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1. Introduction

The local-field conception holds a prior place in the modern electron
liquid theory and the local-field correction function i1s believed to be
the fundamental characteristic of any many-particle system with a lo-
cal interaction potential. The local-field correction function was studied
in detail for the electron liquid case [1, 2]. Up to the present, the in-
vestigation of this function for the case of Coulomb repulsion cannot be
considered to be completed. We do not know an investigation of the local-
field correction function of many-particle systems with a non-Coulomb
interaction potential.

Being a functional of the interaction potential, the local-field correc-
tion function must possess features, which are inherent to a particular
physical system. But the local-field correction function of a degenerate
Fermi system also must possess common features caused by a Fermi sur-
face. In this paper we want to investigate the influence of the interaction
potential on the local-field correction function and the ground state en-
ergy. We shall use a reference system approach [3, 4, 5] for investigating
of the model with a non-Coulomb interaction potential between parti-
cles, and as a reference system the model of the ideal fermion gas will
be used.

We consider the degenerate Fermi system model of N fermions with
charge Ae, which are located in a volume V' with compensated back-
ground charge —%Ae. We describe the interaction between particles and
background charge by the Yukawa repulsion potential

V(rij) = A% (ri) ™" exp[—Erij/ag). (1)

Here e is the charge of an electron, ag is the Bohr radius. Let us consider
the thermodynamical limit, N,V — oo, N/V = const. Here suggested
potential has two parameters, which control the coupling strength and
the interaction range. A% is an interaction constant and £~! defines the
effective range of the potential. Such a choice of the potential was caused
by our wish to have a look on the features of the electron liquid model
with a general position, and we mention a possible its using for the
description of nuclear matter. A third parameter of the model is particle
mass m.

A dimensionless coupling parameter of this model, defined as the
ratio of an average potential energy of the particle to its kinetic one, has
the form

“= (gF) [ late) 11 )
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Here cp = EQZF is the energy of a free particle on the Fermi surface,
m* = m/mg (mg is the mass of an electron, gi¢(r) is a pair distribution

function of the ideal fermion system (without interaction) [6], Rp =
k;l is a correlation length of the degenerate ideal fermion system, r, =
(3V/4nN)/3a5! is the Wigner parameter, & = &ry/n, where
n = (97/4)1/3. Taking into account the asymptotic behavior of f(£*),
one can see that the coupling parameter a changes from 10A%r n=*(at
& — 0) to 104%rn~%(¢*)=2 (at €* > 1). The electron liquid model
i1s a limiting case of the model under consideration in the limit A —
1,6 — 0. Its coupling parameter r; is the Wigner parameter. Varying
the parameters A, &, m*, we can change the coupling parameter « in a
wide region. For example, the weakly non-ideal limit can be obtained in
different pathways

1)rs = 0; A&, m" = const;
2)A = 0; rs, &, m* = const; (3)
3)¢ = o0; A, rs, m* = const.

The principle aim of our paper 1s to investigate the influence of the in-
teraction potential on the local-field correction function and other model
characteristics.

The local-field approximation in the electron liquid theory generalizes
expressions, which occur in the random phase approximation, to systems
with any value of the coupling parameter r;. In general, the dynamic
local-field correction function G(z) can be defined by the generalization

of the two-particle correlation function pff4(z, —z)

st A (@, =) = fiy (e, —z) {1 + %ﬁ%(x,—x)}_l. (4)

Here fij(z, —z) is the ideal system pair correlation function [3]. Substi-
tuting V; the Fourler-transform of the interaction potential (1.1) by the
effective one V,[1 — G(x)], we obtain the pair correlation function in the
form

pae, =) = e, =) {1+ i~ - GG} )
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which defines the pair distribution function

ga2(r) = 1+ [BN(N Zsz z,—x)exp(iqr), (6)
v g#0
where 3 is the reciprocal temperature, x = (q, v), q is the wave vector,
v is the Bose-Matsubara frequency [7], r is the distance between two
particles.

