HarmionanbHa akameMisa HayK Y KpaiHU

IHCTUTYVYT
PIBNKN
KOHIEHCOBAHUX
CUCTEM

4 N

ICMP-98-10E

R. Folk*, Yu. Holovatch

Critical fluctuations in normal-to-superconducting transition

\ /

*Institut fiir Theoretische Physik, Johannes Kepler Universitdt Linz A-4040
Linz, Austria

JIBBIB

VIOK: 530.145
PACS: 05.70.Jk, 64.60.Fr, 74.20-z, 02.30.My

Kpuruusi dimokTyanil y ¢daszoBomy mnepexomi 3 HOpMaJIbHOIO B Hall-
npoBinHuil cran

P. ®ospk, 0. I'onoBaa

Amnorauisa. Mu nocstimxkyemo daszosuil nepexis y Haanposiguuii cran 6epyau
110 yBaru (puriok Tyanii napamMerpa BIOPAIKYBaHHIA Ta BEKTOPHOI'O MArHITHOIO
moJIA 1 00CYIKYEMO MUTAHHS MPO pinx (Pa30BOT0 Mepexonay B Takiit momesti. Mu
3aCTOCOBYEMO TEOPETUKO-IIOJILOBUIl PEHOPMIpyHmoBUil Higxin i po3ryisgaemo
KaJI0pyBaJIbHY MOIEJIb HAAIPOBIIHUKA, y3araJbHeHy Ha BUIAI0K 71/2 KOMIIO-
HEHTHOTO KOMILJIEKCHOTO ITapaMeTpa BHOpAIKYyBaHH:A. [lomepemti peHOpMIpy-
1noBL 0b4YuCIeHHA 13 0e3m0CepenHiM £-PO3KJIAI0OM CTBEPHAKYBAJIN, M0 B TaKii
Mozesti BimbyBaeThesa daz3oBuil mepexin mepuroro poxy. Mu mocainxyemo Bu-
pasu [jisa peHOpMrpymoBuxX (YyHKIIH B TPUBHMIDHOMY IIPOCTOPL B IBOIETIIE-
Bomy nabsmmxkenni. OcobsiuBa yBara IpUAIIAETHCA TOMY, WO BLIIOBLOHI pi-
O¥ MOXYTh OyTH aCHMIOTOTHYHHMHM i MaTu HyJIbOBHil pamiyc 36ixuocTi. Mn
PO3IVIAHAEMO Pi3HI HIIAXU AHAJITHIHOTO IIPOMOBXKEHHA PAIIB 1, 3aCTOCOBYIO-
au [Tane-anasnis i Trexuiky nepecymoByBauus [lane-Bopessa pobumo BucHOBOK
mpo Te, MO B MOMEJIL iCHYE MOKJIHUBICTH (PA30BOr0 TMEPEXOLY APYTOro POLIY
i3 KPUTUYHUMHU HOKA3HUKAMU, BIIMIHHUMY Bl MOKA3HUKIB HAAILJIMHHOL PiIu-
au. Takuili BUCHOBOK y3roIXKy€TbCA 13 pe3ysIbTaTaMi HEIABHIX HOCIILIXKEHb,
BHKOHAHUX 0€3 3aCTOCYBAaHHA TeOpii 30ypeHb.

Critical fluctuations in normal-to-superconducting transition

R. Folk, Yu. Holovatch

Abstract. We study the phase transition to the superconducting state taking
into account the fluctuations of the order parameter and of the vector magnet-
ic field and discuss the question of the order of the transition occuring in this
model. We use the field-theoretical renormalization group approach and con-
sider the gauge model for a superconductor, generalized to a n/2 component
complex order parameter. Previuos renormalization group calculations within
strict e-expansion suggested that in such a model a first-order phase transition
occurs. We examine expressions for the renormalization group functions in a
two-loop approximation in three dimensions. Special attention is being payed
to the fact, that the corresponding series might be asymptotic ones and there-
fore have zero radius of convergence. We review different ways of analytical
continuation of the series and applying Padé analysis and Padé-Borel resum-
mation technique conclude that in the model under consideration still exists
a possibility for the second-order phase transition with critical exponents dif-
fering from those of a superfluid liquid. This is in agreement with conclusions
made very recently in other nonperturbative treatments.
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1. Introduction

Successes achieved in our modern understanding of critical phenomena
due the application [1] of the renormalization group (RG) approach [2]
are by now well known and generally recognized (see e.g. the textbooks
[3-5]). Scale invariance at the critical point and universality of certain
features of critical phenomena found their reflection and explanation
in the frames of RG transformation and led to the theory providing
quantitative description of critical behaviour of different thermodynamic
quantities of interest. In particular, the critical point (in the context of
our lecture we specify it as an equilibrium second order phase transition
point) in the RG ”language” corresponds to the stable fixed point of
the RG transformation, where the system is scale invariant. Asymptotic
properties of the system are governed solely by the coordinate of the
stable fixed point whereas non-asymptotic ones are defined in the regime
of approach to the fixed point. Moreover, sometimes RG approach may
give an answer about the order of phase transition occurring in a certain
model. This is explored by studying the stability of the fixed points
of RG transformation: an absence of a stable fixed point is interpreted
as an evidence of fluctuation-induced first-order phase transition in the
system under consideration. For the models with lack of exact solutions
or rigorous proofs of the existence of second order phase transition (and
this is the case for the majority of realistic models in statistical physics)
RG provides a tool to check the order of transition.

Namely such kind of problem we are going to discuss in this lecture.
It can be formulated as: what is the order of normal-to-superconducting
phase transition? From the theoretical point of view according to Bar-
deen-Cooper-Schriefer theory of superconductivity the normal-to-super-
conducting (NS) phase transition is a classical second order phase tran-
sition described by the Landau-Ginsburg Hamiltonian with the complex
order parameter, corresponding to the wave function of the Cooper pairs.
Taking into account the fluctuations of the order parameter one can find
the values of corresponding critical exponents which in this case will
coincide with the critical exponents of O(n) symmetrical field theoret-
ical model for the case n = 2 (XY model). Consequently this leads to
the answer that NS phase transition is described by the same set of
critical exponents as the phase transition in normal-to-superfluid liquid.
The last have been measured with high accuracy [6] and calculated by
different methods [7-14]. However taking into account, that for the NS
transition the corresponding “superfluid liquid” is charged, essentially
complicates the problem. For the first time this question was considered

ICMP-98-10E 2

by B. I. Halperin, T. C. Lubensky and S. Ma [15] and since then different
ways of tackling it were proposed. We briefly discuss some of them in
the subsequent section.

From the experimental point of view when the question about the
order of phase transition first was discussed for a superconductor it was
more or less an academic question, since due to of the large correlation
length & ~ 10°A only very near the phase transition the first order
character can be seen, otherwise mean field behaviour is to be expected.
This situation changed after the discovery of high-T. superconductors
with correlation lengths within the range of the lattice distances (£, ~
1A) [16]. Here in several experiments critical effects have been observed
[17-24].

Our main result presented in this lecture is that being within the
frames of the RG method applied to the original model of the supercon-
ductor minimally coupled to the gauge field [15] one still can obtain the
answer that in such a model there occurs a second order phase transition
with the critical exponents distinct from those of a superfluid liquid. To
prove this we consider two-loop renormalization group functions for this
model and pay special attention to the fact that the loop expansion is
the asymptotic one [27-29]. In this way we find several fixed points with
new scaling exponents and a rich crossover behavior. Some of our results
were previously published in [30-32].

