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1 ðÒÅÐÒÉÎÔIntroductionWhile examining the structure of Euler-Lagrange equations originatedfrom degenerate Lagrangian, Gitman and Tyutin [1] proved that a nec-essary and su�cient condition of the existence of relationships involvingmotion equations is the invariance of action integral with respect to acoordinate transformation which is speci�ed by some time-dependentparameters (gauge transformation). The number of these parameters isequal to the number of above relationships. In ref.[2] it was showed thatthis transformation is an invertible contact transformation. The adjective"contact" means that it leave an in�nite Cartan distribution invariant[3]. Such a coordinate substitution is discussed on both Lagrangian andHamiltonian levels in ref.[2]. This is an essential prerequisite to studythe situation in frame of the canonical formalism for higher-derivativetheories by using of the Dirac-Bergmann theory of constraints.In ref.[4] an action of a Lie group G on the total space of a trivialbundle (Q; �; RI ) was considered. The vector �elds generated by an ac-tion of G on Q are lifted to the �rst jet manifold J1�. Non-autonomousLagrangian L : J1� ! RI is supposed to be an invariant under the actionof G on J1�. It means that L satis�es the system of �rst-order di�er-ential equations in partial derivatives originated from the requirementof invariance of action integral with respect to the in�nitesimal trans-formations of J1�. Further the group parameters are postulated to bethe time-dependent functions, so that an in�nitesimal transformationbecomes a gauge transformation. In ref.[4] the method was developedwhich permits to construct gauge invariant Lagrangian function startingwith "standard" G�invariant Lagrangian mentioned above. The formerhas to satisfy the system with double number of di�erential equationsbecause the additional group parameters, namely �rst-order derivativesof the original ones, are appeared. Gauge invariance of the theory isachieved due to additional dynamical variables. More exactly, an originalcon�guration manifold is substituted by the new manifold with higherdimension.Therefore, if we study the symmetry of dynamical system with �rst-class constraints, it is better to suppose that group parameters are (time-dependent) gauge variables. According to ref.[5], if we have a Lie groupG with multiplication map � : G � G ! G, then its tangent bundleTG is also a Lie group with multiplication T� (see also ref.[3, pg.115]).Such a group is called the tangent group of an original Lie group. Thetangent bundle of order k, T kG of G, is endowed with a group structuretoo [5]. In this manner the left action of G on di�erentiable manifold,
ICMP{98{11E 2say Q, may be lifted to an action of tangent group on tangent bundle ofQ. Thus, several powerful tools from Lie group theory can be applied toabove symmetry problem.In ref.[6] a Hamiltonian system having a Lie group G as con�gurationmanifold is considered. Phase manifold is G � g� where g� denotes thedual space to Lie algebra g of group G. The authors built G�invariantdynamics; the explicit expression for momentum mapping [7,8] is ob-tained. In Section 5 such a dynamical system will be examined in theframework of Lagrangian formalism.The present paper is organized as follows. In Section 1 we recallin detail the theory of tangent groups necessary to make the text self-contained. The approach di�erent from viewpoint given in ref.[5] is elab-orated. In Section 2 we de�ne the actions of tangent groups on di�eren-tiable manifold and its tangent bundle by using contact transformations.In Section 3 we study a tangent Lie group of symmetries of a Lagrangiansystem and its Hamiltonian counterpart. In Section 4 we show how theexistence of a tangent Lie group of symmetries induces in�nitesimal sym-metries. Finally, in Appendix A we apply the results to tangent Euclideangroup of space translations and space rotations.1. Second-order tangent group of a Lie groupIn this Section we construct a Lie group with elements and group oper-ations which are jet prolongations of those corresponding to another Liegroup. We obtain the explicit expressions for the constants of structureof new group by using the Maurer-Cartan equation. Left-invariant vec-tor �elds are classi�ed in the usual framework of theory of lifts of vector�elds to tangent bundles.Let (G; 
;M) be a bundle with one-dimensional base M . The totalspace of 
 is (R + 1)-dimensional manifold G. We deal with a localtrivialisation of 
 around t 2 I where di�eomorphism ot : 
�1(I)! I�Gis de�ned. Here I �M is an open interval, and a typical �bre G of 
 isan R-dimensional Lie group.In adapted coordinate system (U; g), which is constructed from localtrivialisations using coordinate systems on the base space and the typical�bre, projection 
 : G ! M relates the point (t; g�) 2 U � 
�1(I);with the point t in the time interval I . Greek symbols ��(a) := (g� ��)(t); ��(b) := (g� � �)(t) ; �; � 2 �I(
) etc. denote the local coordinatesof group elements a; b etc. in manifold G. These coordinates are chosenso that "�(e) = 0, � = 1; : : : ;R := 1;R, for identity element e. We alsouse the induced coordinate systems (U1; g1) and (U2; g2) on the 1-st and



3 ðÒÅÐÒÉÎÔ2-nd order jet bundles 
1 and 
2, respectively. Greek indices are meantto run from 1 to R throughout the paper; the summation convention isused for dummy indices.Starting with a group multiplication ' : G � G ! G, we de�ne abundle morphism [3] from �bred product bundle 
 �M 
 to bundle 
 bythe map �' : G �M G ! G. We suppose that the projection of �' is anidentity map idM , so that locally this map may be written ast = t ;�� = '�(��(b); �
(a)) ; (1.1)where smooth function '(b; a) determines the group multiplication. To�nd the "multiplication law" for the �rst-order derivative coordinates,we construct the �rst prolongation of a bundle morphism ( �'; idM ). Fol-lowing ref.[3], we obtain the map j1 �' : J1
 �M 
 ! J1
 de�ned byj1 �'(j1t (� �M �)) = j1t ( �' � ��M �) (1.2)= j1t � :Here symbol ��M � denotes a �bre product of the local sections �; � 2�I(
) de�ned by (� �M �)(t) = (�(t); �(t)). The resultant section � 2�I(
) is equal to �'(� �M �). (As usual [3], a local section of 
 withdomain I , say � : I ! G, is an inverse to 
 map, 
 � � = idI , given byt 7! (t; ��(t)), where �� = g� � �, and j1t � is the 1-st jet of this sectionat a point t 2 I .) We obtain R expressions in local coordinates�1� = dT'�(��(b); �
(a))= �1� @'�(b; a)@��(b) + �1
 @'�(b; a)@�
(a) ; (1.3)in addition to the relations (1.1) (dT is the Tulczyjew di�erential operator[9]). The following commutative diagram summarizes the situation:j1' -'-
idM -M