2. Local-Field Correction Function of the Model with
a Short-Range Interaction Potential

An integral equation set for the local-field correction function G(x) of
the electron liquid model has been obtained in [4]. The positive value
of the Fourier-transform of the interaction potential has been applied
in this procedure. Therefore the equation set is valid for any potential,
which satisfies the condition V, > 0,

G(z) = Gi(z) + Ga(x),
Gy (x) = —(28V,) " S (x, —2) 22 Vo(1) — Vi, Ga(a1)]

x /jgyl(x,—x,xl,—xl), (7)
Ga(x) = (28V Vy) s (x, —2)] 77
X Z Vo(xy + 2)[Vo(x1) — Vo, Ga(21)]

T
X /]g(x, 1, —x1 — ) /]g(—x, —x1,21 + ).

Here ji3(...) is the three-particle correlation function, fi41(...) is the nor-
mal part of the four-particle one for the ideal Fermi system [3], 1 =
(q1,71). They can be represented in terms of elementary functions in the
-1
case T = 0K (see [3, 8]). In Eq. (2.1) Vo(z) =V, |1+ % 25(x, —x) is
the screened interaction potential in the random phase approximation.
As one can see from (2.1) the ratio Go(x)G7 (%) is proportional to a
in a weakly nonideal region (see (1.3)). Therefore we can neglect the
component Ga(z) in this region. Representing G1(z) in integral form,
we obtain the following expression:

GIP () = —(4m) 7 g* + (€155 (g, v/ q)

[e%) [e%) +1
X /d(h qf/dﬂl/dt Lia(q,q1;0/q, 01/ q1;t) (8)
0 -1

0
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X [Q% + (f*)z + 4A2m*7°s(ﬂ'77)_1 I o(q1, 171/(]1)]_1

The dimensionless variables ¢ = |q|/kr, v = v(2ep)~'m* and
functions I»0(q,7/q) = 2ep(BNm*)~' B(z,—x), ILii(g,..;t) =
(BN (m*)73(2ep)? [Liyl(x, —x, 21, —1) have been used (¢ is the cosine
of the angle between the vectors q and q). As one can see GFF4(z) be-
comes the local-field correction function of the Fermi system in the limit
rs — 0 and A,& = const, which coincides with the local-field correction
function of the ideal degenerate electron gas GEE(z) in the variables
q,v (Fig. 1). This is a universal function, which does not depend on any
parameter. It has the following asymptotic behavior

L _ | 70 4. forg <1,
G (l’)—{ 1/34.. forg>1, (9)

where () is a monotonous function of the dimensionless frequency v
[6, 8]. Tt decreases from 1/4(atv = o0).

The function Gi(x) depends only on the parameter £* in the limit
A = 0, at r,,& = const. Let us use the representation (2.7) from [5]
for [Liyl(x, —x, 21, —21) to investigate the asymptotic behavior of Gy (z).
We can obtain the following asymptotic Gy4(z) in the short-wavelength
region

[¢* + (€))7 {1 - D(&") +2D(€")  (10)

N | =

Gialq,v/q) =

(D/Q)ZVJr q2/4} }

at ¢ >4, v > 2q, where

D) = % - %(E’*)Z + %(5*)4 + (€*)3 arctan — (11)
*\4 1 2
=57 [ @7 m[1 ).

and

Gia(q;0) = Co(€7) + C2(€7)a” + ..., (12)
Gid(‘];’;/Q) :Bo(f*)—l—Bz(f*)qz + U,

cote) = 16 {1 -5 mfre 1 13

(€°)?
By = 2—30(6*)2 {1 — (&) + q[l 1 (€)Y 1n{1 + ﬁ]}
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in the long-wavelength region. As one can see from (2.4), (2.7) the long-
wavelength region asymptote changes from 0 to 1/2, when £* changes
from zero to infinity and the short-wave one from 1/3 to 1/2. The func-
tion G;4(x) changes very essentially near the point |q| = 2kp. All features
of G;4(gq,0) are depicted in Fig. 2.

As one can see from the asymptotes (2.3), (2.7) the behavior of the
local-field correction function is defined by the effective range of the
interaction between particles Ry = £~ lag in the long-wavelength re-
gion. The local-field correction function of any short-range potential
has a finite value at ¢ = 0, which rises, when the parameter £* rise.
The asymptote ¥()g? + ... occurs only in the Coulomb potential limit
(Ry = o0, C(&*) = 0). In this way, the local-field correction function
of the system with short-range interaction potential is more important
than the one of the Coulomb system.

Approximations Giq(z) and GEL(z) correspond to the result of [9],
in which, for the first time, the dynamic local-field correction function
of the electron-liquid model GEL (¢, w) in terms (¢,w), where w is the
Heisenberg frequency, has been investigated. As a function of w the ex-
pression GEL(q,w) has strong singularities. In the terms of (g,v) the
function Gigq(x) has no singularities. This is convenient for its further
use.

