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Introduction

While examining the structure of Euler-Lagrange equations originated
from degenerate Lagrangian, Gitman and Tyutin [1] proved that a nec-
essary and sufficient condition of the existence of relationships involving
motion equations is the invariance of action integral with respect to a
coordinate transformation which is specified by some time-dependent
parameters (gauge transformation). The number of these parameters is
equal to the number of above relationships. In ref.[2] it was showed that
this transformation is an invertible contact transformation. The adjective
”contact” means that it leave an infinite Cartan distribution invariant
[3]. Such a coordinate substitution is discussed on both Lagrangian and
Hamiltonian levels in ref.[2]. This is an essential prerequisite to study
the situation in frame of the canonical formalism for higher-derivative
theories by using of the Dirac-Bergmann theory of constraints.

In ref.[4] an action of a Lie group G on the total space of a trivial
bundle (Q,n, IR) was considered. The vector fields generated by an ac-
tion of G on Q are lifted to the first jet manifold J'm. Non-autonomous
Lagrangian L : J'7 — IRis supposed to be an invariant under the action
of G on J'm. It means that L satisfies the system of first-order differ-
ential equations in partial derivatives originated from the requirement
of invariance of action integral with respect to the infinitesimal trans-
formations of J'w. Further the group parameters are postulated to be
the time-dependent functions, so that an infinitesimal transformation
becomes a gauge transformation. In ref.[4] the method was developed
which permits to construct gauge invariant Lagrangian function starting
with ”standard” G—invariant Lagrangian mentioned above. The former
has to satisfy the system with double number of differential equations
because the additional group parameters, namely first-order derivatives
of the original ones, are appeared. Gauge invariance of the theory is
achieved due to additional dynamical variables. More exactly, an original
configuration manifold is substituted by the new manifold with higher
dimension.

Therefore, if we study the symmetry of dynamical system with first-
class constraints, it is better to suppose that group parameters are (time-
dependent) gauge variables. According to ref.[5], if we have a Lie group
G with multiplication map pu : G x G — G, then its tangent bundle
T@ is also a Lie group with multiplication T'u (see also ref.[3, pg.115]).
Such a group is called the tangent group of an original Lie group. The
tangent bundle of order k, T*G of G, is endowed with a group structure
too [5]. In this manner the left action of G on differentiable manifold,
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say ), may be lifted to an action of tangent group on tangent bundle of
Q. Thus, several powerful tools from Lie group theory can be applied to
above symmetry problem.

In ref.[6] a Hamiltonian system having a Lie group G as configuration
manifold is considered. Phase manifold is G x g* where g* denotes the
dual space to Lie algebra g of group G. The authors built G—invariant
dynamics; the explicit expression for momentum mapping [7,8] is ob-
tained. In Section 5 such a dynamical system will be examined in the
framework of Lagrangian formalism.

The present paper is organized as follows. In Section 1 we recall
in detail the theory of tangent groups necessary to make the text self-
contained. The approach different from viewpoint given in ref.[5] is elab-
orated. In Section 2 we define the actions of tangent groups on differen-
tiable manifold and its tangent bundle by using contact transformations.
In Section 3 we study a tangent Lie group of symmetries of a Lagrangian
system and its Hamiltonian counterpart. In Section 4 we show how the
existence of a tangent Lie group of symmetries induces infinitesimal sym-
metries. Finally, in Appendix A we apply the results to tangent Euclidean
group of space translations and space rotations.

1. Second-order tangent group of a Lie group

In this Section we construct a Lie group with elements and group oper-
ations which are jet prolongations of those corresponding to another Lie
group. We obtain the explicit expressions for the constants of structure
of new group by using the Maurer-Cartan equation. Left-invariant vec-
tor fields are classified in the usual framework of theory of lifts of vector
fields to tangent bundles.

Let (G,7, M) be a bundle with one-dimensional base M. The total
space of v is (R + 1)-dimensional manifold G. We deal with a local
trivialisation of v around ¢ € I where diffeomorphism o; : v~ (I) = IxG
is defined. Here I C M is an open interval, and a typical fibre G of  is
an R-dimensional Lie group.

In adapted coordinate system (U, g), which is constructed from local
trivialisations using coordinate systems on the base space and the typical
fibre, projection v : G — M relates the point (t,9,) € U C v (),
with the point ¢ in the time interval I. Greek symbols v, (a) := (gq ©
v)(t),A\3(D) :== (ga 0o N)(t) ,v, A € T'1(7y) etc. denote the local coordinates
of group elements a, b etc. in manifold G. These coordinates are chosen
so that e.(e) =0, k = 1,...,R := 1, R, for identity element e. We also
use the induced coordinate systems (U*, g') and (U?, g%) on the 1-st and
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2-nd order jet bundles v; and 79, respectively. Greek indices are meant
to run from 1 to R throughout the paper; the summation convention is
used for dummy indices.

Starting with a group multiplication ¢ : G x G — G, we define a
bundle morphism [3] from fibred product bundle v x 5s v to bundle 7 by
the map @ : G X G — G. We suppose that the projection of @ is an
identity map idjs, so that locally this map may be written as

t = t,
Na = #a(As(b),v(a)), (L.1)

where smooth function ¢(b, a) determines the group multiplication. To
find the ”multiplication law” for the first-order derivative coordinates,
we construct the first prolongation of a bundle morphism (@, idys). Fol-
lowing ref.[3], we obtain the map j'¢ : J'y x5 v — J'vy defined by

7P A xmv)) = i (@oAxyv) (1.2)
= .

Here symbol A X s v denotes a fibre product of the local sections A, v €
C;(y) defined by (A xp v)(t) = (A(t),v(t)). The resultant section 7 €
Ti(y) is equal to @(A xpr v). (As usual [3], a local section of v with
domain I, say n : I — G, is an inverse to v map, v o n = idy, given by
t > (t,ma(t)), where 7, = go o1, and j}n is the 1-st jet of this section
at a point t € I.) We obtain R expressions in local coordinates

Mo = drea(As(b),v(a))

1 0pq (b, a) 10904 (b,a)
N re® T o)

(1.3)

in addition to the relations (1.1) (dy is the Tulczyjew differential operator
[9]). The following commutative diagram summarizes the situation:

-1
JHy xm ) i Jty
(v xm GxyG —— G

/xm \

idn
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Similarly we prolong a bundle morphism (¢,idys) : v — v which is
based on the group inversion ¢ : G — G.

Let’s sum it up. A bundle morphism may be described as a map
from the total space of one bundle to the total space of another bundle
which does not mix the fibers. It means that any fibre of one bundle is
mapped into a fibre of another bundle. We start with a bundle (G, ~y, M)
whose typical fibre G is a Lie group. A typical fibre of the fibred product
bundle v x s v is the Cartesian product of the typical fibre of v with
itself, i.e. G x G. Since first jet bundle (J'(yxar7), (Y xar7)1, M) is then
nothing but the fibred product bundle v; X 57y of a bundle (J*~y, v, M)
with itself [3], the typical fibre of v, is endowed with a group structure.
Group operations of multiplication and inversion are the restrictions on
this typical fibre of the first prolongations j'@ and j'¢ of the bundle
morphisms ¢ and ¢, respectively.