The setup of this lecture is as follows. In the next section we give a
brief review of the main stages in studying the problem we are interest-
ed in. In section 3 we describe the model of a superconductor, give the
results of its study in the mean field approximation as well as obtain the
expressions for the renormalization group functions in a two loop approx-
imation and describe the results obtained on their basis without applying
any resummation procedure. In the section 4 we discuss several ways of
resummation of asymptotic series which are applied in the modern the-
ory of critical phenomena. We give the examples of their application in
well-established cases as well. Section 5 is central in our account: it is
devoted to a study of the RG functions and of the corresponding flows on
the basis of the resummation technique. Here we obtain the result about
presence of a stable fixed point and, correspondingly, about the evidence
of the second order phase transition in the model under consideration.
In sections 6 - 8 we calculate the asymptotic and effective values for the
critical exponents and give the expressions for the amplitude ratios. The
results are discussed in section 9.
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2. Normal-to-superconducting transition: 1st or
2nd order?

The order of a phase transition may have severe consequences for physical
quantities. So one knows from the first order liquid gas transition phe-
nomena like overheating and undercooling connected with the metasta-
bility at the transition. For the second order phase transition divergen-
cies in physical quantities occur (in the thermodynamic limit of course)
leading to a dramatic increase of the specific heat or scattering of light
(critical opalescence) near the liquid gas critical point.

Similar dramatic changes are connected with the phase transitions
which occurred in the early stage of the universe and the questions dis-
cussed here for the superconductor are also relevant there (for a recent
review see [33]).

As it was mentioned already in the Introduction the question of the
order of the NS phase transition becomes complicated when one accounts
that the fluctuations of the order parameter are coupled to the ”gauge
field” (the vector potential of the fluctuating magnetic field created by
the Cooper pairs) whose fluctuations also diverge at long distances. Since
posed for the first time more than 20 years ago [15] up to now this prob-
lem remains a challenging one in the physics of superconductivity. The
theoretical model of Halperin, Lubensky, and Ma describing the relevant
critical behaviour was the usual O(n) symmetrical ¢* model with the
n/2-component complex field ¢ coupled to a gauge field describing the
fluctuating magnetic field created by Cooper pairs. The answer obtained
in [15] states that because of the coupling to the gauge field in mean field
approximation a third order term appears in the free energy of the su-
perconductor and the NS phase transition is of the first order. The mean
filed analysis is appropriate for the type-I superconductors [34] where
the fluctuations in the order parameter have no significant effect on the
thermodynamics of transition. The case of a type-II superconductors is
more complicated because there the fluctuations can not be neglected.
Studying the problem within Wilson-Fisher recursion relations [35] in
the first order of € it was found [15] that a stable fixed point (necessary,
but not sufficient for a second order phase transition) exists only for the
order parameter components number n > 365.9, exceeding to a great
extent the superconductor case n = 2. The crossover near the first order
phase transition was studied [26] and the expression for the crossover
function of the specific heat was given within one loop order perturba-
tion theory. The kinetics of fluctuations arising from vortex pairs in a
superconductor was studied by means of numerical simulations [36]. The
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result lead to the conclusion about a nucleation process typical for the
first order phase transition, confirmimg the mean field and RG results of
[15]. Note, that the mean field analysis applied to the Ginzburg-Landau
free energy of a superconductor [37] including a Chern-Simons term leads
to quantitatively different behaviour: for different values of the topolog-
ical mass in system occurs either a fluctuation-induced first order phase
transition or only the second-order transition exists. This result is also
confirmed in the frames of one-loop RG calculations [37].

The occurrence of the first order phase transition was found also in
massless scalar electrodynamics [38,39] and confirmed in linear order in
¢ for the n-component Abelian Higgs models by explicit construction of
the coexistence curve and the equation of state [40]. CPY ! non-linear
sigma model, being related to the model of superconductor in the limit
of infinite charge by means of 2 + ¢ expansion was shown [41] to posses
behaviour similar to those, observed in [15] as well.

The results for type-II superconductors obtained in e expansion [15,
26,40] appear to be stable against account of the influence of different
physical factors such as a possibility of another (non-magnetic) ordering,
presence of disorder and crystal anisotropy when the study is performed
by means of strict e-expansion. Scaling behaviour of a superconduct-
ing system with another (non-magnetic) ordering studied in e-expansion
provided one more example of a system where weak first order phase
transition occurs [45]. The analysis of influence of quenched impurities
on the critical behaviour of superconductors with account of magnet-
ic field fluctuations resulted [46,47] in the answer about appearance of
a new stable fixed point for 1 < n < 366. However it was shown [47]
that it describes critical behaviour in the range of space dimensionalities
d.(n) < d < 4 with d.(2) = 3.8 and results in a first order phase transi-
tion. RG flow for the model of superconductor with quenched impurities
was found [48] to exhibit a stable focus surrounded by an unstable limit
cycle. The second order phase transition behaviour was found to show
up inside the limit cycle. Introducing random fields with short and long
range correlations has not lead to a second order behaviour in the re-
gion of (d,n) near (3,2) as well [49]. Note however, that studies of the
influence of quenched and annealed gauge fields on the spontaneous sym-
metry breaking performed in terms of Helmholtz free energy [42] resulted
in an answer that in the first nontrivial, or one-loop approximation in
the annealed model spontaneous symmetry breaking occurs through a
first order transition for d = 2,3 whereas the quenched model displays
a continuous phase transition. A more complicated account of fluctua-
tions in the annealed model changes the nature of the transition to a
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continuous one, whereas spontaneous symmetry breaking is then absent
in the model with quenched disorder [42]. The combined influence of
crystal anisotropy, magnetic fluctuations, and quenched randomness on
the critical behaviour of unconventional superconductors [50] studied by
means of the RG analysis within the e-expansion [51] resulted in the con-
clusion that only fluctuation-induced first order transitions should occur
in unconventional superconductors in the vicinity of the critical point.

However the mean field results where questioned by an already men-
tioned above calculation of Lovesey [42], which showed that taking into
account the gauge field fluctuations in the calculation of free energy leads
back to a second order phase transition. A further indication of a second
order phase transition came several years later when this problem was
studied on the lattice by means of MC calculations and duality argu-
ments [43]. The results confirmed scenarios of the NS transition differing
from those obtained in [15]. Namely, the NS transition was found to
be of the second order asymptotically equivalent to that of a superflu-
id with the reversed temperature axis. Subsequent MC simulations [44]
performed in different regions of couplings lead to the result that the NS
transition is strongly first order deep in the type-I region and becomes
more weakly first order moving in the direction of the type-II region. Be-
yond a certain point the data of [44] suggest a second-order transition.
The corresponding O(n) nonlinear o-model coupled to an Abelian gauge
field studied near two dimensions by 2 + € expansion [53] did not show
a first order phase transition either.

By mapping the model of 3d superconductor on a disorder field theory
it was predicted [58] the existence of a tricritical point where the second
order phase transition changes into a first. The position of tricritical
point was located slightly in the type-I regime at the value of Ginzburg
parameter [34] k < 0.8/v/2. Starting from a dual formulation of the
Landau-Ginzburg theory by means of the RG arguments it was shown
that the critical exponents of the NS transition coincide with those of a
superfluid transition with reversed temperature axis [59]. However, while
the correlation length critical exponent of the normal-to-superconducting
transition was predicted to coincide with the ordinary 3D XY model, the
divergency of the renormalized penetration depth was characterised by
the mean field value v = 1/2 [59].

