�02(x;�x) "�1s (x);"s(x) = 1 + V �1Vs(q) [1�G(x)] ~�02(x;�x); (42)~�Rn (x1; :::; xn) = ~�0n(x1; :::; xn) nYi=1 "�1s (xi); n = 3; 4;where G(x) is a local-�eld correction function of a reference system, and~�0n(x1; :::; �n) is the n-particle dynamic correlation function of the idealelectron gas [3].Ground state energy can be written in the dimensionless formE = N � Ry � "(rs); (43)"(rs) = "0(rs) + "HF (rs) + "c(rs):
ICMP{98{14E 12The result of the calculation of the ground state energy is representedin the Table 1. The numerical calculation has been done at �0 = kFa0 =�r�1s . As one can see from Table 1 the correlation energy of the electronliquid model, calculated on the basis (5.1), and the results obtained byMonte-Carlo method and interpolated in [11], are very similar. Our resultis more exact than result of [3], where post-RPA approximation for thepolarization function was used, and a reference system was taken idealelectron gas. For comparison we refer to result of [12], where correlationenergy was obtained by the static local-�eld correlation function.Table 1.Correlation energy for the electron liquid model (�103"c(rs))rs 1 2 3 4 5 6 10RPA 157.6 123.6 105.5 93.6 84.9 78.2 61.3PRPA 119.7 89.3 72.2 62.1 54.2 48.0 32.6MC [11] 120.0 89.6 73.8 63.6 56.3 50.7 37.1[12] 117.4 86.9 71.1 61.0 53.8 48.3 35.0* * * 120.0 89.2 73.2 62.8 55.7 50.1 36.26. ConclusionThe local-�eld approximation is one of the most signi�cant achievementin the electron liquid theory during the last decades and the local-�eldcorrection function is one of many universal characteristics of the mod-el. The generalized Fermi system model with the interaction describedby Yukawa repulsion potential has been proposed. On the basis of thismodel the dependence of the local-�eld correction function on the inter-action range of the potential R0 has been investigated. As one can seefrom Fig. 2-4, the local-�eld correction function is such a model has abehavior di�erent from the electron liquid model. Especially the region0 < q < 2kF is important, where the Fourier-transform of the potentialVq is large. On the basis of the computation we may assert that thelocal-�eld correction function in the model with short-range interactionpotential is always larger than in the model with Coulomb potential inthe region of small and medium values of the q. This fact shows therelative importance of the short-range part of the interaction potential



13 ðÒÅÐÒÉÎÔfor systems with a �nite value of the interaction range.As is known, the electron liquid model is stable, has negative to-tal energy in the region rs � 2:0, and has the equilibrium density atr0s = 4:1825:::, which corresponds to the minimum of the total energy(-0.15533 Ry per electron). As one can see from Fig. 5 the total ener-gy of the generalized model in the ground state is smaller than thatfor the electron-liquid model for any value of the parameter � at thesame value of the parameter rs. Every value of rs in the generalizedmodel has been proved to correspond to a critical range of interactionRc(rs) = a0��1c (rs). If the potential range is less than Rc, the correlatione�ects which have the range RF = k�1F cannot provide the stability ofthe model and a negative value of the total energy. Qualitative conclu-sions concerning the inuence of the range of the interaction potentialbetween particles on the character of the local-�eld correction functionand the stability are true not only for the Yukawa potential model butfor any Fermi system with arbitrary short-range potential.The consideration of the represented model, at �rst, has heuristicmeaning, and secondly, the model with a short-range interaction po-tential can be used as a reference system for the description of neutralfermion systems at � 6= 0. In this case the term V (q = 0) must be addedto the expression of the total energy (3.2), and its coupling parameterwill have the form�0 = �35 "F��1NV Z dr0 V (r) gid2 (r0) = 10A2�4 rsm�f 0 (��);f 0 (��) = f(��)�22� (1 + ��) exp (���)g:Model under consideration has interesting behavior of the spectrum ofthe plasmon excitations. The e�ective method for describing of the elec-tron liquid in the strong nonideality region is using the model with ashort-range interaction as a reference system.References1. çÏÒÏÂÞÅÎËÏ ÷.ä., íÁËÓÉÍÏ× å.ç. äÉÜÌÅËÔÒÉÞÅÓËÁÑ ÐÒÏÎÉÃÁÅ-ÍÏÓÔØ ×ÚÁÉÍÏÄÅÊÓÔ×ÕÀÝÅÇÏ ÜÌÅËÔÒÏÎÎÏÇÏ ÇÁÚÁ // õæî. - 1980.- 130, N 1. - ó. 65-111.2. P.Ziesche, G. Lehmann. Ergebnisse in der Elektronentheorie derMetalle. - Akademie-Verlag, Berlin, 1983.
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Figure 1. Dynamic local-�eld correction function of the electron liquidmodel (� ! 0; A = 1; GELid (q; �) (2.2) at rs ! 0.
Figure 2. Static local-�eld correction function Gid(q; 0) (2.2) in depen-dence on the parameter ��.
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Figure 3. Dynamic local-�eld correction function G(x) in dependence onthe parameter � in the approximation (2.8), (2.9) at A = 1; rs = 1; u =1.
Figure 4. Dynamic local-�eld correction function G(x) in dependence onthe parameter rs in the approximation (2.8), (2.9) (rs has the values 0.0;0.1; 0.5; 1.0; 2.0; 3.0; 4.0; 5.0; 7.0; 10.0) at A = 1:0; � = 0:25; u = 1:0.
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Figure 5. Dependence of the total energy of the generalized model onthe parameter �. The calculations are based on (2.8), (2.9), (3.1), (3.4).

Figure 6. Stability and existence region of the generalized model as afunction of the parameters rs and � at A = 1. Curve 1 is the solution of(3.6), curve 2 is the solution of (3.7).
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Figure 7. Dependence of the spectrum of the collective excitations !q onthe parameter rs at the �xed value of � = 0:01. (rs has the values 0.1;0.5; 1.0; 3.0; 5.0). The calculations are based on (4.2), (4.12).
Figure 8. Dependence of the spectrum of the collective excitations !qon the parameter � at the �xed value of rs = 5:0. (� has the values 0.0;0.05; 0.1; 0.25; 0.5; 1.0). The calculations are based on (4.2), (4.12).
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