If  is the trivial bundle (IR x G,pr1, IR) then tangent manifold TG
is a typical fibre of 7;. It is also Lie group with multiplication T and
inversion T'¢. Following ref.[5], we say then T'G is the tangent group of
a Lie group G.

According to ref.[3], the first prolongation j!(oy,idy) is the local triv-
ialisation of «; around t € I:

01

T () ————J (or1)

For open interval I C M we have J'(7|;) = v, *(I) (see ref.[3, Lemma
4.1.14]). If I contains t = 0 the first jet manifold J* (pry) is diffeomorphic
to I xT'G. On the assumption of the typical ﬁbres of v, are diffeomorphic,
we construct the local trivialisation o} : v, (I ) = I x TG. Therefore, if
g are coordinate functions on G, then (g, go') is the coordinate system
on a typical fibre TG. We denote jla,j'b etc. the elements of TG with
coordinates (valpha(t), volpha'(t)) and (As(t), Aj(t)), respectively. As it
follows from eqs.(1.3), the identity element j!e has zero-valued derivative
coordinates: ,!(e) =0 for all K =1, R.
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In analogy with j'@ we construct the second order prolongation of
bundle morphism (@,idy;). Following ref.[3], we obtain the map ;%@ :
J2(y xary) — J?v defined by j2¢(j2(A x ar v)) = j2@(A Xar v). On the
local level we have the relations n2 = d2.¢, (b, a) together with eqs.(1.1)
and (1.3). Thus we construct the second order (jet) prolongation of a Lie
group G over M. Its multiplication j2@|T?G and inversion j2¢|T?G are
derived from corresponding group operations of an original Lie group G.
The identity j2e of a Lie group T?G has zero-valued coordinates.

Now we consider the embedding ¢; : G — J'v, locally given by
(t,vo) = (t,v4,0). The submanifold ¢ (G) C Jlv is a slice [10] of the
coordinate system (U!, g'). It is interesting to study a relative inclusion

1 : G = TG where G and T'G are meant as the ”simultaneous” fibers of
G and J'7, respectively. One easily proves that i; is a group homomor-
phism and (G, ;) is a closed subgroup [10] of a Lie group T'G. Similarly
we construct a closed subgroup i»(G) C T?G where the inclusion map

2 : G — T?@ is related with the embedding

Ly g — Jz’}/,
(t:’/a) = (t,l/a,0,0). (1'4)

Note that target projections y10 : J'v = G and 70 : J?vy = G
induce the group homomorphisms 719 : TG — G and 12 : T°G — G,
respectively. First-jet projection 721 : J?y — J'v induces homomor-
phism 7 ; from group T*G to group TG.

Therefore, an original Lie group is a Lie subgroup and a submanifold
of its own first- and second-order tangent groups [5]. (More exactly, we
consider the slices i1(G) C T'G and i2(G) C T?G on which all the deriva-
tive coordinates are equal to zero.) Moreover, the constants of structure
of these tangent Lie groups are determined by the structure constants of
G. To demonstrate it we study the space XL (T?G) of all left invariant
vector fields on T2@ and its dual space X} (T%G).

Taking into account an exclusive role of Tulczyjew differential opera-
tor in prolongation algorithm, we deal with the dual space X} (T*G). We
write the local expressions for canonical left invariant one-forms [10,7,11]
which constitute the basis for X} (T?G) at a point j2a:

) ,
Ok = | ———dFp. (b,a dvg? . 1.5
61/ng (a) T(p"/( ) R 6] ( )

The exterior derivatives of the §7* are given by the Maurer-Cartan equa-
tion 1
dot = —§C£B0“i NG (1.6)
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We use multi-index notation in structure constants {C% 5} of T?G, where
multi-indices A, B and T' are the 2-tuples of natural numbers, e.g. A =
(ad). Small roman indices run from 0 to 2. Particularly, for subgroup
i2(G) C T?G we have

1
do" = _ic’;ﬁea N (1.7)

where {c! ,3} are structure constants of original Lie group G (zero-valued
roman indices are omitted). Left-invariant one-forms 6% are given by
eqs.(1.5) if integer k is equal to zero.

Tulczyjew operator dr is the derivation of type d. of zero degree
which acts on the 0-forms as a total time derivative. Having used the
commutation d o d7 = dr o d and the expressions drvg’ = vz’ after
short calculations we establish the following relations between ”higher-
order” one-forms (1.5) and original ones:

O =dro7, 02 =d2e. (1.8)

Thanks to commutation of Tulczyjew operator with an exterior deriva-
tive and positively signed Leibniz’ rule for wedge product [9] we arrive
at

1 1
1 _ =7 pol 68 _ .7 po S1
gt = 2%59 Y4 2%59 NO°H
. 1 . 1 .
2 a2 al 1 e 2
7 = —5ell N6 — 07t N O — 5Cag?" A 7%, (1.9)
When comparing these expressions with Maurer-Cartan equations (1.6)

we deduce the constants of structure {Ciz}. It is convenient to write
them as the following block matrices:

G0 — { é(: 8 8 -| 7 c0n — { é(’)Y 60 8 -|
0 0 oJ 0 0 0
cd = 0 2c7 ] (1.10)

Here symbol ¢” denotes the skew-symmetric matrix ||c}4|| with fixed
integer .
Similarly we obtain the structure constants of a Lie group T'G:

N oY ~ ~Y
C00) = { CO 8 } , COY = [ cg CO } . (1.11)
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The basis for X (T?G) consists of the left invariant vector fields
[10,7], say XJ(BQ), locally given by

2 6 6
(2) 5
2  _ ra 5

Here L3(v(a)) are the components of the left invariant vector fields Xz
which form the basis for XL (G).

Vector field X((f%) is the 2-lift of corresponding one Xj to tan-

gent bundle T%G, i.e. X((Bz)) = X,éQ’Q) (see ref.[12]). The former be-

longs to the basis of a space Xy (i2(G)) C XL(T?G). The others X((ﬁ)l)

and X ﬁ%) are intimately connected with the 1-st and O-th lifts [12]
of Xz to T?G@, respectively. Namely, we have X(( )) = JlX(2 2 and

X((E)Q) = (1/2)(J1)2X[(32’2) where J; is the canonical almost tangent struc-
ture [13] of order 2 on T?@.
Let X ((é)), i = 0,1 be the canonical left-invariant vector fields on

XL(TG). If 12 : TG — TG is the canomcal prOJectlon then X((,B)) and

X((ﬂ)) are t7—related, i.e. T3 (X ([3;)) (5) Each of homomorphism
of groups, mentioned in this Section, corresponds the Lie algebra ho-
momorphism which describes its effect on left invariant vector fields, as
well as the mapping which relates the dual algebras. The former are then
nothing but the differential of originating group homomorphism and the
latter is precisely the transpose of this differential [10].