J1(
 �M 
)
?(
 �M 
)1 @@@RG �M G���	 
 �M 
 M

J1

?
1

���	G @@@R


ICMP{98{11E 4Similarly we prolong a bundle morphism (��; idM ) : 
 ! 
 which isbased on the group inversion � : G! G.Let's sum it up. A bundle morphism may be described as a mapfrom the total space of one bundle to the total space of another bundlewhich does not mix the �bers. It means that any �bre of one bundle ismapped into a �bre of another bundle. We start with a bundle (G; 
;M)whose typical �bre G is a Lie group. A typical �bre of the �bred productbundle 
 �M 
 is the Cartesian product of the typical �bre of 
 withitself, i.e. G�G. Since �rst jet bundle (J1(
�M 
); (
�M 
)1;M) is thennothing but the �bred product bundle 
1�M 
1 of a bundle (J1
; 
1;M)with itself [3], the typical �bre of 
1 is endowed with a group structure.Group operations of multiplication and inversion are the restrictions onthis typical �bre of the �rst prolongations j1 �' and j1 �� of the bundlemorphisms �' and ��, respectively.If 
 is the trivial bundle (RI �G; pr1; RI ) then tangent manifold TGis a typical �bre of 
1. It is also Lie group with multiplication T' andinversion T�. Following ref.[5], we say then TG is the tangent group ofa Lie group G.According to ref.[3], the �rst prolongation j1(ot; idI) is the local triv-ialisation of 
1 around t 2 I : o1t -ot --idI
J1(
jI)?
�1(I)?
jII
J1(pr1)?I �G?pr1IFor open interval I � M we have J1(
jI ) �= 
�11 (I) (see ref.[3, Lemma4.1.14]). If I contains t = 0 the �rst jet manifold J1(pr1) is di�eomorphicto I�TG. On the assumption of the typical �bres of 
1 are di�eomorphic,we construct the local trivialisation o1t : 
�11 (I)! I � TG. Therefore, ifg� are coordinate functions on G, then (g�; g�1) is the coordinate systemon a typical �bre TG. We denote j1a; j1b etc. the elements of TG withcoordinates (�alpha(t); �alpha1(t)) and (��(t); �1�(t)), respectively. As itfollows from eqs.(1.3), the identity element j1e has zero-valued derivativecoordinates: "�1(e) = 0 for all � = 1;R.



5 ðÒÅÐÒÉÎÔIn analogy with j1 �' we construct the second order prolongation ofbundle morphism ( �'; idM ). Following ref.[3], we obtain the map j2 �' :J2(
 �M 
)! J2
 de�ned by j2 �'(j2t (��M �)) = j2t �'(��M �). On thelocal level we have the relations �2� = d 2T'�(b; a) together with eqs.(1.1)and (1.3). Thus we construct the second order (jet) prolongation of a Liegroup G over M . Its multiplication j2 �'jT 2G and inversion j2 ��jT 2G arederived from corresponding group operations of an original Lie group G.The identity j2e of a Lie group T 2G has zero-valued coordinates.Now we consider the embedding �1 : G ! J1
, locally given by(t; ��) 7! (t; ��; 0). The submanifold �1(G) � J1
 is a slice [10] of thecoordinate system (U1; g1). It is interesting to study a relative inclusioni1 : G! TG where G and TG are meant as the "simultaneous" �bers ofG and J1
, respectively. One easily proves that i1 is a group homomor-phism and (G; i1) is a closed subgroup [10] of a Lie group TG. Similarlywe construct a closed subgroup i2(G) � T 2G where the inclusion mapi2 : G! T 2G is related with the embedding�2 : G ! J2
 ;(t; ��) 7! (t; ��; 0; 0) : (1.4)Note that target projections 
1;0 : J1
 ! G and 
2;0 : J2
 ! Ginduce the group homomorphisms �1;0 : TG ! G and �2;0 : T 2G ! G,respectively. First-jet projection 
2;1 : J2
 ! J1
 induces homomor-phism �2;1 from group T 2G to group TG.Therefore, an original Lie group is a Lie subgroup and a submanifoldof its own �rst- and second-order tangent groups [5]. (More exactly, weconsider the slices i1(G) � TG and i2(G) � T 2G on which all the deriva-tive coordinates are equal to zero.) Moreover, the constants of structureof these tangent Lie groups are determined by the structure constants ofG. To demonstrate it we study the space XL(T 2G) of all left invariantvector �elds on T 2G and its dual space X �L(T 2G).Taking into account an exclusive role of Tulczyjew di�erential opera-tor in prolongation algorithm, we deal with the dual space X �L(T 2G). Wewrite the local expressions for canonical left invariant one-forms [10,7,11]which constitute the basis for X �L(T 2G) at a point j2a:�
k = � @@��j(a)d kT'
(b; a)�b=a�1 d��j : (1.5)The exterior derivatives of the �
k are given by the Maurer-Cartan equa-tion d�
k = �12C�AB��i ^ ��j : (1.6)
ICMP{98{11E 6We use multi-index notation in structure constants fC�ABg of T 2G, wheremulti-indices A;B and � are the 2-tuples of natural numbers, e.g. A =(�i). Small roman indices run from 0 to 2. Particularly, for subgroupi2(G) � T 2G we have d�
 = �12c
���� ^ �� ; (1.7)where fc
��g are structure constants of original Lie group G (zero-valuedroman indices are omitted). Left-invariant one-forms �� are given byeqs.(1.5) if integer k is equal to zero.Tulczyjew operator dT is the derivation of type d� of zero degreewhich acts on the 0-forms as a total time derivative. Having used thecommutation d � dT = dT � d and the expressions dT ��i = ��i+1, aftershort calculations we establish the following relations between "higher-order" one-forms (1.5) and original ones:�
1 = dT �
 ; �
2 = d 2T �
 : (1.8)Thanks to commutation of Tulczyjew operator with an exterior deriva-tive and positively signed Leibniz' rule for wedge product [9] we arriveat d�
1 = �12c
����1 ^ �� � 12c
���� ^ ��1 ;d�
2 = �12c
����2 ^ �� � c
����1 ^ ��1 � 12c
���� ^ ��2 : (1.9)When comparing these expressions with Maurer-Cartan equations (1.6)we deduce the constants of structure fC�ABg. It is convenient to writethem as the following block matrices:^C(
0) = 24 ^c
 0 00 0 00 0 0 35 ; ^C(
1) = 24 0 ^c
 0^c
 0 00 0 0 35 ;^C(
2) = 24 0 0 ^c
0 2^c
 0^c
 0 0 35 : (1.10)Here symbol ^c
 denotes the skew-symmetric matrix kc
��k with �xedinteger 
.Similarly we obtain the structure constants of a Lie group TG:^C(
0) = � ^c
 00 0 � ; ^C(
1) = � 0 ^c
^c
 0 � : (1.11)