The influence of the critical fluctuations on the order of NS transition
was reconsidered on the basis of the ideas of field theoretical RG in [30].
Here the two-loop flow equations [30] for the static parameters and the
(-functions [52] were obtained and it was indicated that a stable fixed
point might be possible and, as a consequence, a second order phase
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transition might appear. An attractive feature of the flow found in [30]
was that it discriminated between type-I and type-II superconductors,
depending on the initial (background) values of the couplings. For small
values of the ratio (coupling to the gauge field)/(fourth order coupling)
(appropriate for type-1I superconductors) the flow comes very near to the
fixed point of the uncharged model but ends in the new superconducting
fixed point. For large values of the ratio (type-I superconductors) the
flow runs away. For values of the ratio in between the critical behavior
might be influenced by a second (unstable) superconducting fixed point
with scaling exponents quite different from the uncharged model.

Qualitative similar to [30] flow picture was obtained in [54] by ap-
proximately solving the model of charged superconductor with the help
of nonperturbative flow equations: a method which appeared to give very
encouraging results for critical scalar field theories [55,56]. Depending on
the relative strength of a ratio (coupling to the gauge field)/(fourth or-
der coupling) a first or a second order phase transition was found. The
approximate description of the tricritical behaviour was given as well as
the estimates of the correlation length critical exponent v and the pair
correlation function critical exponent 7 governing a second order phase
transition were reported. Depending on three different assumptions for
the stable fixed point value of the coupling to the gauge field in 2 suc-
cessive truncations of the potential the following values were obtained:
(n,v) = [(-0.13, 0.50); (-0.20, 0.47)], [(-0.13, 0.53); (-0.17, 0.58)], [(-0.13,
0.59); (-0.15, 0.62)], indicating that independent of truncation the criti-
cal exponents belong to the physical region n > 2 — d and v > 0 clearly
pointing towards a second order phase transition.

In the context of baryogenesis the problem of the order of the NS
phase transition was considered in two loop order in [57] and the effective
potential was calculated. The e-expansion was applied to the electroweak
phase transition in order to estimate various parameters of it in leading
and next-to-leading orders in €, including the scalar correlation length,
latent heat, surface tension, free energy difference, bubble nucleation
rate, and baryon nonconservation rate. Of course, the result was a first
order phase transition since only run away flows are found in strict e-
expansion perturbation theory. Note that in the electroweak scenario of
baryogenesis there exist so-called Sakharov requirement which is met
when the transition is strongly of first order rather than second order.

The problem of the NS transition was also studied by means of ana-
lytical method which does not rely on the expansions in € or 1/n. Using
a non-perturbative method of solving approximate Dyson equation for
arbitrary d and n [60] it was found [61] that NS phase transition is gov-




7 IIpenpunT

erned by a ”charged” fixed point. The value of the pair correlation func-
tion critical exponent i at d = 3,n = 2 appeared to be 7(3,2) = —0.38.
It is interesting to note that although the result for  appears to be well
behaved function of d and n it breaks down at critical value n, ~ 18
when expanded in €. From here the conclusion was drawn that the re-
sults of e-expansion obtained in [15] and, in particular, the absence of
stable fixed point solution at n < n. ~ 365.9 are to be interpreted as
the breakdown of the e-expansion rather then the fluctuation-induced
first-order phase transition. On the other hand, near d = 4 the results
of [61] are in a good agreement with the e-expansion data [15] for high
n (n > 366).

Recently the same problem studied by the RG technique in fixed
dimension d = 3 in one-loop approximation showed the evidence of an
attractive charged fixed point distinct from that of a neutral superfluid
leading, in particular, to the correlation length critical exponents values
v ~ 0.53 and n ~ —0.70 [62]. However considered in the form of con-
tinuum dual theory [63] the magnetic penetration depth was shown to
diverge with the XY exponent, contradicting to the results mentioned
above [30,54,61,62]. To investigate this controversy the MC simulations
of the 3D isotropic lattice superconductor in zero external magnetic field
were performed resulting in the conclusion about single diverging length
scale consistent with the universality of the ordinary 3D XY model [65].

Further applications of the model containing coupling to the gauge
field have been suggested in the context of the quantum Hall effect [66].

Let us give a brief account of the experimental data relevant for our
study. As it was mentioned in the Introduction, the effects of thermody-
namic fluctuations are generally small in conventional low-T, supercon-
ductors because of their low transition temperatures and large coherence
length. On contrary, the high transition temperatures and small coher-
ence lengths of high-T,. superconductors lead to the relevance of critical
fluctuations there. Though critical fluctuations in high-7,. superconduc-
tors were observed in a series of experiments ( see e.g. [17-24]) their
interpretation survived some changes. Deviations from the mean field
(i.e. first order) behaviour were accounted for either by 3d Gaussian
fluctuations (providing, in particular, values for the specific heat critical
exponent a and the correlation length critical exponent v: @ = v = 1/2)
[17,19] or by a nontrivial XY behaviour characterizing uncharged su-
perfluid (with v ~ 2/3 and logarithmic divergencies in «) [18,20,22,24].
Measurements of the heat capacity [22,24], magnetization and electrical
conductivity [22] of single-crystal samples of ¥ BasCusOr_, in a mag-
netic fields near T, supported the existence of a critical regime governed

ICMP-98-10E 8

by the XY-like critical exponents [18,20,22,24,25], a similar conclusion
followed from a crossover analysis of the zero-field heat capacity on a
comparable sample [21]. However, the maximum applied magnetic field
for which the 3D XY scaling holds is different for different materials [67].

To conclude this brief review it is worth mentioning one more physi-
cal interpretation of a charged field coupled to a gauge vector potential.
Namely it is the nematic-smectic-A transition in liquid crystals [68-73].
Here the nematic phase is an orientationally ordered but translationally
disordered phase with rodlike molecules aligned with their long axes par-
allel to the director and the smectic-A phase contains layers of molecules
with their long axes perpendicular to the layer. It has been proposed
[68,69] that this transition is described by a model similar to those de-
scribing the NS transition in the charged case [15]: now the smectic order
parameter (being a complex field ¥(r) that specifies the amplitude and
phase of the density modulation induced by layering) is coupled to the
director fluctuations. On contrary to the NS type transition, the nematic-
smectic A transition is characterized by the critical region of the exper-
imentally accessible range. Indeed for certain materials it was shown
[72] that both the latent heat data obtained through adiabatic scanning
calorimetry as well as independent interface velocity measurements can
be fit near the Landau tricritical point by a crossover function consistent
with a mean field free energy density that has a cubic term [15], imply-
ing that the nematic-smectic-A transition is weakly first order. However
many liquid crystals appear to exhibit a continuous nematic-smectic-A
transition (see [73] and references therein). High-resolution heat-capacity
and x-ray studies of the nematic-smectic-A transition performed during
past twenty years (see [73] for a comprehensive review) show complex
systematic trends to crossover from three-dimensional XY to tricritical
behaviour and the anisotropic behaviour arise due to coupling between
the smectic order parameter and director fluctuations.

3. The model and its ”naive” analysis

As is well known now the influence of the order parameter fluctuations on
the NS transition can be described by the Landau-Ginsburg free energy
functional:

Flol = [ @310 + 3Vl + S2honl') 1)
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to being temperature-dependent, ug is a coupling constant and the com-
plex order parameter ¢g is connected with the wave function of Coop-
er pairs. The Cooper pairs are charged and therefore create fluctuat-
ing magnetic field which leads to the appearance of additional terms in
the free energy functional. Note that it is not the case for a normal-to-
superfluid transition in neutral (uncharged) fluid, which is well described
by (1) without any modifications. Describing the fluctuating magnetic
field B by the vector potential A (B = rotA) and adding to (1) the
minimal coupling between the fluctuating vector potential and the order
parameter one gets the free energy functional F[¥, A] originally consid-
ered in [15] for a generalized superconductor in d dimensions with the
d-dimensional vector potential A and the order parameter ¥ consisting
of n/2 complex components. Now one can describe the fluctuation effects
by an Abelian Higgs model with the gauge invariant Hamiltonian [15]:

t 1 .
H = /ddm{50|‘~1/0|2+§|(V—ieoA0)\P0|Z+%|\I/O|4+
1
5 (V x Ag)?), )

depending on the bare parameters tg, eg, ug. The parameter ¢, changes
its sign at some temperature, the rest of the parameters being considered
as temperature-independent. For the coupling constant ey = 0 no mag-
netic fluctuations are induced and the model reduces to the usual field
theory (1) describing a second-order phase transition and corresponding
in the particular case n = 2 to the superfluid transition in *He.