2. An action of the tangent Lie group on a smooth
manifold

In this Section we define an action of the first prolongation of a Lie group
G on an NV-dimensional differentiable manifold Q). We lift it to the action
of the second prolongation of this group on tangent bundle T'Q.

When considering the group parameters as the constants, an action
of a Lie group G on Q, say ® : G x Q — @, lifts to an action ®! :
G xTQ — TQ of G on TQ as follows [7,8,12]: (@), : TQ — T'Q where
(®1), = T®, for any fixed a € G. Treatment of group parameters via
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the time-dependent variables makes the notion of lift of a group action
quite different from mentioned above. We construct it by analogy with
the algorithm of group prolongation developed in previous Section.

Let us consider a bundle (Q, 7, M) whose typical fibre is the above
smooth manifold @. It is a bundle over the same base space M as a
bundle v. Let (I', @, 0;) be a local trivialisation of © around t € I' C M.
We denote (V,q) an adapted coordinate system which is constructed
from local trivialisations. So projection 7w : Q@ — M relates the point
(t,qu) € V C m~Y(I'") with point ¢ in the time interval I'. Small Latin
indices a, b, ¢ are meant to run from 1 to N throughout the paper.

We construct the fibred product bundle v x j; 7 where the total space
G % Q consists of the ”simultaneous” points of the Cartesian product
G xQ.Let z: I' —» Q be a local section of 7 with domain I' given by
t — (t,x4(t)), where x, = ¢, o . The fibre product coordinates may
be defined in the following manner([3]: if (¢, go) is an adapted coordinate
system on U C G and (¢, ¢,) is an adapted coordinate system on V C Q
where v(U) N7(V) # 0, then we may take (t,¢a,¢.) as an adapted
coordinate system on

U Ny (@(V))) xar (VNa~H (y(U))) € G xum Q. (2.1)

Since 7 X 5y 7 has the properties of a bundle whose typical fibre is the
Cartesian product of the typical fibres of v and 7, we may define a bundle
morphism (@,idys) : v Xy ™ — 7 by using of the map ® : G x Q — Q.
We determine an action of the tangent group T'G of a Lie group G on
the typical fibre T'Q of first-jet bundle (J', w1, M) by means of the first
prolongation of (®,idy;), namely (j1®,idy) : v1 Xy 71 — 7. In local
coordinates the map

' - Ty xyJin = Jn

(iv,ity) = jix, (2.2)
is written as
t = t,
Tog = fa(Vonyb)a
z,t = drf.. (2.3)

We use the induced coordinate system (V?!,¢') on the 1-st order jet
bundle 7. So, jly and jiz are the 1-jets of the sections y,z € 'y (7)
at a point ¢ € I'. Eqgs.(2.3), excluding the identity for the base variable,
describe on the local level the desired map T® : TG x T'Q — TQ. We
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call that T'® is a total first-order lift of an action ® : G x @ — @ over
base M, or 1-st M —lift of ® in short. The word ”total” has a technical
meaning which is elucidated below.

For fixed 1-st jet ji v, v € I'1(7), the map (T'®) 1, is a transformation
of manifold TQ) determined by the element j'a € TG.

The action of TG on T'Q induces a Lie algebra homomorphism of
Lie(TG) := Tj.(TG) into vector space X'(T'Q). To each vector field

5((;)1 = X )(jle), i=0,1, we assign the vector field Y(SB) on TQ:
W _ b 0 by O W _ b O
)/(Oz(]) - Ya a_yb + dT(Ya)aybl (a) 9 }/(O(l) - Ya 6yb1 (b) . (24)

Symbol Y denotes the component of the fundamental vector field [5]
corresponding to &, € Lie(G). Actually {Y(Si))|a =1,R;i =0,1} is a
Lie subalgebra of the set X'(T'Q) of all vector fields on T'Q.

Let us compare these results with standard situation where coor-
dinates of the group elements are meant to be the constants. In such
a case the transformations of T'Q) are generated by fundamental vector
fields which are complete lifts of their prototypes, acting on @ [12]. Since
dim TG = 2dim G, we have double number of infinitesimal generators,
namely Y(gg) and Y(Sl)), which are then nothing but the complete and
vertical lifts [11] of the original one Y,,. Therefore, it is reasonable to say
that we deal with the total 1-st lift of an action of G on Q.

We may lift an action of TG on @ to the action T2G on T'Q in similar
circumstances: if (¢(170),idM) is a bundle morphism from ; X 7 to 7
and (j1®(1:0) idy,) is its first prolongation, then we restrict the latter to
the ”simultaneous” fibres. We realize this scheme for the base which is
a real line IR. It means that global trivialisation of ~ is allowed, so that
diffeomorphism o : G — IR x G may be defined. Naturally, we suppose
that 7 is a trivial bundle too.

We define now a C'*° map

10 . TEGxQ—Q,
(Gov:y(0)) = x(0), (2.5)

which is an action of a Lie group TG on manifold @) on the left [11,7].
The bracketed and separated by comma integers (1,0) up to capital
letter @ are associated with the orders of tangent bundles over G and
Q, respectively. The curve y : IR — () runs across a point y(0) € V' with
coordinates {y,|la = 1,N'} and the curve z : IR — @ passes through a
point £(0) € V with coordinates {z,la = 1,N'}. Locally the map (2.5)
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may be written as:
Ty = fa(yon Valayb) . (26)

An action of TG on Q induces a Lie algebra homomorphism of the

Lie algebra Lie(T'G) into vector space X(Q) [7]. To each vector field
5(1)

(ai)? i=0,1, we assign the following fundamental vector field on Q:

Y10 _ dfava'(ja), yb) 9

(ai) — O, et By

2.7)

Each of them is the infinitesimal generator of an 1-parameter group of
transformations of ().

The map (2.5) lifts to the left action &> : T2G'xTQ — T'Q of group
T2G on tangent bundle TQ by composition of the 1-st jet prolongation
T30 : T(TG x Q) — T'Q with the canonical embedding

o : T?°GxTQ— T(TG x Q),
Gav,doy) = Go (3t v, ). (2.8)
The first-jet jdy is represented in T'V by (ys, yp') where y, = (g5 0y)(0),
and y,! = (dgy o y/dt)(0). In local coordinates we obtain the following
transformational law for first-order derivative coordinates: z,' = dr f,,
where z,! = (dg, o z/dt)(0).
The fundamental vector fields which correspond to f((i)i) € Lie(T?G)

may be expressed in terms of both complete and vertical lifts [11] of
vector fields (2.7):

(2,1) _ (1,0)\¢ (2,1) _ (1,0)\¢ (1,0)\v
Yoo = (Magy)® Yad) = Vap) )"+ (Fag) )"
Yin = () (2.9)

In general, an invertible first-order contact transformation, locally
given by

Ty = fa(’/ﬁayﬁlayb)7 Ty :(p’v()‘ﬁaya);
v, = difa, m5=dppy, s$>0, (2.10)

can be derived from differentiable maps (2.5) and (1.1) by using of the
algorithm developed in ref.[2]. (The coordinates A} are meant to be the
constants for all values of non-negative index s.) In this way we avoid
the need to prolong a Lie group G up to order higher than 2. Such a
generalization allows to use the results of ref.[2] which are concerned
with the effect of a change of variables of type (2.10) on the dynamics
of Lagrangian system.
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3. Tangent Lie symmetries and presymplectic mechan-
ical systems

In this Section we consider a tangent Lie group of symmetries of the
autonomous Lagrangian systems. We find two kinds of Lagrangian func-
tions which are invariant under the action of tangent group. Dynamical
systems with first-class constraints are obtained in both cases.