7 ðÒÅÐÒÉÎÔThe basis for XL(T 2G) consists of the left invariant vector �elds[10,7], say X(2)B , locally given byX(2)(�0) = L�� @@�� + dT (L��) @@��1 + d 2T (L��) @@��2 ;X(2)(�1) = L�� @@��1 + 2dT (L��) @@��2 ;X(2)(�2) = L�� @@��2 : (1.12)Here L��(�(a)) are the components of the left invariant vector �elds X�which form the basis for XL(G).Vector �eld X(2)(�0) is the 2-lift of corresponding one X� to tan-gent bundle T 2G, i.e. X(2)(�0) = X(2;2)� (see ref.[12]). The former be-longs to the basis of a space XL(i2(G)) � XL(T 2G). The others X(2)(�1)and X(2)(�2) are intimately connected with the 1-st and 0-th lifts [12]of X� to T 2G, respectively. Namely, we have X(2)(�1) = J1X(2;2)� andX(2)(�2) = (1=2)(J1)2X(2;2)� where J1 is the canonical almost tangent struc-ture [13] of order 2 on T 2G.Let X(1)(�i), i = 0; 1 be the canonical left-invariant vector �elds onXL(TG). If �21 : T 2G ! TG is the canonical projection, then X(2)(�i) andX(1)(�i) are �21�related, i.e. T�21 (X(2)(�i)) = X(1)(�i). Each of homomorphismof groups, mentioned in this Section, corresponds the Lie algebra ho-momorphism which describes its e�ect on left invariant vector �elds, aswell as the mapping which relates the dual algebras. The former are thennothing but the di�erential of originating group homomorphism and thelatter is precisely the transpose of this di�erential [10].2. An action of the tangent Lie group on a smoothmanifoldIn this Section we de�ne an action of the �rst prolongation of a Lie groupG on an N -dimensional di�erentiable manifold Q. We lift it to the actionof the second prolongation of this group on tangent bundle TQ.When considering the group parameters as the constants, an actionof a Lie group G on Q, say � : G � Q ! Q, lifts to an action �1 :G� TQ! TQ of G on TQ as follows [7,8,12]: (�1)a : TQ! TQ where(�1)a = T�a for any �xed a 2 G. Treatment of group parameters via
ICMP{98{11E 8the time-dependent variables makes the notion of lift of a group actionquite di�erent from mentioned above. We construct it by analogy withthe algorithm of group prolongation developed in previous Section.Let us consider a bundle (Q; �;M) whose typical �bre is the abovesmooth manifold Q. It is a bundle over the same base space M as abundle 
. Let (I 0; Q; o0t) be a local trivialisation of � around t 2 I 0 �M .We denote (V; q) an adapted coordinate system which is constructedfrom local trivialisations. So projection � : Q ! M relates the point(t; qa) 2 V � ��1(I 0) with point t in the time interval I 0. Small Latinindices a; b; c are meant to run from 1 to N throughout the paper.We construct the �bred product bundle 
�M � where the total spaceG �M Q consists of the "simultaneous" points of the Cartesian productG � Q. Let x : I 0 ! Q be a local section of � with domain I 0 given byt 7! (t; xa(t)), where xa = qa � x. The �bre product coordinates maybe de�ned in the following manner[3]: if (t; g�) is an adapted coordinatesystem on U � G and (t; qa) is an adapted coordinate system on V � Qwhere 
(U) \ �(V ) 6= ;, then we may take (t; g�; qa) as an adaptedcoordinate system on(U \ 
�1(�(V ))) �M (V \ ��1(
(U))) � G �M Q : (2.1)Since 
�M � has the properties of a bundle whose typical �bre is theCartesian product of the typical �bres of 
 and �, we may de�ne a bundlemorphism (�; idM ) : 
 �M � ! � by using of the map � : G �Q ! Q.We determine an action of the tangent group TG of a Lie group G onthe typical �bre TQ of �rst-jet bundle (J1�; �1;M) by means of the �rstprolongation of (�; idM ), namely (j1�; idM ) : 
1 �M �1 ! �1. In localcoordinates the mapj1� : J1
 �M J1� ! J1� ;(j1t �; j1t y) 7! j1t x ; (2.2)is written as t = t ;xa = fa(��; yb) ;xa1 = dT fa : (2.3)We use the induced coordinate system (V 1; q1) on the 1-st order jetbundle �1. So, j1t y and j1t x are the 1-jets of the sections y; x 2 �I0(�)at a point t 2 I 0. Eqs.(2.3), excluding the identity for the base variable,describe on the local level the desired map T� : TG � TQ ! TQ. We