Taking into account the existence of extremum of the function
p@3(x, x1, —r — x1) and [Liyl(x, —x, 21, —1) near the surface x = 1, we
can calculate the local-field correction function in the region of middle
and strong nonideality [5]. Using the mean-value theorem of the integral,
we obtain the approximate solution of the set (2.1),

Gi(x) & GIPA ()L + GIPA @)™ i=1.2, (14)
GHPA(z) is computed by (2.2)

GRPA()—[ + (&) rem (n) T [212,0(g, w)] T A (15)
[e%) +1

/du1/dth /dtP Q1,U1)P(Q2,U2)13 o(a, q15u,uist),
2

bl

where w1 = /g1, w = /9,92 = [¢° + ¢} + 2019112, uz = ¢35 [ + 1],
Pq,u) = [¢* + (&) + 4A%rom™ (mn) "1 o o(q, w)] ™Y, Is0(q, q1;u, up;t) =
(2ep)2(3N)~Y(m*) 23 (2, #1, —x —x1). The functions p(z, z1, —z—z1)
and ﬂgyl(l‘, —x, 21, —x1) in terms of (¢, v) have no singularities, therefore
for the calculation of (2.2) and (2.9) standard numerical methods of
integral calculations can be used.
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The results of the local-field correction function calculation in the
approximation (2.2), (2.8), (2.9) are depicted in Fig. 3, 4. When the pa-
rameter A changes,GG(z) changes weakly in the region o < |q| < 2kp,
but a strong dependence is noticed in the region |q| > 2kp. The in-
crease of the local-field correction function with increasing A is similar
to the dependence of the electron liquid local-field correction function
on the parameter r; [7]. The dependence of Gi(z) on the parameter £ at
A,rs, v = const is presented in Fig. 3. As one can see G(z) is weakly
dependent on the parameter & in the short-wavelength region. The range
Ry has a strong influence on the local-field correction function in the re-
gion of small and medium wave vectors. The dependence of G(x) on the
parameter r; at & = const is depicted in Fig. 4. The behavior of G(xz) is
very similar to the electron liquid local-field correction function in the
region ¢ > 2kp. Comparing G¥%(z) with G(z) of our model, we notice
that in the region ¢ < 2kp, G¥E(z) and G(z) are very different. On the
whole, G(x) has the following asymptotic behavior

a(€,re, V)¢* + ()14 ... at g1,

3. Ground State Energy of the Model

As is known, the local-field correction function defines the integral and
local characteristics of a system with a local two-particle interaction. In
accordance with (1.5), the ground state energy expression has the form

E = FEy+ hm ZZ/ (x,—x) (17)

q#0 v

x{1+v7ﬂz( l‘)[l—GA(l‘)]} )

where Vq>‘ and (5 (x) depend on the coupling parameter AA%, Ej is the
ground state energy of the ideal system. Extracting the ideal correlation
contribution, we can represent the total energy in the usual dimensionless

form: E =N - Ry ¢(rs, A4,§),
E(TS,A 5) = 60(7°s) + EHF(TSaAag) + Ec(rsaAag)' (18)

Here eq(rs) = 3/bn?r;%(m*)~! is the ideal system energy at 7= 0K in
Ry per particle,

egr(rs, A €)= —2A77(7T7°s)_1 Z ¢ arctangz* (19)
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(S (€)” 1
Sl G e R (g*)Z)_l )
is the Hartree-Fock energy contribution,

2 00 o rs
6c(r8aAa€) __A4( /dq q3/du/drs Ts 122,0((]’“)
0

< [1=G(q,u)llg” + (€)]7" (20)

X {qz + (€ + Ad%r,m” Is0(q, u)[1 - G(q,u)]}

is the correlation energy. The function G(g, u) depends on the parameter
r, = Ars in (3.4) (but &* = £r,;/n). The Hartree-Fock energy contribution
has the following asymptote

epp(rs, A &) = — (21)

mrs

24%n % at &€ — 0,
W at € — 00.