Let L : TQ) — IR be a Lagrangian function, ay, on T'Q) the Poincaré-
Cartan 1-form and Ep on T'Q) the energy function associated with L
defined, respectively, by

N N
ap = Zﬁadma , Ep = Zﬁaxal - L, (31)
a=1 a=1

where p, = OL/Ox,' are original momenta. Now we study the effect
of transformation T® : TG x TQ — T'Q, locally given by eqs.(2.3), on
dynamics of this Lagrangian system.

First of all we examine the situation where L is not invariant under
the action T'®. Having carried out the transformation (2.3) in Lagrangian
L, we construct the Lagrangian function L : T(G x Q) — IR :

E(Vﬁayﬁlaybaybl):L(fa(yﬁayb)adea)- (32)

In this paper we indicate the initial Lagrangian function, motion equa-
tions etc., by the adjective ”original” and those transformed by coordi-
nate substitution of type (2.3) or (2.10) by the adjective "new”. New
objects will be marked by ”tilde”. We call "motion” the solution of mo-
tion equations.

It can be easily proven that there are the following relations between
the expressions for original and new Euler-Lagrange equations:

S Ofq | 05
[5_.%] N a;b {5%} (@)
T®
It follows from regularity of matrix ||0f,/Oys|| that new motions have
to satisfy the original Euler-Lagrange expressions for motion equations,
transformed by coordinate substitution T'®. Therefore, new motions are
connected with original ones by relations z, = f,(Va,ys). Hence so-
lutions of new motion equations are obtained modulo arbitrary time-

dependent functions v, (t). The set of dynamical variables is divided
into two subsets: (i) those whose evolution is determined by given initial

55
(51/5

_0fa [ 6S
~ Ovg |6z,

} b).  (3.3)
TP
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conditions, and (ii) those whose time development is completely arbi-
trary. It immediately follows that new Lagrangian L is singular, whereas
the original one L is non-degenerate.

New Lagrangian is invariant by T'G, i.e. the structure of L does not
change under the coordinate transformation (¥')1.: TG xTQ — TG x
TQ, locally given by

Y = fb((sﬁazc): n’y:‘Pv(Von(Sﬁ);
yw' = drfy, nb=dre,. (3.4)

Here 63 and &' are coordinates of the element j'c € T'G. By anal-
ogy with the scheme developed in ref.[4], an invariance of the theory is
achieved by extension of an original configurational manifold ¢ to the
Cartesian product G x @, so that group variables are included to the set
of independent Lagrangian variables.

Let us suppose that the original Lagrangian L : T'Q) — IR is invariant
under the action T'®, i.e. Lo T® = L. Such a symmetrical Lagrangian
must be singular. Indeed, the solutions of corresponding Euler-Lagrange
equations (see eq.(3.3a) and eq.(3.3b) where left-hand side is vanished)
are obtained modulo arbitrary time-dependent functions v, (t).

It is advantageous to study an infrequent case of action TG on @
(see eqs.(2.5) and (2.6)). Any formula which will be deduced below is
applicable (after trivial simplification) for the description of the above
situation where an action of G on (Q, and its lift to an action of TG on
TQ, and dynamics originated from 7'G-invariant Lagrangian function
are considered.

For sake of simplisity, we deal with the contact transformation ob-
tained from (2.10) by taking the Ag — 0 limits. Since an original La-
grangian is lower-derivative, we are interesting in left action ®*1) :
TG x TQ € TQ. Having carried out it in Lagrangian L, we construct
the higher-derivative Lagrangian function L : TG x TQ — IR :

.Z/(Vﬁ, V,Bla V,327ybayb1) = L(fa(yﬁa Vﬁlayb)a dea) . (35)
Cartesian product T?G x T'Q) is the subbundle of tangent bundle T'(T'G x
Q)

Following ref.[2], we write the relations between the expressions for
original and new Euler-Lagrange equations in the form

85| 0fa [55} (@)
6yb B 6yb 0xq H(2,1) ’

|~6VB] - dvp |:6$a:|<1>(2,1) dr Ovg! |:6$a:|q>(2,1) (b). (3.6)
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As one might exspect, new motions are obtained modulo arbitrary time-
dependent functions v, (t) and v,'(t). Let us construct a Hamiltonian
system (T*(TG'xQ),®, H) due to Ostrogradski-Legendre transformation
[13].

According to ref.[2], new Ostrogradski generalized momenta

. 0L oL

Tp = 6yb1 (a)i ng,1 = 61/52 (b) )

oL oL

150= 5,7 ~drg, 5 (©, (3.7)

are linked together by the following relationships:

. 0fa . 0fa

Ty = Pa 6yb (a) 5 N1 = DPa 61/,61 (b) )

9f. . 0f. [6S

13,0 = Pa dvg | Ovgl |:(5'Ta:|q>(2,1) (c), (3.8)

where p, = OL/dx,' are original momenta. Following ref.[2], we rewrite
the new Poincaré-Cartan one-form

ar = mpdys + 1g,0dvg + ﬁl&ldlllgl (3.9)
as follows o7 55

Ar = e dvg . 3.10

ar = ar, + vy [63:&]@(2,1) V3 ( )

New energy function
By = oy +igovs’ +igavs” — L (3.11)

is expressed in similar form

Ep =FEp +

9f. {55

vg2. 3.12
alfﬁl 6$a:|<b(2)1) s ( )

Here oy is Poincaré-Cartan one-form and Ej, is the energy function as-
sociated with original Lagrangian L (see eqgs.(3.1)). All the expressions
(3.10), (3.12), and (3.8¢c) contain the terms which are proportional to
the expressions for original motion equations, transformed by coordinate
substitution ®*1), These terms vanish. Therefore, we obtain a presym-
plectic dynamical system [14,13,11]. Indeed, new canonical two-form

@ = dyp Ndmy, + dvg A dng,o + dllﬂ1 Adnga (3.13)
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can be written as @ = dx, A dp,, so that original canonical coordinates
are just required by generalized Darboux theorem [11]. On the local
level we have the set of first-class constraints obtained by excluding the
original momenta from relations

8fa afa, 8fa,
Ty = paa—yb (a) » N8,1 = pa@y—gl (b) » 13,0 = paa—yﬁ (C); (3-14)

together with Hamiltonian H (y, Ty, Ve, Vs ') which is constructed from
the original one H(zg,p,) by using of eqs.(2.6) and (3.14a). Not even
having a Hamiltonian explicitly, we are sure that constraints which in-
clude momenta 7g,; are primary but those which contain momenta ng,o
— secondary:

L o Ofa
(I),Bl = ng1— mef “61/[31 ~0 (a) )
2 7 Ofa _
B = Mo —meffag,t 0 (b). (3.15)

We should only take into consideration the relationship (3.7c) between
zeroth-order momentum and time-derivative of first-order momentum
which is then nothing but a stationarity condition for primary constraint.
The matrix f¢, is inverted to the matrix df,/dys.