9 ðÒÅÐÒÉÎÔcall that T� is a total �rst-order lift of an action � : G �Q ! Q overbase M , or 1-st M�lift of � in short. The word "total" has a technicalmeaning which is elucidated below.For �xed 1-st jet j1t �, � 2 �I(
), the map (T�)j1a is a transformationof manifold TQ determined by the element j1a 2 TG.The action of TG on TQ induces a Lie algebra homomorphism ofLie(TG) := Tj1e(TG) into vector space X (TQ). To each vector �eld�(1)(�i) := X(1)�i (j1e), i = 0; 1 ; we assign the vector �eld Y (1)(�i) on TQ:Y (1)(�0) = Y b� @@yb + dT (Y b�) @@yb1 (a) ; Y (1)(�1) = Y b� @@yb1 (b) : (2.4)Symbol Y b� denotes the component of the fundamental vector �eld [5]corresponding to �� 2 Lie(G). Actually fY (1)(�i)j� = 1;R; i = 0; 1g is aLie subalgebra of the set X (TQ) of all vector �elds on TQ.Let us compare these results with standard situation where coor-dinates of the group elements are meant to be the constants. In sucha case the transformations of TQ are generated by fundamental vector�elds which are complete lifts of their prototypes, acting on Q [12]. SincedimTG = 2dimG, we have double number of in�nitesimal generators,namely Y (1)(�0) and Y (1)(�1), which are then nothing but the complete andvertical lifts [11] of the original one Y�. Therefore, it is reasonable to saythat we deal with the total 1-st lift of an action of G on Q.We may lift an action of TG on Q to the action T 2G on TQ in similarcircumstances: if (�(1;0); idM ) is a bundle morphism from 
1 �M � to �and (j1�(1;0); idM ) is its �rst prolongation, then we restrict the latter tothe "simultaneous" �bres. We realize this scheme for the base which isa real line RI . It means that global trivialisation of 
 is allowed, so thatdi�eomorphism o : G ! RI � G may be de�ned. Naturally, we supposethat � is a trivial bundle too.We de�ne now a C1 map�(1;0) : TG�Q! Q ;(j10�; y(0)) 7! x(0) ; (2.5)which is an action of a Lie group TG on manifold Q on the left [11,7].The bracketed and separated by comma integers (1; 0) up to capitalletter � are associated with the orders of tangent bundles over G andQ, respectively. The curve y : RI ! Q runs across a point y(0) 2 V withcoordinates fyaja = 1;Ng and the curve x : RI ! Q passes through apoint x(0) 2 V with coordinates fxaja = 1;Ng. Locally the map (2.5)
ICMP{98{11E 10may be written as: xa = fa(��; ��1; yb) : (2.6)An action of TG on Q induces a Lie algebra homomorphism of theLie algebra Lie(TG) into vector space X (Q) [7]. To each vector �eld�(1)(�i), i = 0; 1 ; we assign the following fundamental vector �eld on Q:Y (1;0)(�i) = @fa(��i(j1a); yb)@��i ����j1a=j1e @@ya : (2.7)Each of them is the in�nitesimal generator of an 1-parameter group oftransformations of Q.The map (2.5) lifts to the left action �(2;1) : T 2G�TQ! TQ of groupT 2G on tangent bundle TQ by composition of the 1-st jet prolongationT�(1;0) : T (TG�Q)! TQ with the canonical embeddingi1;0 : T 2G� TQ! T (TG�Q) ;(j20�; j10y) 7! j10(j1�; y) : (2.8)The �rst-jet j10y is represented in TV by (yb; yb1) where yb = (qb � y)(0),and yb1 = (dqb � y=dt)(0). In local coordinates we obtain the followingtransformational law for �rst-order derivative coordinates: xa1 = dT fa,where xa1 = (dqa � x=dt)(0).The fundamental vector �elds which correspond to �(2)(�i) 2 Lie(T 2G)may be expressed in terms of both complete and vertical lifts [11] ofvector �elds (2.7):Y (2;1)(�0) = (Y (1;0)(�0) )c ; Y (2;1)(�1) = (Y (1;0)(�1) )c + (Y (1;0)(�0) )v ;Y (2;1)(�2) = (Y (1;0)(�1) )v : (2.9)In general, an invertible �rst-order contact transformation, locallygiven by xa = fa(�� ; ��1; yb) ; �
 = '
(�� ; ��) ;xas = d sT fa ; �s
 = d sT'
 ; s > 0 ; (2.10)can be derived from di�erentiable maps (2.5) and (1.1) by using of thealgorithm developed in ref.[2]. (The coordinates �s� are meant to be theconstants for all values of non-negative index s.) In this way we avoidthe need to prolong a Lie group G up to order higher than 2. Such ageneralization allows to use the results of ref.[2] which are concernedwith the e�ect of a change of variables of type (2.10) on the dynamicsof Lagrangian system.



11 ðÒÅÐÒÉÎÔ3. Tangent Lie symmetries and presymplectic mechan-ical systemsIn this Section we consider a tangent Lie group of symmetries of theautonomous Lagrangian systems. We �nd two kinds of Lagrangian func-tions which are invariant under the action of tangent group. Dynamicalsystems with �rst-class constraints are obtained in both cases.Let L : TQ! RI be a Lagrangian function, �L on TQ the Poincar�e-Cartan 1-form and EL on TQ the energy function associated with Lde�ned, respectively, by�L = NXa=1 ^padxa ; EL = NXa=1 ^paxa1 � L ; (3.1)where ^pa = @L=@xa1 are original momenta. Now we study the e�ectof transformation T� : TG � TQ ! TQ, locally given by eqs.(2.3), ondynamics of this Lagrangian system.First of all we examine the situation where L is not invariant underthe action T�. Having carried out the transformation (2.3) in LagrangianL, we construct the Lagrangian function ~L : T (G�Q)! RI :~L(�� ; ��1; yb; yb1) = L(fa(�� ; yb); dT fa) : (3.2)In this paper we indicate the initial Lagrangian function, motion equa-tions etc., by the adjective "original" and those transformed by coordi-nate substitution of type (2.3) or (2.10) by the adjective "new". Newobjects will be marked by "tilde". We call "motion" the solution of mo-tion equations.It can be easily proven that there are the following relations betweenthe expressions for original and new Euler-Lagrange equations:" � ~S�yb# = @fa@yb � �S�xa �T� (a) ; " � ~S��� # = @fa@�� � �S�xa �T� (b) : (3.3)It follows from regularity of matrix jj@fa=@ybjj that new motions haveto satisfy the original Euler-Lagrange expressions for motion equations,transformed by coordinate substitution T�. Therefore, new motions areconnected with original ones by relations xa = fa(��; yb). Hence so-lutions of new motion equations are obtained modulo arbitrary time-dependent functions ��(t). The set of dynamical variables is dividedinto two subsets: (i) those whose evolution is determined by given initial
ICMP{98{11E 12conditions, and (ii) those whose time development is completely arbi-trary. It immediately follows that new Lagrangian ~L is singular, whereasthe original one L is non-degenerate.New Lagrangian is invariant by TG, i.e. the structure of ~L does notchange under the coordinate transformation (	1)j1c : TG�TQ! TG�TQ, locally given byyb = fb(�� ; zc) ; �
 = '
(��; ��) ;yb1 = dT fb ; �1
 = dT'
 : (3.4)Here �� and ��1 are coordinates of the element j1c 2 TG. By anal-ogy with the scheme developed in ref.[4], an invariance of the theory isachieved by extension of an original con�gurational manifold Q to theCartesian product G�Q, so that group variables are included to the setof independent Lagrangian variables.Let us suppose that the original Lagrangian L : TQ! RI is invariantunder the action T�, i.e. L � T� = L. Such a symmetrical Lagrangianmust be singular. Indeed, the solutions of corresponding Euler-Lagrangeequations (see eq.(3.3a) and eq.(3.3b) where left-hand side is vanished)are obtained modulo arbitrary time-dependent functions ��(t).It is advantageous to study an infrequent case of action TG on Q(see eqs.(2.5) and (2.6)). Any formula which will be deduced below isapplicable (after trivial simpli�cation) for the description of the abovesituation where an action of G on Q, and its lift to an action of TG onTQ, and dynamics originated from TG-invariant Lagrangian functionare considered.For sake of simplisity, we deal with the contact transformation ob-tained from (2.10) by taking the �� ! 0 limits. Since an original La-grangian is lower-derivative, we are interesting in left action �(2;1) :T 2G � TQ 2 TQ. Having carried out it in Lagrangian L, we constructthe higher-derivative Lagrangian function ~L : T 2G� TQ! RI :~L(�� ; ��1; ��2; yb; yb1) = L(fa(�� ; ��1; yb); dT fa) : (3.5)Cartesian product T 2G�TQ is the subbundle of tangent bundle T (TG�Q).Following ref.[2], we write the relations between the expressions fororiginal and new Euler-Lagrange equations in the form" � ~S�yb# = @fa@yb � �S�xa ��(2;1) (a) ;" � ~S��� # = @fa@�� � �S�xa ��(2;1) � dT @fa@��1 � �S�xa ��(2;1) (b) : (3.6)