The mean field results for the critical behaviour of the model with a
free energy functional F[¥, A] which corresponds to the Hamiltonian (2)
were reported already in the original paper of Halperin, Lubensky and
Ma [15]. In the frames of the mean field theory one gets that the systems
characterized by the free energy functionals F[¢] (1) and F[¥, A] (n = 2)
possess qualitatively different critical behaviour. Neglecting fluctuations
in the order parameter (in accordance with the Ginzburg criterion this
may be done for a good type-I superconductor) one gets that depending
on the sign of ¢y the free energy (1) is minimized by the value of the
order parameter ¢ = 0 for tg > 0 or by a non-zero value, when ty < 0,
and the appearance of the non-zero order parameter is continuous: in the
system under consideration the second order phase transition occurs.

However, being applied to the free energy functional F[¥,A] the
mean field theory predicts qualitatively different behaviour. Defining the
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effective free energy Fog[¥] as a function of single variable ¥ by taking
the trace over the configurations of the vector potential A one finds [15]
that the expression for F[¥] will contain a term which has a negative
sign and is proportional to |¥|3. Such a term inevitably leads to a first
order transition, Fug[¥] develops a minimum at a finite value of ¥ when
the coefficient of the quadratic term is still slightly positive.

As we already mentioned, the above reasoning is appropriate for a
type-I superconductor. The case of type-II superconductors is consider-
ably more complicated. Here, the fluctuations in ¥ cannot be neglect-
ed and one should choose appropriate technique to study the problem.
Originally the critical behaviour of the model (2) at presence of order
parameter fluctuations was studied in [15] by means of Wilson-Fisher
recursion relations [35] in the first order of € = 4 — d, resulting, in partic-
ular, in the answer that the second order phase transition is absent for
n = 2 in the region of couplings appropriate for the type-II supercon-
ductor either. Below we will reproduce these results of the e-expansion
and proceed further in studying the problem.

In order to describe long-distance properties of model (2) arising in
the vicinity of the phase transition point we apply field-theoretical RG
approach. Two-loop results [30] for the RG functions corresponding to
(2) are obtained on the basis of dimensional regularization and minimal
subtraction scheme [74], defining the renormalized quantities so as to
subtract all poles at € = 4—d = 0 from the renormalized vertex functions.
The renormalized fields, mass and couplings are introduced by:

o= 27370, Ag=Z2 A, ty—toe = ZiZy M,
et =2r7175" e PSSt uo = ZuZg ups St (3)

with e = 4 — d. Here p is an external momentum scale, to. being a shift,
which for the results considered here can be set to zero, and Sy stands
for the surface of d-dimensional hypersphere: Sy = 2'~97=%/2/T'(d/2).
The Z-factors are determined by the condition that all poles at ¢ = 0
are removed from the renormalized vertex functions.

The RG equations are written noticing the fact that the bare vertex
functions F(I)V M being calculate with the bare Hamiltonian (2) as a sum
of one-particle irreducible (1PI) diagrams [75]:

LM}, {RY) =< Wo(r1) ... Wo(rn)Ao(Ry) ... Ag(Rar) >1p1 (4)

do not depend on the scale p and their derivative with respect to u at
fixed bare parameters is equal to zero. So one gets
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0 _N.M 0 _N/2 ,M/2N,M
s mzu@zJZJrR|mm, (5)

where the index 0 means differentiation at fixed bare parameters. The
following RG equations for the renormalized vertex function I‘g’M follow

0] 0 0] 0 N
(Ma +ﬂu% +ﬂf§ +Cuta -5 -

S TR b, o) =0, (©

where f = €%, {, = (¢ — (; and the RG functions read

Ou of

ﬁu(ua ) = Mab; ﬂf(u,f) = Mab;
Oln Z olnZ O0lnZ
Co=p guwb; CA:,U%M; G =p anutlo- (7)

Using the method of characteristics the solution of the RG equation may
be formally written in the form:

Fg7M(t= u, f: ,u) =
XN X' )MPTR M (v (1)t u(l), £(1), 1), (8)

where the characteristics are the solutions of the ordinary differential
equations:

LX) = o ul), F0), 1 I X0) = Calu@), FD).

d
LY () =6 ), f(0),  (9)

L) = fulul®), FO), 1 F) = @, F0)  (10)
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with
XH=x')=YM) =1, uwl)=u  fAQ)=f (11)

For small values of [ equation (8) is mapping the large scales of length
(the critical region) to the noncritical point I = 1. In this limit the scale-
dependent values of the couplings u(l), f(I) approach the stable fixed
point, if it exists.

The fixed points u*, f* of differential equations (10) are given by the
solutions of the system of equations:

By, f*) = 0,
Buu”, f) = 0. (12)

The stable fixed point is defined as the fixed point where the stability
matrix

Bij a 8uj ’

possess positive eigenvalues (or the eigenvalues with positive real parts,
if complex). The stable fixed point corresponds to the critical point of
the system: as we mentioned above, in the limit [ — 0 (corresponding to
the limit of infinite correlation length) the renormalized couplings reach
their values in the stable fixed point.

Now we write down the results for the RG functions obtained in a
two-loop approximation [30] following the above described procedure in
frames of dimensional regularization and minimal subtractions schemes.
From a Ward identity one has Zg = Z,, and the remaining Z-factors are
to be found from the corresponding vertex functions I'>?, I'%2_ and I'*:°.
Since the gauge field is massless, the renormalization has been performed
at finite wave vector. The results in two-loop order read:

Zy = 1+ %{38 —u?(n +2)/144 + €*[(n + 18) /4e — (14)
(11n + 18)/48]},
Zn = 1+ %{—ne2/6 —ne*/2}, (15)
Zy = 1+ %{(n +2)u/6 + u’[(n +2)(n + 5)/36e —
(n +2)/24] + ue*[—(n +2)(1/2e — 1/3)] +
e*[(3n +6)/2e + (5n + 1)/4]}, (16)
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Z, = 1+ %{(n + 8)u/6 + 18¢* /u + u*[(n + 8)?/36e —
(51 + 22)/36] + ue?[—(n + 8)/2c + (n + 5)/3] +
e*[(3n +24) /e + (5n + 13) /2] +
e /u[3(n + 18)/e — Tn/2 — 45]}. (17)

Following the standard procedure one obtains that the expressions
for B-functions in two-loop approximation read:

By = —ef + S f2+nf’, (18)
14
[3u:—5u+n-6|_8u2—3n1-; u — 6uf + 182
2 1 71 174 .
+ ";r Ou2f 4 ”;; wf? = (Tn +90) f2. (19)

The previous analysis of the equations of type (18), (19) either on one-
loop [15] or on two-loop level [30] was based on the direct solutions of
the equation for the fixed point. In the present study we want to attract
attention to the fact that the series have zero radius of convergence and
they are known to be asymptotic at best. Therefore some additional
mathematical methods have to be applied in order to obtain reliable
information on their basis.