The correlation energy €. has been computed by a numerical method in
a wide region of its parameters. The dependence of the total energy on
the parameter r; and £ is depicted in Fig. 5. The total energy increases
with the rise of the parameter ¢ at fixed value of 5. The stability region
also decreases, when the total energy is negative. The curve

g(rs, 1,€) = 0 (22)

is depicted in Fig. 6 as a solid line (curve 1). The shaded part of the pic-
ture corresponds to ¢(rs,{,£) > 0 and the unshaded part (below curve
1) corresponds to ¢(rs,{,£) < 0. The solid line defines the particle equi-
librium density in the system with minimum total energy (at a given
magnitude of the parameter &) (curve 2)

ar. g(rs, 1,€) = 0. (23)

As one can see a critical value &, exists. The total energy of the
system can not become negative at any density, when & > £.. Therefore
the correlation effects can not provide the equilibrium of a quantum
system at small value of the interaction range, contrary to the case of
the electron liquid.

In the limit £ — 0 formula (3.2) defines ground state energy of the
electron liquid model.

ICMP-98-14E 8

At the case of the model which is consist of neutral fermions with
interaction potential (1.1) expression (3.2) must be supplemented by the
term

N e? \~1 4
§ ey, A, 0 (5—)  =a ATPEET (2
o A €)= o Vimo (1) = 5 AWPEITL(24)
This term is significant at the region of small values of the parameters
¢ and r,. It influence on the ground state energy vanishes in the region
rs, & — 0.

4. Plasmon Excitation Spectrum

As i1s known, the local-field correction function makes it possible for
calculation of the dynamic characteristics. One of them is a spectrum of
the plasmon excitations w = w(q). It can be found as a solution of the
equation

g(q, hw) = 0, (25)

where ¢(q, Aw) is a real part of the dielectric response function, w is a
Heisenberg frequency (see [9]). Transition for the thermodynamic per-
turbation theory to dynamic one be done when one replaces Matsub-
ara frequencies v on ihw — §(6 — +0) in all characteristics. As a result
f9(x, —x) and G(z) transform to 13(q, hw) and G(q, hw) correspondent-
ly, and (4.1) can be written in the form

v, -
e(a, hw) = 1+ 72 jiz(a, he) (26)

Vv 5 -1
x |1 =37 fila, hw) Gla, hw)

On the basis of (4.2) one can obtain equation for plasmon excitations

1+ % Naq, hw)[1 — G(q, hw)] = 0. (27)

23(q, hw) was calculated in [7, 10]

3, hw) = % F0.2), (25)
_1 i 2 1+tU(Qaa))
(g, )—2{1+ qg;:l[l l5:4,@)]In _tg(q’@)},
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where t,(q,&) = %(q + %(Z)), o= hwE}l, q= |q|k;1. One may obtain

asymptotic behavior of the f(q,&) in the region ¢ = 0 :

. c c—2
fo(C)—(}l_I}I(l) f(q,apcq)_l—i—i In c—|—2" (29)
The constant ¢ can be found as a solution of the equation
T Ts fEN?
fole) = =3 - (5) (1= Gole)), (30)
where
Go(e) = lim G(q,cepq). (31)
g—0

As you can see from (4.6), the constant ¢ in the random phase approx-
imation can change in the region ¢y < ¢ < oo, where ¢y ~ 1,67...1s a
solution of the equation fy(¢) = 0. Branch of the solution ¢ > 2 corre-
sponds to “deformed” plasmons. At the ¢ > 2 in the limit of the small
wave vector (0 < ¢ < &r;/n) one may obtain:

hwq ~ hwg - Ag - n(érs) ™1, (32)

where wo = (4me? N/mV)*? is a plasmon frequency for the model of the
electron liquid model.

Using asymptotic behavior of the f(¢,&) in the region of the large
value of the w and the medium value of the ¢

flg,0) = —g % — gyt {1 + % ¢l - ¢t + } (33)

we obtain in the random phase approximation spectrum for collective
excitations in the region & < 1 at ¢ > &rs/n

hwy = hwPL - Aqlq® + (érg /)22 (34)

Here
hwa ~ h{wo + 2awpq?} (35)

is a plasmon excitation spectrum for the model of the electron liquid, «
is a dispersion coefficient, which is equal 3wp(5wo)~1; wp = ep/h in the
random phase approximation.