13 ðÒÅÐÒÉÎÔAs one might exspect, new motions are obtained modulo arbitrary time-dependent functions ��(t) and ��1(t). Let us construct a Hamiltoniansystem (T �(TG�Q); ~!; ~H) due to Ostrogradski-Legendre transformation[13].According to ref.[2], new Ostrogradski generalized momenta^�b = @ ~L@yb1 (a) ; ^��;1 = @ ~L@��2 (b) ;^��;0 = @ ~L@��1 � dT @ ~L@��2 (c) ; (3.7)are linked together by the following relationships:^�b = ^pa @fa@yb (a) ; ^��;1 = ^pa @fa@��1 (b) ;^��;0 = ^pa @fa@�� + @fa@��1 � �S�xa ��(2;1) (c) ; (3.8)where ^pa = @L=@xa1 are original momenta. Following ref.[2], we rewritethe new Poincar�e-Cartan one-form~�L = ^�bdyb + ^��;0d�� + ^��;1d��1 (3.9)as follows ~�L = �L + @fa@��1 � �S�xa ��(2;1) d�� : (3.10)New energy function~EL = ^�byb1 + ^��;0��1 + ^��;1��2 � ~L (3.11)is expressed in similar form~EL = EL + @fa@��1 � �S�xa ��(2;1) ��2 : (3.12)Here �L is Poincar�e-Cartan one-form and EL is the energy function as-sociated with original Lagrangian L (see eqs.(3.1)). All the expressions(3.10), (3.12), and (3.8c) contain the terms which are proportional tothe expressions for original motion equations, transformed by coordinatesubstitution �(2;1). These terms vanish. Therefore, we obtain a presym-plectic dynamical system [14,13,11]. Indeed, new canonical two-form~! = dyb ^ d�b + d�� ^ d��;0 + d��1 ^ d��;1 (3.13)
ICMP{98{11E 14can be written as ~! = dxa ^ dpa, so that original canonical coordinatesare just required by generalized Darboux theorem [11]. On the locallevel we have the set of �rst-class constraints obtained by excluding theoriginal momenta from relations�b = pa@fa@yb (a) ; ��;1 = pa @fa@��1 (b) ; ��;0 = pa @fa@�� (c) ; (3.14)together with Hamiltonian ~H(yb; �b; ��; ��1) which is constructed fromthe original one H(xa; pa) by using of eqs.(2.6) and (3.14a). Not evenhaving a Hamiltonian explicitly, we are sure that constraints which in-clude momenta ��;1 are primary but those which contain momenta ��;0| secondary: �(1)�1 = ��;1 � �c �fca @fa@��1 � 0 (a) ;�(2)�0 = ��;0 � �c �fca @fa@�� � 0 (b) : (3.15)We should only take into consideration the relationship (3.7c) betweenzeroth-order momentum and time-derivative of �rst-order momentumwhich is then nothing but a stationarity condition for primary constraint.The matrix �fca is inverted to the matrix @fa=@yb.It can be easily proven that all Poisson brackets f�(i)�r ;�(j)�kg are iden-tically equal to zero. The canonical transformationxa = fa(yb; ��; ��1) ; pa = �c �fca(yb; ��; ��1) ; (3.16a)��r = ��r ; ��;r = ��;r � �c �fca @fa@��r ; r = 0; 1 ; (3.16b)allows to eliminate the redundant degrees of freedom and leads to thenon-constraint dynamics with the Hamilton function H(xa; pa). It can beobtained from the non-singular original Lagrangian by a simple Legendretransformation. It is evident, that �nal constrained manifold [14,13,11]is the original phase manifold T �Q.The relations (3.16a) de�ne an action of a Lie group TG on T �Q.Corresponding in�nitesimal transformations are generated by the vector�elds Y (1;0)(�0) � = Y b(�0) @@yb � �b @Y b(�0)@yc @@�c ;Y (1;0)(�1) � = Y b(�1) @@yb � �b @Y b(�1)@yc @@�c ; (3.17)