We start by recalling the results of a e2-expansion for S-functions
[15,30]. In second order in € one obtains three fixed points: the Gaus-
sian (u*¢ = f*¢ = 0), the “Uncharged” (u*Y # 0, f*Y = 0) and the
“Charged” (u*¢ # 0, f*¢ # 0), to be denoted as G, U, C. The expres-
sions for them read:

G: uw¢ =0, f*“=o, (20)
U: w¥=dlet+dle? V=0, (21)
C: w’=ufe+ufe?, f°=fle+ f§e, (22)
where
6 v _ 18(3n+ 14)

nts 2 (n+8)3
uC — 3(n + 36) + (n? — 360n — 2160)*/2
! 3n(n + 8) ’
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with
n+8 36
3 U? - ;7

3 3 4
3n + 14 6 6
=1 (uf) — 6nué (H) + 36n (ﬁ)

_(n+5)4 <ug>3 _3(Mn+17) o <§>3(7n +90).

1
n n?

a1:1+

Almost all physical results concerning phase transition described by
the field theory (2) were to some extend based on the information given
by (20) - (22). The main of them read:

(i) fixed point U is unstable with respect to the presence of f-sym-
metry at d < 4 with the stability exponent

_ 96

Apfu=uwV, f=fvV=0)= 37 lv = —¢;

(ii) fixed point C appears to be complex for n < n. = 365.9 [15] already
on one-loop level. The stability exponent is given by

0By |
ou '¢

Mo(u =™, f =) =

and on the two-loop level it reads:

2
432 8
I s:KH@) _ 432 +8)
n n

1/2

leading to an oscillatory flow in u in one-loop order below n, with
the solution [26,30]:

6f1—°

=53 nef(l—: — 1)’ (23)
u(l) = f(z)ﬁ{stan gln (f(l)f1l5>
+ arctan (2(2;— 8) % + n 2836> I 236}; (24)
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here f and u are the initial parameters at [ = 1;

(iii) from the condition of positiveness of the fixed point coordinate f*
(f = €?) follows that at ¢ = 1 n has to be larger that 36. This
questions the applicability of the e-expansion for n =2 to d = 3.

Finally the conclusion follows that for the “superconductor” case
n = 2 being of most physical interest there does not exist a stable fixed
point and therefore the observed phase transition is of the first order.

In what follows below we will study the RG equations in minimal
subtraction scheme in the frames of d = 3 theory [11-13] puttinge = 1 in
expressions for the RG functions and studying the perturbation theory in
powers of coupling constants. The last correspond to the number of loops
in Feynman diagrams and thus one develops the perturbation theory in
succesive number of loops. Direct calculations based on the equations
(18), (19) at fixed d = 3 do not bring qualitativly new features to the
described above analysis. In the one-loop approximation, leaving square
terms in (18), (19) one finds that there exists only one nontrivial fixed
point u* = 6/(n +8), f* = 0. The g-functions B, (u, f), B¢(u, f) in one-
loop approximation at d = 3, n = 2 are shown in the Fig. 1. Simultaneous
intersection of the surfaces corresponding to both functions with the
plane 8 = 0 results in the fixed points: these for the n = 2 case have
coordinates u* = f* = 0 and u* = 0.6, f* = 0 are seen at the picture.
In the two-loop approximation only the Gaussian fixed point survives,
as one may see from the Fig. 2.

Nevertheless one should note that such a straightforward interpreta-
tion of the above expansions data was questioned and a way of analyzing
the series for S-functions (18),(19) avoiding strict e-expansion and ex-
ploiting the information on the accurate solution for the pure model case
at d = 3 was proposed [30]. Also from the comparison of e-expansion da-
ta for f* (giving positive value of f* only for n > 36) with the value
of f* obtained without e-expansion (remaining positive for all n) the
conjecture was made that the lower boundary for n resulting in the neg-
ative f* might be an artifact of the expansion procedure. Let us consider
now expressions for the RG functions more carefully, paying attention
to their possible asymptotic nature and treating them by some resum-
mation procedure.

4. Resummation

The appropriate resummation technique applied in the theory of crit-
ical phenomena to the asymptotic series for the RG functions enables
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one to obtain extremely accurate values of the critical exponents [76].
In fact the asymptotic nature of the series for the RG functions has
been proved only in the case of the ¢* model containing one coupling of
O(n)-symmetry (n-vector model) as well as the high-order asymptotics
for these series is known [27-29] in analytical form. These results gave
the possibility to obtain precise values of the critical exponents for the
n-vector model by the resummation of the corresponding series for the
renormalization group functions (see e.g. [7,8,11]). For the “charged”
model we are considering here up to our knowledge no information sim-
ilar to those obtained in [27-29] for the “uncharged” case (f = 0) is
available. In the case of the models containing several couplings of dif-
ferent symmetry the asymptotic nature of the corresponding series for
the RG functions is rather a general belief than a proven fact. As one of
the examples important in the course of our future analysis we mention
here the weakly diluted n-vector model, describing a ferromagnetic or-
dering in a system of Ny classical n-component “spins” located in N sites
of a lattice (N;/N < 1) and quenched in a certain configuration. Using
the replica trick in order to perform the quenched averaging one gets
[82] that an effective Hamiltonian of such a model contains two fourth
order terms of different symmetry and reads:

2
13 . . v [N -
H = /ddw{§ > [IV6° 2 + m3lén ] - < (Z |¢5"I2> +
a=1 a=1
Uo i - 2
a2 (16°7) }, (25)
a=1
were ¢ is a n-component vector ¢ = (¢™1, ™2, ... ¢™™); ug > 0,vp >

0 are bare coupling constants; mg is bare mass and in the final results a
replica limit 7 — 0 is to be taken. The RG functions for these model are
obtained in the form of double series in renormalized couplings w, v and
the asymptotic nature of the series has not been proven for this model
up till now [84]. Nevertheless the appropriate resummation technique
(applied as if these series are the asymptotic ones) enables one to obtain
accurate values for critical exponents in three dimensions [77-81] and
to describe (in n = 1 case) the experimentally observed crossover to
a new type of critical behavior caused by weak dilution [85,86]. These
results are also confirmed by Monte-Carlo [87,88] and Monte-Carlo RG
[89] calculations.
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Two main ways of resummation commonly used for the asymptotic
series arising in the RG approach are: (i) resummation based on the con-
formal mapping technique and (ii) Padé-Borel resummation. The case
(i) is based on the conformal transformation, which maps a part of the
domain of analyticity containing the real positive axis onto a circle cen-
tered at the origin and the asymptotic expansion for a certain function
is thus re-written in the form of a new series (see [8]). However this re-
summation is based on the knowledge of subtle details of asymptotics
(location of the pole, high-order behavior) which are not available in our
case.

In the absence of any knowledge about the singularities of the series
the most appropriate method which can be used to perform the ana-
lytical continuation is the Padé approximation resulting in Padé-Borel
resummation technique (ii) (see e.g. [7]). In the following we are going
to apply it for the special case of f = 0 so let us concentrate on it in
detail.