It can be easily proven that all Poisson brackets {<I>g7), ) @g,z} are iden-
tically equal to zero. The canonical transformation
Lq :fa(ybayouyal)a Pa :ch_ca(ybayonyal)a (3163')
—. 0f,
A" =", bap =Napr — [ Ja. r=20,1, (3.16b)

61/5" ’
allows to eliminate the redundant degrees of freedom and leads to the
non-constraint dynamics with the Hamilton function H(z,,p,). It can be
obtained from the non-singular original Lagrangian by a simple Legendre
transformation. It is evident, that final constrained manifold [14,13,11]
is the original phase manifold 7*@Q).

The relations (3.16a) define an action of a Lie group T'G on T™*Q.

Corresponding infinitesimal transformations are generated by the vector
fields

[5) ST
Lo* s O (ab)
Y, = v, — =
(a0) (0) ayb i ayc a7rc ’
b
Y(170) * _ b a ayv(al) 6 (317)

@) = Mang, T™ 5, o
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which are complete lifts of the vector fields (2.7) to phase manifold 7*@Q
(see ref.[12]). These generators constitute the basis of Lie subalgebra of
the set of all vector fields on T*@) which is homomorphic to Lie(T'G).

We consider now Lagrangian L : T'() — IR which is invariant under
the action @21 : T2G x TQ — TQ. Since group variables are not
contained in the new Lagrangian L, then generalized momenta fg,1 and
73,0 vanish identically (see eqs.(3.7b) and (3.7¢)). Using it in eqs.(3.9)-
(3.12) and (3.1) we show that energy function, Poincaré-Cartan one-
, and two-forms admit the map ®21). For a careful consideration of
such a dynamical system we use the results of this Section so far as
presymplectic manifold (T™*(T'G x @), ) are concerned.

Left-hand sides in egs.(3.14b) and (3.14c¢) vanish identically. Usage
of egs. (3.14a) allows to exclude the original momenta p, from their
right-hand sides. Obtained expressions

9fa
611[3 1

e Ot ~0, (3.18)

o) = 1 fe ~
c a aayﬁ

9 _
51 ~0, <I>§30) =n.f
are the constraints on T*(T'G x ), whereas Hamiltonian H does not
contain the pairs (v4*,7a,;) of canonically conjugated group variables
explicitly. Taking v, — 0 limits we find the constraints on the original
phase manifold 7*Q:

B = paYion (@) 20 (a), B[

(a0) = Pa¥(ag) () ® 0 (b),  (3.19)

(we put y, = z, within that range of accuracy). Taking into account
the commutation relations for vector fields (2.7) (more exactly, ensuing
properties of their components Y‘jn)), we compute Poisson brackets of

functions @EL’;) :

O g0 4 _ @ 50 )
{21 P} =05 {0 ®(a)) = cip®i -

@ 2@ 1 _ o g
(@, 8%y =0 . (3.20)

As it would be expected, we have first class constraint manifold K(Q, w)
locally characterized by functions (3.19) which are in K in involution
with respect to Poisson brackets.

Hence, there are two quite different classes of prolonged Lie symmet-
rical Lagrangians. Class I appears to be more natural, it consists of the
singular functions which do not depend on group variables explicitly.
Class II is entirely novel; here degenerate Lagrangians contain the group
variables. An example of two-body dynamics which is invariant under
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the action of the tangent Euclidean group is studied in Appendix A in
order to illustrate the classification.

An important point is that we find the relations linking together
the expressions for Euler-Lagrange equations in both above cases. The
essence of presented scheme is the usage of an invertible contact trans-
formation [2] which has the form of change of variables depending on
derivatives (see egs.(2.10) and (3.4)). The structure of such coordinate
substitution has an influence upon the structure of the set of first-class
constraints which appear on the Hamiltonian level. In particular, the
highest order of derivatives determines number of the needed steps in
Dirac-Bergmann scheme to establish all the constraints. So, if we deal
with contact transformation of type (3.4), the primary constraints are
arised only. There are the relations of type (3.15b) or (3.19b). In ref.[1] a
theorem was proven which establishes the intimately connection between
an existence of the relations involving Euler-Lagrange equations and an
invariance of corresponding action integral under the action of specific
gauge transformation. The results derived in this Section are in excellent
agreement with this theorem.

4. Infinitesimal symmetries and constants
of motion

In this Section we describe two different kinds of the infinitesimal sym-
metries arising from the actions of the tangent groups of a Lie group G
on a manifold @ and its tangent bundle T'Q).

The vector field Y, € X'(Q), generated by an action of G on @, is an
infinitesimal symmetry of the Lagrangian L : T'Q) — IR if the conditions
YL = 0(a = 1,R) are satisfied [12]. Here fundamental vector field
YS € X(TQ) is a complete lift [11] of Y, to tangent bundle T'Q. The
group parameters are considered as the constants. On the hypothesis
that the group parameters are time-dependent functions, the total lift
of an action of G on @ to the action of TG on T'Q is available (see
Section 2). In such a case both the complete lift (2.4a) and the vertical
lift (2.4b) of vector field Y, are the infinitesimal symmetries of L. An
invariant Lagrangian function satisfies the following system of first-order
differential equations in partial derivatives:

YO)L=0, i=0,1, a=LR. (4.1)

Following ref.[12], we write the constants of motion

O‘L(Y(%)) = ﬁ-bYab7

(4.2)
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associated with vector fields Y(Sg). The others O‘L(Y(Sl))) are trivial.

In general, ”standard” G—invariant Lagrangian function is not invari-
ant by a Lie group T'G. Indeed, starting with Lagrangian L : TQ — R
which satisfies infinitesimal symmetry conditions YL = 0, we arrive at

the new Lagrangian L := L o T® defined on T(G x Q) :
L(vg,vs" yp,u") = Ly, " + @) (Va,ye)vst) - (4.3)

The multiplier w,’? is equal to f,°0f./0vs where functions f,(Va,ys) de-
termine an action ® : G x Q — @ and matrix f, is inverted to matrix
O0fa/Oys. Both the Lagrangian (4.3) and the Lagrangian (3.2) are the
same type, so the same scheme of constraint reduction is applicable here.

Now we consider the dynamical system based on the Lagrangian
which is invariant under the transformation (®V);2, : TQ — TQ
determined by fixed element j2a € T?G. Vector fields (2.9) are infinites-
imal symmetries of this Lagrangian. The symmetry conditions have the
form of the following system of differential equations for the Lagrangian
function:

Yoy L=0, i=012, a=TR. (4.4)

Following ref.[12] we write the corresponding constants of the motion:

ar (Vo)) = 7Yy, ar(Y5)) =mY) . (4.5)

The remaining ones, namely « L(Y(fé;)), are equal to zero identically.