15 ðÒÅÐÒÉÎÔwhich are complete lifts of the vector �elds (2.7) to phase manifold T �Q(see ref.[12]). These generators constitute the basis of Lie subalgebra ofthe set of all vector �elds on T �Q which is homomorphic to Lie(TG).We consider now Lagrangian L : TQ ! RI which is invariant underthe action �(2;1) : T 2G � TQ ! TQ. Since group variables are notcontained in the new Lagrangian ~L, then generalized momenta ^��;1 and^��;0 vanish identically (see eqs.(3.7b) and (3.7c)). Using it in eqs.(3.9){(3.12) and (3.1) we show that energy function, Poincar�e-Cartan one-, and two-forms admit the map �(2;1). For a careful consideration ofsuch a dynamical system we use the results of this Section so far aspresymplectic manifold (T �(TG�Q); ~!) are concerned.Left-hand sides in eqs.(3.14b) and (3.14c) vanish identically. Usageof eqs. (3.14a) allows to exclude the original momenta pa from theirright-hand sides. Obtained expressions�(1)�1 = �c �fca @fa@��1 � 0 ; �(2)�0 = �c �fca @fa@�� � 0 ; (3.18)are the constraints on T �(TG � Q), whereas Hamiltonian H does notcontain the pairs (��i; ��;i) of canonically conjugated group variablesexplicitly. Taking �� ! 0 limits we �nd the constraints on the originalphase manifold T �Q:�(1)(�1) = paY a(�1)(x) � 0 (a) ; �(2)(�0) = paY a(�0)(x) � 0 (b) ; (3.19)(we put ya = xa within that range of accuracy). Taking into accountthe commutation relations for vector �elds (2.7) (more exactly, ensuingproperties of their components Y a(�i)), we compute Poisson brackets offunctions �(1;2)(�i) :f�(1)(�1);�(1)(�1)g = 0 ; f�(2)(�0);�(1)(�1)g = c
���(1)(
1) ;f�(2)(�0);�(2)(�0)g = c
���(2)(
0) : (3.20)As it would be expected, we have �rst class constraint manifold K(Q;!)locally characterized by functions (3.19) which are in K in involutionwith respect to Poisson brackets.Hence, there are two quite di�erent classes of prolonged Lie symmet-rical Lagrangians. Class I appears to be more natural, it consists of thesingular functions which do not depend on group variables explicitly.Class II is entirely novel; here degenerate Lagrangians contain the groupvariables. An example of two-body dynamics which is invariant under
ICMP{98{11E 16the action of the tangent Euclidean group is studied in Appendix A inorder to illustrate the classi�cation.An important point is that we �nd the relations linking togetherthe expressions for Euler-Lagrange equations in both above cases. Theessence of presented scheme is the usage of an invertible contact trans-formation [2] which has the form of change of variables depending onderivatives (see eqs.(2.10) and (3.4)). The structure of such coordinatesubstitution has an in
uence upon the structure of the set of �rst-classconstraints which appear on the Hamiltonian level. In particular, thehighest order of derivatives determines number of the needed steps inDirac-Bergmann scheme to establish all the constraints. So, if we dealwith contact transformation of type (3.4), the primary constraints arearised only. There are the relations of type (3.15b) or (3.19b). In ref.[1] atheorem was proven which establishes the intimately connection betweenan existence of the relations involving Euler-Lagrange equations and aninvariance of corresponding action integral under the action of speci�cgauge transformation. The results derived in this Section are in excellentagreement with this theorem.4. In�nitesimal symmetries and constantsof motionIn this Section we describe two di�erent kinds of the in�nitesimal sym-metries arising from the actions of the tangent groups of a Lie group Gon a manifold Q and its tangent bundle TQ.The vector �eld Y� 2 X (Q), generated by an action of G on Q, is anin�nitesimal symmetry of the Lagrangian L : TQ! RI if the conditionsY c�L = 0(� = 1;R) are satis�ed [12]. Here fundamental vector �eldY c� 2 X (TQ) is a complete lift [11] of Y� to tangent bundle TQ. Thegroup parameters are considered as the constants. On the hypothesisthat the group parameters are time-dependent functions, the total liftof an action of G on Q to the action of TG on TQ is available (seeSection 2). In such a case both the complete lift (2.4a) and the verticallift (2.4b) of vector �eld Y� are the in�nitesimal symmetries of L. Aninvariant Lagrangian function satis�es the following system of �rst-orderdi�erential equations in partial derivatives:Y (1)(�i)L = 0 ; i = 0; 1 ; � = 1;R : (4.1)Following ref.[12], we write the constants of motion�L(Y (1)(�0)) = ^�bY b� ; (4.2)