Starting from the Taylor series for the function f(u):

W=3¢; (26)

Jj=0
one constructs the Borel-Leroy transform
F(u —__ (ut)’ 27
9=ty O o

with I'(z) being Euler’s gamma-function and p - arbitrary positive num-
ber [90]. Then one represents (27) in the form of Padé approximant
FPade ( )
[L/M] . ‘
.l
Fe () = 2 O (28)
[L/M] S b

(in the subsequent analysis, proceeding in two-loop approximation we
will use the [1/1] Padé approximant) and the resummed function is given
by:

FRes(u) = /0 Tt et 1 BP0y, (29)

The scheme of resummation (27) — (29) of the (asymptotic) series in
one variable (26) is easy generalized to the two-variable case when the

series is given in a form:
v) = g cij u' v, (30)

J:320
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with the Borel-Leroy transform

Ci,j Iy
,t) E ————— (ut)"(vt)’. 31

Now the procedure postulates to choose an appropriate form of the ana-
lytic continuation of the series (31). Two most common ways to proceed
are the Borel resummation combined with Chisholm approximants and
the Borel resummation of the resolvent series, presented in a form of
Padé approximant. In the first way in order to write an analytic con-
tinuation of the series (31) one uses the rational approximants of two
variables: so-called Canterbury approximants or generalized Chisholm
approximants [91,93] which are generalization of Padé approximants in
the case of several variables, representing (31) in a form:

> @i jutvitt

FChisholm t
(U v, ) Zz] b”u i i+’

(32)

(sums in the numerator and denominator being limited by the condition
of correspondence between known numbers of terms in the initial series
and that in the approximant). Again, the resummed function is given by
an integral (29):

fRes(u,v) = / dt et P FChiSh"lm(ut). (33)
0

Proceeding in a second way, one writes for the series of two variables (30)
the so-called resolvent series F(u,v,7) [92,93] introducing an auxiliary
variable 7, which allows to separate contributions from different orders
of the perturbation theory in the variables u, v:

Flu,v,7) = Z cij (ur)’ (vr)?, (34)
0,j>0
f(u,v) = ‘7-—(“77)77—:1)'

Now the resummation of the series F(u, v, ) is performed with respect
to variable 7 as for the series in single variable, applying the above
described scheme (27) — (29).

Let us illustrate how the resummation procedure works in the case of
the effective Hamiltonian (25). In order to allow for a direct comparison
with the superconductor case, let us take the (-functions obtained for
the model (25) in the minimal subtraction scheme in the two-loop ap-
proximation, though the high-order results are available for this model
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[81,95] as well as the results [77-80] obtained in the d = 3 massive field
theoretic approach [94]. The expressions for the g-functions, correspond-
ing to the renormalized couplings u, v in the replica limit m — 0 for the
Ising model case (n=1) read:

1 2 41 .
Bu = —cu+ Zu2 — 6uv — 1—;u3 + ;u% - Euvz, (35)
. 1 5, 21
By = —ev+uv+ —4v?— %uzv + Euvz - 71)3. (36)

We do not present here the expressions for the other RG functions, as
far as for the purpose we are interested here we are going only to study
the fixed point equations.

Looking for the solutions of the fixed point equations for functions
(35), (36) one gets that in the one-loop approximation in addition to
the Gaussian fixed point u* = v* = 0 there exist two solutions more
u* =2/3,v* =0and u* =0, v* = —1/5 and the solution u* # 0, v* # 0
is absent [96]. Fixed point with v* < 0 is out of the region of parameters
describing the diluted magnet [97] and the pure model fixed point u* #
0,v* = 0 appears to be unstable with respect to the v-coupling (we
propose to the reader to do this check looking on the stability matrix
Bij(u,v) (13) eigenvalues at the fixed points). Corresponding plot of the
functions By, B, in the one-loop approximation is shown in the figure 3.
Passing to the two-loop approximation makes the result even worse: only
the Gaussian fixed point is present (see Fig. 4). Returning back to the
initial problem statement one should conclude that the obtained picture
corresponds to the absence of a second order phase transition in a d = 3
Ising model with weak dilution as well as without dilution (absence of
a fixed point u* # 0, v* = 0). Which contradicts of course to the real
situation. Let us note as well that the obtained behaviour for the -
functions of model (25) in the one- and two-loop approximations (Figs.
3, 4) resembles those for the superconductor case in the corresponding
approximations (Figs. 1, 2).

However, applying the resummation procedure to the series (35), (36)
in the two loop approximation one reconstitutes fixed points (u* #
0,v* = 0), (u* = 0,v* # 0) and obtains a new stable fixed point
u* # 0, v* # 0 which governs a second order phase transition in a weak-
ly diluted Ising model. The obtained picture appears to be stable with
respect to successive account of the higher order terms in perturbation
theory, when the appropriate resummation technique is being applied. As
we already claimed above, this RG results are confirmed by different oth-
er theoretical approaches and correspond to the experimentally observed
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second order phase transition in the weakly diluted Ising magnet with
critical exponents differing from those of the pure case. In the Fig. 5 we
show the crossing of the 8, (u,v) and 8, (u, v) surfaces for the resummed
function. The calculations were performed by means of the Padé-Borel
resummation technique for the resolvent series (34) of two-loop functions
(35), (36) as described above [98]. The Gaussian (v* = v* = 0) and pure
(u* = 1.3146, v* = 0) fixed points can be seen at the back side of the
cube. The cross-section of u and v plains in the picture is chosen to pass
through the stable fixed point (u* = 1.6330, v* = 0.0835) corresponding
to a new critical behaviour.

The example we considered above is a typical situation happening in
a d = 3 RG theory: being considered without appropriate resummation
technique, RG analysis might give not only quantitatively not precise
numbers for a critical exponents but also a qualitatively wrong answer
about absence of a stable fixed point for a certain model, resulting in
absence of a second order phase transition. Now with this information in
hand let us pass to the analysis of a model of superconductor described
in the two-loop approximation by the RG functions (35), (36).

5. Fixed points and flows in three dimensions

We will proceed here by considering the flow equations (10) directly at
d = 3. Let us look for the solutions of the fixed point equations at d = 3
paying attention to the possible asymptotic nature of the correspond-
ing series (18),(19). Consider first the equation for the uncharged fixed
point U. Substituting value f* = 0 into (19) one obtains the following
expression for the function Y = B, (u, f* = 0):

n+8 , I+l

BY = —u+ 5 U 13 (37)

Solving this polynomial for the fixed point one obtains for the non-trivial
u* > 0:
U n+8  v/n?—20n-—104
u

“3ny1d 3n + 14 (38)

and immediately the “condition of the existence of non-trivial solution
u*Y” qualitatively very similar to those, appearing in the frames of the e-
expansion technique (see [15,30] and formula (21) of the present article as
well) follows : the solution exists only for certain values of n > n, = 24.3
! From Fig. 6 one can see that the function 3Y (37) does not intersect
the u-axis at any non-zero value of u for n = 2. In the O(n)-symmetric
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¢*-theory at d = 3 this situation is well-known (see e.g. [94,99]): the
[B-function calculated directly at d = 3 does not possess a stable zero for
the realistic values of n, nevertheless in three-loop order the presence of
the stable fixed point is restored. To avoid this artifact appearing in the
two-loop calculation one can either resume the series for S-function or
construct the appropriate Padé approximant [100] in order to perform
the analytical continuation of (37) out of the domain of convergence
(which is equal to zero for the series in the right-hand side of (37). Let us
try both ways. Representing (37) in the form of [1/1] Padé approximant:

-1+ A,u

U,Padé _
b T+ B (39)
one obtains:
n? +Tn+ 22 3n+14

Av=—F——=— v = oo 40
6(n + 8) 2(n +8) (40)

and, solving the equation for the fixed point:
BU-Padé (xP.Padéy _ (41)

one obtains: 6 <
y*UPadé _ (n+8) (42)

n? +7Tn+22°

So we obtained a qualitatively different situation. The behavior of the
function BY-¥'e4¢(y) for n = 2 is shown in Fig. 6 by the dashed curve. If
one is interested in more accurate values of u* some resummation has to
be applied. Choosing the Padé-Borel resummation technique [101] and
following scheme (26)-(29) one obtains for the resummed function gY-#¢s
[98]:

BUT —ul21- A/BIA-B(0) - 1, (@)

the coefficients A,, B, are given by (40), E(z) = ze®Ei(x) , where
the function

o0
Ei(z) = e ® / dte™t(x + )™
0
is connected with the exponential integral by the relation [102]:
Ei(x £1i0) = —Ei(—x) Fin.