It is interesting to find Hamiltonian counterparts of these constants of
the motion. According to scheme developed in ref.[12] for non-degenerate
theories, we should construct the vector fields on 7*@ being Legendre-

related [8] with the infinitesimal generators Y(f(’);) and Y(fl’;). Since we
deal with singular Lagrangian, Legendre transformation is not diffeo-
morphism and this recipe is not applicable here. We use the vector fields
(3.17) which are generated by an action of a Lie group T'G on phase man-
ifold T*@). There are then nothing but the complete lifts [12] of infinites-
imal generators (2.7) to T*Q). With the supposition of these generators
are Noether symmetries [12] of a Hamiltonian function, we construct the
constants of the motion which are precisely the constraints (3.18).
Solving of infinitesimal symmetry conditions (4.4) can help to find a
special local coordinate system, i.e. coordinate system which allows to
separate explicitly the regular part of theory (where the momenta are, as
in standard non-singular theory, independent functions of velocity vari-
ables). Prolonged Lie symmetric Lagrangian depends on group invariants
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I, i.e. functions such that Y(Si’)o)lk = 0, and their 1-lifts [11] I}. These
invariants should be choosen as independent variables and inserted into
the set of special local coordinates.

An invariance of transformed Lagrangian (3.5) means, that it admits
the transformations (¥(2V) 2, : T2G x TQ — TG x TQ locally written

as

v = [fo(05,08",2¢), 1y =@y(Va,0p);
w' = drfy, nb=drey, 0 =die,. (4.6)

Taking the element j?c with coordinates (dg, 83", d5%) in neighborhood of
identity j2e we obtain an infinitesimal transformation which is generated
by the vector fields ZD = x® _y @b Putting (1.12) and (2.9) in

(ai) = “H(ai) (aet)
one-form (3.9), we obtain the following constants of the motion:

GL(Zoy)) = WY +ip0LE(v) +ipadr LA (),
aL(ZZ)) = —mYiy +isaLiw). (4.7)

There is enough evidence to prove the identity & L(Z((Z’;))) =0.

Usage of the infinitesimal symmetry conditions Z (i’il)L = (0 permits
to formulate the problem of how to establish the structure of gauge
invariant Lagrangian as the problem of solving of the system of homoge-
neous first-order differential equations in partial derivatives. So, in ref.[4]
the problem of how to construct T'G —invariant Lagrangian starting with
“standard” G'—invariant Lagrangian is redused to the solving of the sys-

tem of differential equations Z((Cly)i)L = 0,7 = 0,1. Here Z((;)i) is equal
)

to X ((i)z) — Y(Sl)) where vector field X ((Cl”.) belongs to the basis of a Lie
algebra Lie(T'G) at a point jla = (va,vs') and infinitesimal generator
Y(SB) is given by eqs.(2.4). Lagrangian satisfying this conditions has the
structure of function (4.3) where v, — 0 limits are taken. In general,
the functions of type (3.2) and (3.5) are the unique solutions of this kind
symmetry conditions.

5. Invariant dynamics on a tangent Lie group

Let G be an R-dimensional Lie group and T'G its tangent bundle which
is also Lie group. The elements of T'G are the sections of this bundle,
i.e. the vector fields on GG. To appreciate this statement we consider the
curves at a,b € G which are the differentiable maps v : IR — G and
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A R — G with v(0) = a and A(0) = b, respectively. If there exists
a coordinate neighborhood (U, g) of a with local coordinates (go), then
coordinates v4 = (go0ov)(0) and v,' = (d(gs ov)/dt)(0) of group element
jov = jla defines [3] the tangent vector v, = 14(0/094)a € TuG.
Similarly, the group element j'b = (Ag,Ag') where A\g = (gg o A)(0)
and A\g' = (d(gs o A)/dt)(0) is the vector v, € T,G. Tangent group
multiplication Ty : TG x TG — TG defined as

(Vaal/al) ’ ()‘5’)‘51) = (‘p’Y(Va A)adTQO’Y(Va )‘))7 (51)

maps the vectors v, € T,G, vy, € TG into the vector v,y € TG with
components dry~ (v, \).

Let us suppose that Lagrangian function L : TG — IR is invariant by
G. In other words L is invariant under the lifted action ¢* : G x TG —
TG of G on TG which is defined as follows [6,7]:

(‘pl)a TG - TG, (‘pl)a =Tl,, (5.2)

where [, : G — @ is the left translation by a € G. Locally the tangent
map T, of I, is determined by T'l,(vy) = dl,(b)(vs). Differential dl,(b) :
TyG — T4G of I, at b can be written by means of T'G-multiplication
law: dl,(b)(vy) = i1(a) - jib, where i1(a) := (v4,0) € i1(G) C TG and
jtb = vy. Zero in expressions of type (v4,0) denotes an R-dimensional
row here and below in this Section. Using this formula, we rewrite the
local expression for linear isomorphism T.G — X1, (G) as the TG-product
of i1 (a) on vector & = 27 (80/0gs). belonging to the Lie algebra G := T.G:

dla(e)(€) = (Va,0)-(0,27)
= (ua,xﬁLg(a)). (5.3)

Left-invariant vector field X3 with components Lj(a) corresponds to the
basic vector (0/9g3). = (0,08) = 3.
In ref.[6] the conveniance of usage the left trivialisation [5]
Tl : GxG->TG
(@, X) = dlo(e)(X) (5.4)

in examination of mechanics on a Lie group is exhibited (see also [7]). We
interpret this map as the possibility to write any j'a € TG as follows:

(1/0“1/0(1) :(Vaao)'(oayalvf(a))a (55)

where matrix V := ||V/?|| is inverse to the matrix L := ||L?||. We denote
vo'VP(a) by XP. Via the identification (v4,0) - (0, X?) := (a, X,) the
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group structure on T'G looks [5] as the semidirect product of G and its
Lie algebra G with respect to adjoint representation of G on G:

(b, X3).(a, Xa) = (ba, Ad(a1) X}, + X.). (5.6)

Here Ad(a™1) X, =i1(a™!) - X} - i1(a).

Since second factor in product (5.5) does not change under the mul-
tiplication on any b € i1(G), (left) G—invariant Lagrangian is a differ-
entiable function L € A°(G):

L=Lw V). (5.7)

This function satisfies the infinitesimal symmetry conditions Yﬁ(é)L =0

where Yﬁ%) is the complete lift of right-invariant vector field Y3 € Xr(G).
The latter can be written as the product of basic vector {5 € G on
i1(a): Ya(a) = (0,03) - (Va,0) (cf.eq.(5.3)). The constant of motion from

Y5y € Xr(i1(G)) is [12]:

ar (Vi) = paR3 (1), (5.8)

where &, = podv, is the Poincaré-Cartan one-form associated with L,
Pa = OL/Ovy' is momentum, and Rg(z/) are the components of the
vector Ys(a).