These solutions were obtained by numerical method. The local-field
correction function G(x) was taken in the form Giq4(g, hw), which corre-
sponds to [9] under replacing the Coulomb potential V; on the Yukawa

ICMP-98-14E 10

one:

+1

cau<q,hw>:=[qz-+<£rs/n>ﬂf*@<q,a>J/(/"dzldzZ (36)

-1
01 02
x 3 01,02<I>q,@(Z1+7q; ot 5 L2 1—25);

2 ~2. 4
q)q#:)(a; ba w, U) = %(a - b)J(Sz’ w, v) (b2q2 — WZ)

X (a2q2 - %2)_2 {qzazb + %Z(Qa + b)}

The function J(s?, w,v) has the some structure as J(s%, w, v) from [9]

J (s w,v) = %{W(sz,w,v) —w—v—s’}
[

+ w In {(2%) "W (s, w,v) + 57 + v —w]} (37)
+ v In{(2s%) 7 W (s, w,v) + 57 + w — 0]},

but s? = (a — b)? + (£rs/n)?. Dependence of the plasmon excitation
spectrum on the parameters & and r; is depicted on the Fig. TA, 7B.
As one can see, spectrum of the collective excitations for the general-
1zed model and the electron liquid model have different behavior in the
longwavelength region and have the some one in the shortwavelength
region.

5. Using the Model System with a Short-Range In-
teraction Potential as a Reference System for De-
scription of the Electron Liquid Model

Model with a short-range interaction can be used as a reference system
for the description of the electron liquid model in the region of strong
nonideality. The main idea of such a method is the precise description
of the short-range correction and the approximative description of the
long-range correlation in a wide region of the parameter r,. For that let
us write the Coulomb potential as a sum of two terms

C — Vil + Vi) (38)

62

Vs(r) = - exp(—&r/ag), Vi(r) = 67{1 —exp(—£&r/ag)}.
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The model system with interaction potential Vs(r) is used as a reference
system. Using approximative description of the polarization function as
in [4], long-range component Vz (r) can be considered within the frame of
the perturbation theory. The ground state energy of the electron liquid
model can be written in the form

1

. 1

E:ER—i—ﬁlgI;oQﬁ—V;ZVL(q)/d/\ pa(z, —z|A), (39)
v 0

where Ep is a ground state energy of a reference system, Vi (g¢) is the
Fourier-transform of the potential Vi (r) and pa(x, —x|A) is the two-
particle correlation function, which describes long-range part of the Cou-
lomb potential. The function ps(z, —z|A) can be described by polariza-
tion function, which is computed in the post-RPA [4]:

o, —|A) = M(@|A) {14 V=" Vi(g)A M(2|3)} ™",

M (z|A) = p5f(z, —2) + Mz (2|A) + Mao(z])), (40)
Mo a(z|d) = —(28V) > v (e [N pd (2, —2, 20, —21);
Mo a(|d) = (28V7)71 3 or (e \vr(z + 21])

x (g (e, 1, @ — 1))
Here v (z|A) is a screened potential in RPA:

v () = AVL(g) 7' (x[Y), (41)
er () = 1+ AV WVi(g) A5 (x, —2),

The n-particle correlation function of a reference system has the form

ﬁg(l‘, _$) = /]g(x, _$) Es_l(x)a

es(2) = 1+ V™V(g) [ = G(2)] fiy(x, —2), (42)
Pl (e, wn) = 02 (e, . ) H e M (®i), n=34,

where G/(z) is a local-field correction function of a reference system, and
f2(x1, ..., ) is the n-particle dynamic correlation function of the ideal
electron gas [3].

Ground state energy can be written in the dimensionless form

E=N- Ry -(ry), (43)
g(rs) = eo(rs) + ear(rs) + cc(rs).

ICMP-98-14E 12

The result of the calculation of the ground state energy is represented
in the Table 1. The numerical calculation has been done at &y = kpag =
nr7 L. As one can see from Table 1 the correlation energy of the electron
liquid model, calculated on the basis (5.1), and the results obtained by
Monte-Carlo method and interpolated in [11], are very similar. Our result
is more exact than result of [3], where post-RPA approximation for the
polarization function was used, and a reference system was taken ideal
electron gas. For comparison we refer to result of [12], where correlation
energy was obtained by the static local-field correlation function.