The behavior of the function 3Y:f¢%(u) is shown in Fig. 6 by the solid
curve. And the fixed point coordinate u*Y-%¢% is obtained solving the

non-linear equation:
/65,Res(u*U,Res) =0. (44)
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The coordinates of the fixed point u*V obtained on the basis of Padé ap-
proximation and Padé-Borel resummation (u*V-Fadé  o*U.Res) for dif-
ferent n are given in Table 1.

We conclude from this analysis: in d = 3 theory Padé approximants
(as an analytical continuation of g-functions) qualitatively may change
the picture and lead to the values of fixed points comparable to those
obtained by the Padé-Borel resummation technique.

Consider now the equation for the charged fixed point C' applying
the above considerations to 3; for which the expression at d = 3 reads
(18):

By =—f+5f+nf’. (45)
The behavior of 87 as a function of f is shown in Fig. 7 by asterisks. Note
however that in this case the function 8y even without any resummation

possess a non-trivial zero f*M (its value f*©>P%" is given in the 2nd row
of Table 2). Representing (45) in the form of [1/1] Padé approximant:

-1+ Aff

gyt =f 1+B,f (46)
one has for Ay, By:
Ap = "236, B; = 6, (47)
and, solving the equation for the fixed point coordinate f*¢-Fadé.
Padé( pxC.Padéy _ (48)
one obtains: ’ 6
FrOPadé _ — (49)

The function 3*4(f) is shown in Fig. 7 by the dashed line, the coordi-
nate f*©F%% ig given in the 3rd row of Table 2. But now the series (45)
is not alternating and this results in the presence of a pole (at f = %) in
the approximant (46). Therefore (46) correctly represents the function
B7(f) only for f < 1/6. Let us note however that for all the positive
n a fixed point exists and its coordinate f*M-Fed¢ lies within the limits
0 < f*¢Padé < 1/6, where no pole in (46) exists. Comparing this result
with those obtained for the uncharged fixed point one can note that the
representation of 3y in the form of the Padé approximant does not quali-
tatively change the picture (a solution for B (f) = 0 exists at d = 3 even
without an analytical continuation) but results in a decrease of the fixed
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point coordinate. Contrary to the e-expansion values (22) there does not
exist any border line values of n for the positivity of f*©. Unfortunately
we can not check this result by means of Padé-Borel resummation tech-
nique: the above mentioned presence of a pole in the denominator of the
Padé approximant makes the corresponding integral representation prob-
lematic [103]. In order to find the u-coordinate of the fixed point C, u*“,
we have to deal with a function of two variables, 8, (u, f), represented
by a rather short series (19). Another problem arises due to the fact that
function By (u, f) contains generating terms (i.e. SBy(u = 0, f) # 0). In
order to perform some kind of the analytic continuation of the function of
two variables one can use the Chisholm approximants (32) [91,93]. But
the presence of generating terms makes this choice rather ambiguous.
The most reliable way in such a case is the representation of 3, (u, f) in
the form of a resolvent series B(u, f,7) (34) [92,93] introducing an aux-
iliary variable 7, which allows to separate contributions from different
orders of the perturbation theory in the coupling constants. The series
for B(u, f,7) then reads:

B(u, f,7) = Bulur, f1) = Z b; T, (50)

i>0

with obvious notations for the coefficients b;. Now one considers (50) as
a series in the single variable 7. This series can be represented in the
form of Padé approximant BP24¢(u, f,7) as the analytical continuation
of the function B(u, f, 7) for the general value of 7. In particular at 7 = 1
the equality holds B(u, f,7 = 1) = 8,(u, f) and the approximant

B, for = 1) = B )

represents the initial function (,(u, f). In our case the expression for
B(u, f,7) reads:

B(u, f,7) = 7(by + ba7 + b37?), (51)
where:
by = —u, by = nzj_8u2 — 6uf+ 18f2,
14 2 1 1 174
by = —n i1 s 210 n, TN o o f o0y (52)

12 3 12
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Representing the expression in brackets in the right-hand side of (51) in
form of a [1/1] Padé approximant we have:

; 1+ A, 7
BPade — u,f
(U, f7 T) T bl 1+ Bu7f7—7 (53)
where b b b
Ayr=-—=2—2 By;=—. 4
of bl b27 f b2 (5 )

Let us note here that the function B(u, f,t) obtained in this way as
the approximant for the function of two variables (3, (u, f) obeys certain
projection properties in the single-variable case: substituting f = 0 or
u = 0 into (53) one obtains the [1/1] Padé approximant for Y (u) or
the [0/1] Padé approximant for 8, (u = 0, f). Finally the expression for
Bu(u, f) approximated in such a way reads:

].+Au,f

Padé —
ﬂu (U’af)_ bl]."‘BuJ

(55)

Substituting into the equation for the fixed point B, (u*¢, f*¢) = 0 the
value for the coordinate f*¢ = f*¢-Fadé (49) one obtains the non-linear
equation for u*¢Fadeé;

ﬂ{jadé(uyf — f*C,Padé) =0. (56)
Solving (56) with respect to u one obtains the values u*“ 2% given in
Table 3. The intersection of the function 352%(u, f) (55) with the plane
f = fr@Pedé ig shown for n = 2 in Fig. 8. The first fixed point (C1)
given in the 2nd row of Table 3 turns out to be unstable, while the fixed
point C2 is stable also for the case n = 2 we are mainly interested in.

The resulting picture of 3-functions surfaces is shown in the Fig. 9 .
The Gaussian and uncharged fixed points may be seen at the back side
of the picture, whereas the intersection of the u- and f-planes was chosen
in the picture to cross the stable fixed point C2. Unstable fixed point C1
is seen as well.

The crossover to the asymptotic critical behavior is described by
the solutions of the flow equations (10) with the initial values of u(¢p)
and f(ly) at £ = £y [104]. Substituting for the f-functions entering the
right-hand side of (10) their analytical continuation in form of the Padé
approximants (46), (55) we get the following system of differential equa-
tions:
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df —14+Asf

A R (57)
du _ 1+ Au,f

Ya T T“T¥ By (58)

where Ay, By and A, ¢, B, s are given by (47) and (54) correspondingly.
Solving equations (57), (58) numerically one gets the flow diagram
shown in Fig. 10 for the case of n = 2. The space of couplings is divided
into several parts by separatrices (thick lines in Fig. 10) connecting the
fixed points. Besides the Gaussian (G) there exist three fixed points,
one corresponding to the uncharged (U) and two other corresponding to
the charged (C1, C2) cases. The fixed points G, C1 and U are unstable
(solid circles in Fig. 10) and the fixed point C2 is the stable one (shown
as a solid box in Fig. 10). Several different flow lines are shown in Fig.
10. They can be compared with the corresponding flow picture obtained
by a direct solution of the flow equations for the two-loop g-functions
expressed by the third-order polynomials in couplings u, f (18), (19) (see
Fig.2a in [30]). There one can see that no stable fixed point existed and
even the fixed point U was absent. Comparing Fig. 10 and Fig. 2b from
[30] one can see how an analytical continuation of the g-functions (10),
(18), done only partly in [30] and performed here in the form of Padé
approximants restores the presence of the fixed point U (unstable) and
leads to the appearance of a new stable fixed point C2 for the charged
model. The coordinates of the fixed points U, C1, C2 are given in the
corresponding rows of Tables 1, 2, 3 and for n = 2 they are equal to:

U :u* =1.500, f* =0,
Cl:u* =0.181, f* = 0.158,
C2:u* = 2457, f* = 0.158.