Following similar procedure as above, we could also construct right-
invariant Lagrangian on T'G, i.e. the function L : TG — IR which is
invariant under the action of G on T'G on the right. This action is defined
by using the tangent map T'r, of right translation by a € G. Differential
dry (b)(vp) is then nothing but the product of j'b on iy (a). The splitting
(Va, Val) = (0,04 Wh(a)) - (va,0) allows the right trivialisation T'r :
G x G — TG, so that tangent group T'G is isomorphic to the semidirect
product G x 44 G (see ref.[5]). Symbols W(fga) denote the elements of
matrix W which is inverted to the matrix R := ||R?(a)||. Whence we
obtain the explicit expression for right-invariant Lagrangian

L% = L¥(va' Wi (v)), (5.9)

satisfying the infinitesimal symmetry conditions X [%)L =0,=1,R.
Vector field X[%) € X(i1(GQ)) C XL(TG) is the complete lift of X €
X (G). Corresponding "right” constants of the motion are:

a(Xfg) = PaLf(v).- (5.10)
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The left action of a Lie group G on its cotangent bundle T*G is
defined [6] by using the inverse dual map to the differential dl,(b) of [,
at b. Fundamental vector field corresponding to {3 € G is a complete lift
of Y3 € Xr(G) to T*G [12]. In local coordinates, we have

L
YY" =R — — po———— 5.11
A B ov, e vy Opy’ (5.11)
where (v,,po) are the induced coordinates on T*G. We consider the
Hamiltonian system (7*G,w,H) where w is the canonical symplectic
form on 7" G and H is a function on T*G. Having used dual trivialisation

T : T"G -G xGg*
Vg — (a,dl}(e)(vg)) , (5.12)

which determines so-called body coordinates [7], we find the left-invariant
Hamiltonian:
H = H(poL3(v)) . (5.13)

All the vector fields Y§* € X(1G) are Noether symmetries [12] of this
Hamiltonian, i.e. Y§*H = 0. On the contrary, differentiable function
satisfying these symmetry conditions is defined on A%(G*).

Following ref.[7], we write the momentum mapping

Jb L TG -G
Vg > dri(e)(vg) (5.14)

for the symplectic left action of G on T*G. Taking into account ref.[8]
we obtain its Lagrangian counterpart J : T*G — G* defined as JL =
JY o Leg. Here Leg : TG — T*G is the Legendre transformation corre-
sponding to the Lagrangian (5.7). Since J is an Ad*-equivariant map-
ping for the action of G on T*G [7], then J* : G — C®(T*G) is a homo-
morphism of G to the Lie algebra of functions (namely, Leg—transformed
constants of motion (5.8)) under the Poisson bracket. The reduction the-
orem can be applied on the Lagrangian level[8] as well as the Hamiltonian
level[7]. The dimension of reduced space is equal to R — dim G, where
G, is the isotropy subgroup of G' under the co-adjoint action Ad* at the
one-form pu € G* which is the regular value of momentum mapping.

We can construct the right-invariant Hamiltonian on 7*G in similar
circumstances: if T*r : T*G — G* x G is the dual (right) trivialisa-
tion which determines space coordinates [7], then H® depends on the
(Leg—transformed) ”left” constants of motion (5.8) whereas the mo-
mentum mapping JF : T*G — G* for the symplectic right action of
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G on T*G is given by using the differential of dual left translation:
Vo > dli(e)(va)-

It is obvious that does not exist 7'G —invariant Lagrangian defined
on tangent bundle TG. We consider (left) TGo—invariant function L :
TG — IR where G is Ro—dimensional Lie subgroup of a Lie group G.
According to Section 3 the set of first-class constraints

oV = p,YF(v) =0 (5.15)

is appeared on the Hamiltonian level (cf.(3.19b)). Here Y%, p, k = 1, Ro,
are the components of right-invariant vector field Y, € Xr(Gy). There-
fore, TGy — invariant canonical two-form on 7T'G is presymplectic and
we have a presymplectic dynamical system in such a case. Since matrix
with elements Y is regular the constraints (5.15) are reduced to trivial
form p, ~ 0. Hence T*G/T*Gy is the final constrained manifold.

Conclusions

By ”sewing on” a Lie group of an one-dimensional manifold we join the
geometrical theory of jet bundles with the theory of Lie groups. The lan-
guage of jets allows to describe the derivative of maps, so we apply the
notion of jet prolongation to the group operations and group elements.
The reason is that Lie groups are differentiable manifolds in which the
group operations are smooth. As a result we obtain a tangent Lie group
being the jet prolongation of an original Lie group. Obvious general-
izations, of course, concern the order of group prolongation as well as
the dimension of a (base) manifold. On the other hand, it is interesting
to study those aspects of the theory which explain the inner structure
of tangent Lie groups or homomorphisms induced by the canonical jet
projections, for instance, a clear geometric interpretation of the homo-
geneous manifolds [10] TG/G and T*G/G.

By using above scheme we define an action of the first prolongation
of a Lie group on a differentiable manifold () and we lift it to an action
of the second prolongation of this group on tangent bundle T'Q). The
requirement of an invariance of Lagrangian function under the action of
prolonged Lie group leads to degeneracy of this Lagrangian. There are
two types of singular Lagrangians of this kind: (i) these depending on the
group variables, and (ii) those which do not contain the group variables
explicitly. On the Hamiltonian level we have gauge constrained theories
in both above cases. Does it mean, that any dynamical system supple-
mented with the first-class constraints is connected with a prolonged Lie
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group? One of the ways of continuing the present work would be the
investigation of this problem.
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Appendix A. Tangent group of the group of rotations and trans-
lations of Euclidean space and invariant two-body
problem

Let E be the product manifold SO(3) x IR® supplemented with a group
structure by setting (O1,v1)-(02,v2) = (0102,01v2+v1), O € SO(3),
v € IR®. Tangent manifold TE is again a Lie group. Its multiplication
law is written as follows:

(O1,v1;01,01) - (O2,02; 04, 105) =
= (0102,011/2 + vy, 0105 + 0102,01V2 + O105 + 1'11), (A].)

where O, = drO, and v, := drv,. An identity element j'e € TE is
(13,0;03,0) and the element (0!, —O'v; O, —Otv — O'p) is an inverse
to (O,v;0,v) € TE.

Lie group E is the group of rotations and translations of Euclidean
space IR?, if we identify the element (O,r) with the affine motion x
Ox + v of IR3. Similarly, the identification of (O,v;0,v) € TE with
the transformation (x,%) ~ (Ox + v; O% + Ox + ©) of TR implies that
Lie group T'E is the group of rotations and translations of tangent space
TR3.

Let Q := R?® x IR?*/{0} be 6-dimensional configuration manifold of
two point particles spanned by position variables z4;(a = 1,2;1 = 1,2, 3).
The group E acts on @ by the action

ExQ—Q,
((O,v),x,) = (0%, + V). (A2)

We lift this action to the tangent bundle 7'Q). The action TEXTQ — TQ
given by

((O:VQOal./)axaaxal)'_)(Oxa +V;0Xa1+OXa+l7), (A3)
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is obtained. We find lower-derivative Lagrangian L : T'() — IR which
admits the transformations belonging to the first-order prolongation T'E
of Euclidean group E of space translations and space rotations.