17 ðÒÅÐÒÉÎÔassociated with vector �elds Y (1)(�0). The others �L(Y (1)(�1)) are trivial.In general, "standard"G�invariant Lagrangian function is not invari-ant by a Lie group TG. Indeed, starting with Lagrangian L : TQ ! RIwhich satis�es in�nitesimal symmetry conditions Y c�L = 0, we arrive atthe new Lagrangian ~L := L � T� de�ned on T (G�Q) :~L(�� ; ��1; yb; yb1) = L(yb; yb1 + !�b (��; yc)��1) : (4.3)The multiplier !�b is equal to �fba@fa=@�� where functions fa(��; yb) de-termine an action � : G�Q ! Q and matrix �fba is inverted to matrix@fa=@yb. Both the Lagrangian (4.3) and the Lagrangian (3.2) are thesame type, so the same scheme of constraint reduction is applicable here.Now we consider the dynamical system based on the Lagrangianwhich is invariant under the transformation (�(2;1))j2a : TQ ! TQdetermined by �xed element j2a 2 T 2G. Vector �elds (2.9) are in�nites-imal symmetries of this Lagrangian. The symmetry conditions have theform of the following system of di�erential equations for the Lagrangianfunction: Y (2;1)(�i) L = 0 ; i = 0; 1; 2 ; � = 1;R : (4.4)Following ref.[12] we write the corresponding constants of the motion:�L(Y (2;1)(�0) ) = ^�bY b(�0) ; �L(Y (2;1)(�1) ) = ^�bY b(�1) : (4.5)The remaining ones, namely �L(Y (2;1)(�2) ), are equal to zero identically.It is interesting to �nd Hamiltonian counterparts of these constants ofthe motion. According to scheme developed in ref.[12] for non-degeneratetheories, we should construct the vector �elds on T �Q being Legendre-related [8] with the in�nitesimal generators Y (2;1)(�0) and Y (2;1)(�1) . Since wedeal with singular Lagrangian, Legendre transformation is not di�eo-morphism and this recipe is not applicable here. We use the vector �elds(3.17) which are generated by an action of a Lie group TG on phase man-ifold T �Q. There are then nothing but the complete lifts [12] of in�nites-imal generators (2.7) to T �Q. With the supposition of these generatorsare Noether symmetries [12] of a Hamiltonian function, we construct theconstants of the motion which are precisely the constraints (3.18).Solving of in�nitesimal symmetry conditions (4.4) can help to �nd aspecial local coordinate system, i.e. coordinate system which allows toseparate explicitly the regular part of theory (where the momenta are, asin standard non-singular theory, independent functions of velocity vari-ables). Prolonged Lie symmetric Lagrangian depends on group invariants
ICMP{98{11E 18Ik, i.e. functions such that Y (1;0)(�i) Ik = 0, and their 1-lifts [11] I1k . Theseinvariants should be choosen as independent variables and inserted intothe set of special local coordinates.An invariance of transformed Lagrangian (3.5) means, that it admitsthe transformations (	(2;1))j2c : T 2G�TQ! T 2G�TQ locally writtenas yb = fb(�� ; ��1; zc) ; �
 = '
(��; ��) ;yb1 = dT fb ; �1
 = dT'
 ; �2
 = d 2T'
 : (4.6)Taking the element j2c with coordinates (�� ; ��1; ��2) in neighborhood ofidentity j2e we obtain an in�nitesimal transformation which is generatedby the vector �elds Z(2;1)(�i) := X(2)(�i) � Y (2;1)(�i) . Putting (1.12) and (2.9) inone-form (3.9), we obtain the following constants of the motion:~�L(Z(2;1)(�0) ) = �^�bY b(�0) + ^��;0L��(�) + ^��;1dTL��(�) ;~�L(Z(2;1)(�1) ) = �^�bY b(�1) + ^��;1L��(�) : (4.7)There is enough evidence to prove the identity ~�L(Z(2;1)(�2) ) = 0.Usage of the in�nitesimal symmetry conditions Z(2;1)(�i) L = 0 permitsto formulate the problem of how to establish the structure of gaugeinvariant Lagrangian as the problem of solving of the system of homoge-neous �rst-order di�erential equations in partial derivatives. So, in ref.[4]the problem of how to construct TG�invariant Lagrangian starting with"standard" G�invariant Lagrangian is redused to the solving of the sys-tem of di�erential equations Z(1)(�i)L = 0; i = 0; 1. Here Z(1)(�i) is equalto X(1)(�i) � Y (1)(�i) where vector �eld X(1)(�i) belongs to the basis of a Liealgebra Lie(TG) at a point j1a = (��; ��1) and in�nitesimal generatorY (1)(�i) is given by eqs.(2.4). Lagrangian satisfying this conditions has thestructure of function (4.3) where �� ! 0 limits are taken. In general,the functions of type (3.2) and (3.5) are the unique solutions of this kindsymmetry conditions.5. Invariant dynamics on a tangent Lie groupLet G be an R-dimensional Lie group and TG its tangent bundle whichis also Lie group. The elements of TG are the sections of this bundle,i.e. the vector �elds on G. To appreciate this statement we consider thecurves at a; b 2 G which are the di�erentiable maps � : RI ! G and



19 ðÒÅÐÒÉÎÔ� : RI ! G with �(0) = a and �(0) = b, respectively. If there existsa coordinate neighborhood (U; g) of a with local coordinates (g�), thencoordinates �� = (g���)(0) and ��1 = (d(g���)=dt)(0) of group elementj10� := j1a de�nes [3] the tangent vector va = ��1(@=@g�)a 2 TaG.Similarly, the group element j1b = (�� ; ��1) where �� = (g� � �)(0)and ��1 = (d(g� � �)=dt)(0) is the vector vb 2 TbG. Tangent groupmultiplication T' : TG� TG! TG de�ned as(��; ��1) � (�� ; ��1) = ('
(�; �); dT'
(�; �)) ; (5.1)maps the vectors va 2 TaG, vb 2 TbG into the vector vab 2 TabG withcomponents dT'
(�; �).Let us suppose that Lagrangian function L : TG! RI is invariant byG. In other words L is invariant under the lifted action '1 : G� TG!TG of G on TG which is de�ned as follows [6,7]:('1)a : TG! TG ; ('1)a = T la ; (5.2)where la : G ! G is the left translation by a 2 G. Locally the tangentmap T la of la is determined by T la(vb) = dla(b)(vb). Di�erential dla(b) :TbG ! TabG of la at b can be written by means of TG-multiplicationlaw: dla(b)(vb) = i1(a) � j1b, where i1(a) := (��; 0) 2 i1(G) � TG andj1b = vb. Zero in expressions of type (��; 0) denotes an R-dimensionalrow here and below in this Section. Using this formula, we rewrite thelocal expression for linear isomorphism TeG! XL(G) as the TG-productof i1(a) on vector � = x�(@=@g�)e belonging to the Lie algebra G := TeG:dla(e)(�) = (��; 0) � (0; x�)= (��; x�L��(a)) : (5.3)Left-invariant vector �eld X� with components L��(a) corresponds to thebasic vector (@=@g�)e = (0; ��
) := �� .In ref.[6] the conveniance of usage the left trivialisation [5]T l : G� G ! TG(a;X) 7! dla(e)(X) (5.4)in examination of mechanics on a Lie group is exhibited (see also [7]). Weinterpret this map as the possibility to write any j1a 2 TG as follows:(��; ��1) = (��; 0) � (0; ��1V �� (a)) ; (5.5)where matrix ^V := kV �� k is inverse to the matrix ^L := kL��k. We denote��1V �� (a) by X�a . Via the identi�cation (��; 0) � (0; X�a ) := (a;Xa) the
ICMP{98{11E 20group structure on TG looks [5] as the semidirect product of G and itsLie algebra G with respect to adjoint representation of G on G:(b;Xb):(a;Xa) = (ba;Ad(a�1)Xb +Xa): (5.6)Here Ad(a�1)Xb = i1(a�1) �Xb � i1(a).Since second factor in product (5.5) does not change under the mul-tiplication on any b 2 i1(G), (left) G�invariant Lagrangian is a di�er-entiable function L 2 �0(G):L = L(��1V �� (�)) : (5.7)This function satis�es the in�nitesimal symmetry conditions Y (1)�0 L = 0where Y (1)�0 is the complete lift of right-invariant vector �eld Y� 2 XR(G).The latter can be written as the product of basic vector �� 2 G oni1(a): Y�(a) = (0; ��
) � (��; 0) (cf.eq.(5.3)). The constant of motion fromY (1)�0 2 XR(i1(G)) is [12]: ^�L(Y (1)�0 ) = ^p�R�� (�) ; (5.8)where ^�L = ^p�d�� is the Poincar�e-Cartan one-form associated with L,^p� = @L=@��1 is momentum, and R�� (�) are the components of thevector Y�(a).Following similar procedure as above, we could also construct right-invariant Lagrangian on TG, i.e. the function L : TG ! RI which isinvariant under the action of G on TG on the right. This action is de�nedby using the tangent map Tra of right translation by a 2 G. Di�erentialdra(b)(vb) is then nothing but the product of j1b on i1(a). The splitting(��; ��1) = (0; ��1W �� (a)) � (��; 0) allows the right trivialisation Tr :G �G! TG, so that tangent group TG is isomorphic to the semidirectproduct G �Ad G (see ref.[5]). Symbols W �� (a) denote the elements ofmatrix ^W which is inverted to the matrix ^R := kR��(a)k. Whence weobtain the explicit expression for right-invariant LagrangianLR = LR(��1W �� (�)) ; (5.9)satisfying the in�nitesimal symmetry conditions X(1)�0 L = 0; � = 1;R.Vector �eld X(1)�0 2 XL(i1(G)) � XL(TG) is the complete lift of X� 2XL(G). Corresponding "right" constants of the motion are:^�L(X(1)�0 ) = ^p�L��(�) : (5.10)