Table 1.
Correlation energy for the electron liquid model (—103¢.(rs))

Ty 1 2 3 415 ] 6 |10
RPA | 157.6 | 123.6 | 105.5 | 93.6 | 84.9 | 78.2 | 61.3
PRPA | 1197 | 89.3 | 722 | 62.1 | 54.2 | 48.0 | 32.6
MC 1] | 1200 | 89.6 | 738 | 63.6 | 56.3 | 50.7 | 37.1
[12] | 1174 | 869 | 71.1 | 61.0 | 53.8 | 48.3 | 35.0
*FF 11200 | 89.2 | 73.2 | 628 | 55.7 | 50.1 | 36.2

6. Conclusion

The local-field approximation is one of the most significant achievement
in the electron liquid theory during the last decades and the local-field
correction function is one of many universal characteristics of the mod-
el. The generalized Fermi system model with the interaction described
by Yukawa repulsion potential has been proposed. On the basis of this
model the dependence of the local-field correction function on the inter-
action range of the potential Ry has been investigated. As one can see
from Fig. 2-4, the local-field correction function is such a model has a
behavior different from the electron liquid model. Especially the region
0 < ¢ < 2kp is important, where the Fourier-transform of the potential
Vg 1s large. On the basis of the computation we may assert that the
local-field correction function in the model with short-range interaction
potential is always larger than in the model with Coulomb potential in
the region of small and medium values of the q. This fact shows the
relative importance of the short-range part of the interaction potential
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for systems with a finite value of the interaction range.

As is known, the electron liquid model is stable, has negative to-
tal energy in the region r; > 2.0, and has the equilibrium density at
r? = 4.1825..., which corresponds to the minimum of the total energy
(-0.15533 Ry per electron). As one can see from Fig. 5 the total ener-
gy of the generalized model in the ground state is smaller than that
for the electron-liquid model for any value of the parameter & at the
same value of the parameter r;. Every value of r; in the generalized
model has been proved to correspond to a critical range of interaction
Re(rs) = aof71(rs). If the potential range is less than R., the correlation
effects which have the range Rp = k;l cannot provide the stability of
the model and a negative value of the total energy. Qualitative conclu-
sions concerning the influence of the range of the interaction potential
between particles on the character of the local-field correction function
and the stability are true not only for the Yukawa potential model but
for any Fermi system with arbitrary short-range potential.

The consideration of the represented model, at first, has heuristic
meaning, and secondly, the model with a short-range interaction po-
tential can be used as a reference system for the description of neutral
fermion systems at £ # 0. In this case the term V(q = 0) must be added
to the expression of the total energy (3.2), and its coupling parameter
will have the form

I_ 3 _1N / idy ! _10A2 g *
a_(ggp) V/dr Vir) 95°(r ) = p rem™ f (£%),

FE) =172 = (14€) exp (=€)},

Model under consideration has interesting behavior of the spectrum of
the plasmon excitations. The effective method for describing of the elec-
tron liquid in the strong nonideality region is using the model with a
short-range interaction as a reference system.
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Figure 1. Dynamic local-field correction function of the electron liquid
model (¢ =0, A=1, GEL(q;v) (2.2) at ry — 0.
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Figure 2. Static local-field correction function Giq(q;0) (2.2) in depen-
dence on the parameter £*.
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Figure 3. Dynamic local-field correction function G(z) in dependence on
the parameter £ in the approximation (2.8), (2.9)at A=1, ry =1, u=
1.
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Figure 4. Dynamic local-field correction function G(z) in dependence on
the parameter r; in the approximation (2.8), (2.9) (r; has the values 0.0;
0.1; 0.5; 1.0; 2.0; 3.0; 4.0; 5.0; 7.0; 10.0) at A =1.0, £ = 0.25, u = 1.0.
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Figure 5. Dependence of the total energy of the generalized model on

the parameter £. The calculations are based on (2.8), (2.9), (3.1), (3.4).
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Figure 7. Dependence of the spectrum of the collective excitations w, on
the parameter r; at the fixed value of £ = 0.01. (r; has the values 0.1;
0.5; 1.0; 3.0; 5.0). The calculations are based on (4.2), (4.12).

Figure 6. Stability and existence region of the generalized model as a
function of the parameters r; and & at A = 1. Curve 1 is the solution of

(3.6), curve 2 is the solution of (3.7).

Figure 8. Dependence of the spectrum of the collective excitations w,

on the parameter £ at the fixed value of r; = 5.0. (£ has the values 0.0;
0.05; 0.1; 0.25; 0.5; 1.0). The calculations are based on (4.2), (4.12).
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