A symmetrical Lagrangian has to satisfy the infinitesimal symmetry
conditions Y&"t)L =0 and Y(tkrs)L =0, s =0,1. Vector fields

s

, 0 ;. j
Y'&%t) = Elkj.’,l,'aja?i + Elijajaj:—i ) Y(Z'it) = lejxajaj:—i ,(Ad)
L 2.9
t _ t —
Mo = Xgrye V=X, )
a=1 a=1

generate the infinitesimal rotations and translations of T'Q). Invariant
Lagrangian has the following form

L(x4,%,) = L(x?, (r1)), (A6)

where r := |r| = |x1 — x2| is a distance between point particles. There
are six zero-valued constants of motion

P=p; +p2, J=[x1,p1]+ [x2,p2], (A7)

associated with vector fields Y{if;) and Y(35, respectively (see egs.(4.2)).
Here symbols p,; denote the functions OL/0,; defined on tangent bun-
dle T'Q. On the Hamiltonian level p,; are canonical momenta and all the
relations (A5) are primary first-class constraints.

It is convenient to use center-of-mass variables

_ Xy maxy , T'=X] —Xs (A8)
mi1 + mo

with further applying of spherical coordinates r; = rcos¢sinf, ro =
rsingsing, and r3 = rcosf in internal subspace of ). In this coor-
dinate system Lagrangian function (A4) has the form L(r,r). Hence,
trajectory of the distance variable r is determined by given initial con-
dition as in standard Cauchy problem only; time evolution of the others
{R1, Ry, R3, ¢,0} is arbitrary.

It is interesting to compare this dynamical system with one deter-
mined by Galileo-invariant Lagrangian, say, leading to Newtonian me-
chanics:

S

MeX «
L= - —. A9
D e (49)
a=1
In spite of constants of motion (A5), the total momentum P and the an-
gular momentum J of this dynamical system are arbitrary constants. In
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general, the trajectory of center-of-mass variable R is rectilinear. Putting

P = 0 we select own inertial frame. It does not lead to restrictions on

the dynamics of system. But the choice J = 0 means the very specific

case when trajectories of both particles lie on the same straight line.
Having carried out the substitution

Tai = OuYar +i,
Tai = OuYak + OikYak + Vi, (A10)

in Lagrangian (A9) we arrive at the singular function

L= Z M [Z)ai + O1iOnYar + Om'l)k]Q - % ) (A11)

a=1

where 7 = |y; — y2| is a distance between particles. It is invariant under
the action of transformation (A10). Corresponding to this transformed
Lagrangian Hamiltonian function

2 2
™ Q
H= a — Al12
; 2my, + r ( )
is supplemented with the set of primary constraints:
2
e = - ZﬁaiOki ~0, (A13)

a=1

00
‘I’g\lj) = & - Zﬂaioki—];lyal ~0.

Momenta n;, and &; are canonically conjugated to group parameters vy
and Aj, respectively. All the relations (A13) are first-class constraints.
The time evolution of variables v, and A; is completely arbitrary. By
fixing their time-dependence we choose the concrete non-inertial frame
for description of dynamics of our Galileo-invariant system.

References

1. D.M.Gitman and I.V.Tyutin, Canonical Quantization of Fields with
Constraints, Nauka, Moscow, 1986 (in Russian).

2. Y.Yaremko, Contact transformations in Wheeler-Feynman electro-
dynamics, Ann. Inst. H.Poincaré, vol. 66, 3, 1997, p.293-322.

ICMP-98-11E 26

3. D.J.Saunders, The Geometry of Jet Bundles, London Math. Soc.,
Lecture Notes Series 142, Cambridge Univ. Press, 1989.

4. V.I.Tretyak, On the gauge transformations in classical mechanics,
Prepr. ITP-91-16Y, Kyiv (Ukraine), 1991 (in Ukrainian).

5. L.Kolar, P.W.Michor, and J.Slovak, Natural Operations in Differen-
tial Geometry, Springer—Verlag, Berlin Heidelberg, 1993.

6. C.Blazquez and J.Llosa, Classical spin particles: a kinematical ap-
proach, Rep. Math.Phys., vol. 30, 2, 1991, p. 131-148.

7. R.Abraham and J.Marsden, Foundations of Mechanics, 2nd ed, Ben-
jamin, New York, 1978.

8. M. de Ledn, P. Pitanga, and P.R.Rodrigues, Symplectic reduction
of higher-order Lagrangian systems with symmetry, J.Math.Phys.,
vol. 35, 12, 1994, p. 6546—6556.

9. W.M.Tulczyjew, Sur la différentiellee de Lagrange, C.R.Acad.Sci.
Paris, t.280, Sér. A, 1975, p.1295-1298.

10. F.W.Warner, Foundations of Differentiable Manifolds and Lie
Groups, Graduate Texts in Mathematics 94, Springer—Verlag, 1983.

11. M.de Le6n and P.R.Rodrigues, Methods of Differential Geometry
in Analytical Mechanics, North—Holland Math. Studies, Ser. 158,
Amsterdam, 1989.

12. M. de Le6én and D.M. de Diego, Symmetries and constants of the
motion for higher-order Lagrangian systems, J.Math.Phys., vol. 36,
8, 1995, p. 4138-4161.

13. M. de Leén and P.R.Rodrigues, Generalized Classical Mechanics and
Field Theory, North—Holland Math. Studies, Ser. 112, Amsterdam,
1985.

14. M.J.Gotay, J.M.Nester, and G.Hinds, Presymplectic manifolds and
the Dirac-Bergmann theory of constraints, J. Math. Phys., vol.19, 11,
1978, p. 2388-2399.




Ipenpunrn Incruryry disuku konnencoBanux cucrem HAH Ykpainu
PO3IOBCIOKYIOTHC Cepell HAyKoBuX Ta indopmartiitiux ycranos. Bonn
TAKOXK HOCTYIIHI IO eJIeKTPOHHIi#T KoM toTepHili mepexi Ha WWW-cep-
Bepi iHcTHTYTY 32 agpecoro http://www.icmp.lviv.ua/

The preprints of the Institute for Condensed Matter Physics of the Na-
tional Academy of Sciences of Ukraine are distributed to scientific and
informational institutions. They also are available by computer network
from Institute’s WWW server (http://www.icmp.lviv.ua/)

IOpiit I'puroposuy Apemko

I'pynm, fOTUYHI 00 TPyIu JII, TA KAJIIBPYBAJIbHA
IHBAPISIHTHICTD Y KJIACMYHIN MEXAHILI

PoGory orpumano 22 kBitHa 1998 p.

Barsepmxkeno 10 apyky Buenoio panoio IOKC HAH Ykpainu
PekomMenmoBano mo IpyKy ceMiHApOM BiIIiTy Teopil MeTaJsiiB i crijiaBiB

Burorossieno npu I®OKC HAH Yxkpainu
© Vci npaBa 3acrepexeni