21 ðÒÅÐÒÉÎÔThe left action of a Lie group G on its cotangent bundle T �G isde�ned [6] by using the inverse dual map to the di�erential dla(b) of laat b. Fundamental vector �eld corresponding to �� 2 G is a complete liftof Y� 2 XR(G) to T �G [12]. In local coordinates, we haveY c�� = R�� @@�� � p� @R��@�
 @@p
 ; (5.11)where (��; p�) are the induced coordinates on T �G. We consider theHamiltonian system (T �G;!;H) where ! is the canonical symplecticform on T �G andH is a function on T �G. Having used dual trivialisationT �l : T �G! G� G��a 7! (a; dl�a(e)(�a)) ; (5.12)which determines so-called body coordinates [7], we �nd the left-invariantHamiltonian: H = H(p�L��(�)) : (5.13)All the vector �elds Y c�� 2 X (T �G) are Noether symmetries [12] of thisHamiltonian, i.e. Y c�� H = 0. On the contrary, di�erentiable functionsatisfying these symmetry conditions is de�ned on �0(G�).Following ref.[7], we write the momentum mappingJL : T �G! G��a 7! dr�a(e)(�a) (5.14)for the symplectic left action of G on T �G. Taking into account ref.[8]we obtain its Lagrangian counterpart �JL : T �G ! G� de�ned as �JL =JL � Leg. Here Leg : TG! T �G is the Legendre transformation corre-sponding to the Lagrangian (5.7). Since JL is an Ad�-equivariant map-ping for the action of G on T �G [7], then ^JL : G ! C1(T �G) is a homo-morphism of G to the Lie algebra of functions (namely, Leg�transformedconstants of motion (5.8)) under the Poisson bracket. The reduction the-orem can be applied on the Lagrangian level[8] as well as the Hamiltonianlevel[7]. The dimension of reduced space is equal to R � dimG� whereG� is the isotropy subgroup of G under the co-adjoint action Ad� at theone-form � 2 G� which is the regular value of momentum mapping.We can construct the right-invariant Hamiltonian on T �G in similarcircumstances: if T �r : T �G ! G� � G is the dual (right) trivialisa-tion which determines space coordinates [7], then HR depends on the(Leg�transformed) "left" constants of motion (5.8) whereas the mo-mentum mapping JR : T �G ! G� for the symplectic right action of
ICMP{98{11E 22G on T �G is given by using the di�erential of dual left translation:�a 7! dl�a(e)(�a).It is obvious that does not exist TG�invariant Lagrangian de�nedon tangent bundle TG. We consider (left) TG0�invariant function L :TG ! RI where G0 is R0�dimensional Lie subgroup of a Lie group G.According to Section 3 the set of �rst-class constraints�(1)� = p�Y �� (�) � 0 (5.15)is appeared on the Hamiltonian level (cf.(3.19b)). Here Y �� , �; � = 1;R0,are the components of right-invariant vector �eld Y� 2 XR(G0). There-fore, TG0 � invariant canonical two-form on TG is presymplectic andwe have a presymplectic dynamical system in such a case. Since matrixwith elements Y �� is regular the constraints (5.15) are reduced to trivialform p� � 0. Hence T �G=T �G0 is the �nal constrained manifold.ConclusionsBy "sewing on" a Lie group of an one-dimensional manifold we join thegeometrical theory of jet bundles with the theory of Lie groups. The lan-guage of jets allows to describe the derivative of maps, so we apply thenotion of jet prolongation to the group operations and group elements.The reason is that Lie groups are di�erentiable manifolds in which thegroup operations are smooth. As a result we obtain a tangent Lie groupbeing the jet prolongation of an original Lie group. Obvious general-izations, of course, concern the order of group prolongation as well asthe dimension of a (base) manifold. On the other hand, it is interestingto study those aspects of the theory which explain the inner structureof tangent Lie groups or homomorphisms induced by the canonical jetprojections, for instance, a clear geometric interpretation of the homo-geneous manifolds [10] TG=G and T 2G=G.By using above scheme we de�ne an action of the �rst prolongationof a Lie group on a di�erentiable manifold Q and we lift it to an actionof the second prolongation of this group on tangent bundle TQ. Therequirement of an invariance of Lagrangian function under the action ofprolonged Lie group leads to degeneracy of this Lagrangian. There aretwo types of singular Lagrangians of this kind: (i) these depending on thegroup variables, and (ii) those which do not contain the group variablesexplicitly. On the Hamiltonian level we have gauge constrained theoriesin both above cases. Does it mean, that any dynamical system supple-mented with the �rst-class constraints is connected with a prolonged Lie
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