6. Critical exponents

The values of critical exponents can be determined by the fixed point
values of the (-functions defined on the basis of renormalizing Z-factors
(15) - (17) by:

G = pdln Z;/0p, (59)
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where the derivative is taken at fixed unrenormalized couplings. The
expressions for the (-functions related to the order parameter and the
temperature field renormalization in two-loop approximation read [30]:

(n+2) , (lln+18)

G = s+ e s (60)
 —(+2) (+2)
G = 6 Yt W
2(n;—2)uf_ (5n2+1)f2, (61)
(4 = %f+nf2. (62)

If there exists a stable fixed point, the critical exponent v of the correla-
tion length, the critical exponent « of the order parameter susceptibility
and the critical exponent a of the specific heat are given by:

v = 2-¢)7, (63)
v o= 2= e-g), (64)
a = 2-¢) -2, (65)
n o= G (66)

here ¢, = (4 — ;- The exponents (63) - (66) are related by the familiar
scaling laws. From the analysis given above it follows that the charged
fixed point C2 is the stable one and this results in the values for expo-
nents (63)—(65) different from the values of the uncharged fixed point U,
i.e. they are not given by the *He values as it is sometimes stated (see
e.g. [16,59,25]).

Recently an interesting consequence of the existence of a stable char-
ged fixed point (C2) has been observed [62]. According to the renormal-
ization of the charge (3) the B¢-function reads

By =1 (e = Calf,u)) (67)

Thus at a fixed point with f* nonzero the value of the gauge field (-
function is exactly given by ¢ = €. That means that the penetration
depth A and the correlation length ¢ are proportional and the temper-
ature dependence follows a power law with the exponent v [62]. At the
fixed point with f* = 0 this is not the case, there we have (; = 0 (each
loop contribution to the (4-function contains at least one f-factor). Then
the penetration depth behaves as A ~ & ** and one would have two dif-
ferent critical length scales.
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Trying to obtain the numerical values of the critical exponents on
the basis of the values of fixed point C2 coordinates f*C-Fadé 4*C2,Padé
given in Tables 1, 2 in order to be self-consistent let us perform the same
type of analytical continuation for the series for (-functions, as those,
which have been applied to the g-functions (18), (19). So, introducing
the auxiliary variable 7 let us represent functions (63) - (65) in the form of
resolvent series in 7 and then we will chose the [1/1] Padé approximants
for these series, which at 7 = 1 will give us the analytical continuation of
the series requested. Obtained in such a way expression for the critical
exponent ¢ (¢ = {v,v,a)} reads:

_ 0 1+
o=a g (68)
The expressions for the coefficients A4, By in (68) read:
Ap=dl) + By By=—a/al, (69)
and af;) are to be determined from the resolvent series in 7:
o= ay) 7'l (70)
i>0
Substituting (60) and (61) into (63) - (65) and representing (63) - (65)
in the form of (70) one finds:
a” =1/2,
M = (n+2)/12u—3/2 f,
a? = (n? —n —6)/144 u® + (7T1n + 138)/48 2 +
(n+2)/12 uf, (71)
a(WO) =1,
agl) = (n+2)/12 u,
a(f) = (n®—2n—8)/144 u*> + (5n +1)/4 f* +
5(n+2)/24 uf, (72)
a® =1

)
a) = —3(n+2)/12u + 9/2 f,
) = (=3n%+ 3n + 18)/144 u? — (71n + 138)/16 f* —
(n+2)/4 uf. (73)
Now considering the case n = 2 and substituting coordinates of the fixed

point C2 (f*¢-Fadé = 158) y*“2Fadé = 9 457 (see Tables 1, 2) into (71)
- (73) one obtains for the critical exponents (63) - (66) [105]:
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v=0386, =188, (74)
a=-114, n=-0.19.

The application of the Padé approximants for the analytical contin-
uation of the functions may result in the appearance of poles in these
functions. If the pole is located in the region of expansion parameters
which is unphysical (e.g. negative coupling u or f) this does not compli-
cate the analysis. This was the case for the g-functions in the region of
couplings less than the fixed point values. For the (-functions however
considering the non-asymptotic behavior (and thus being far from the
stable fixed point) one passes through a region of couplings where the
Padé approximation for the (-functions becomes ambiguous resulting in
the appearance of a pole. Therefore studying the crossover behavior in
the next subsection we will still keep the polynomial representation for
(-functions instead of the Padé approximants. Then for the asymptotic
values of critical exponents one gets:

v =077, v=162, (75)
a=-031, n=-0.10.

Comparing the values (75) and (76) show a numerical difference of 15% in
v and 7 and a considerable increase of a. However there is no qualitative
change (e.g. the sign of the specific heat exponent remains the same).
This should be compared with the values, given by other authors: v =
0.53 and n = —0.70 [62] and n = —0.38 [61].

Since for the conventional superconductors the experimentally acces-
sible regime lies in the precritical region further away from T, let us
discuss here several non-asymptotic quantities such as effective expo-
nents and amplitude ratios.

7. Amplitude ratio for the specific heat

One of the most interesting measurable quantity is the specific heat.
Asymptotically near a second order phase transition it follows a power
law

Ai
Cg: = 7|t|_a + const. (76)
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where + indicates the specific heat C' and its non universal amplitude A
above and below T,. The amplitude ratio AT /A~ found from the ratio
CT(t%)o/C~(t7)o after subtracting the non singular background value
constitutes at 7. a universal quantity depending only on dimension and
the number of components of the order parameter.

The calculation of this ratio can be extended to the non asymptotic
region [106,107] resulting in a temperature dependent measurable quan-
tity, which also tests the description of non asymptotic behavior by a
certain flow in the interaction space of the Hamiltonians, as it was dis-
cussed for the effective exponents. The starting point in the calculation
is the renormalization group equation for the specific heat C'*

9 9 9 N e -

p=°B(u, f) (77)

where the inhomogeneity B comes from the additive renormalization.
The formal solution reads

!
C’i(t,u,f7 W) = p S exp l—/l (e — 2§nu($)d§]

{Fi(l) [ Yswen |- [(€ 20w Y] } (79)

The amplitude ratio is most easily calculated by choosing the same value
of flow parameter above and below T, which means for the temperatures
tt = —2¢~ [108]. We then recover the asymptotic expression found in
[107]

At B aBl/+F+a

T~ Y BiFa (79)

where the functions B and F* are taken at the fixed point. We use
for this functions the lowest order result known from the ¥* theory
neglecting the coupling to the gauge field; B = 2n, FT™ = —n and F~ =
12/u* — 4. Then we have for n = 2
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At 2U—a
£ _9a
A- 2v — 20 + 6ar/u* (80)

In the Table 4 we collect the values obtained at the different fixed points.
It is interesting to note the reasonable estimate for this ratio presented
in [109] for the superfluid phase transition. The authors found a value
of A¥/A~ = 1.067, which is surprisingly near the value obtained in
the stable charged fixed point using both calculation schemes although
the exponents are very different. However we did not take into account
changes in the scaling functions due to the coupling f.

In the comparison with experiments [18] the amplitude ratio of the
Gaussian n-vector model without coupling to the gauge field AT /A~ =
n/2%/? has been used since the dimension of the order parameter was
unclear. Later on this expression for the amplitude ratio was calculated
for other than isotropic symmetry. This leads to a dependence of the
ratio on the higher order couplings [110].

8. Effective exponents

Effective exponents are usually defined by the logarithmic temperature
derivatives of the corresponding correlation functions (see e.g. [26,111]).
These can be found from the solutions of the renormalization group
equation for the renormalized vertex functions. These effective exponents
contain two contributions, one from the corresponding (-functions now
taken at the values of u(€), f(¢) of the flow curve considered (“exponent
part”), and one from the change of the corresponding scaling function
(“amplitude part”). For the analysis we give below we neglect the last
contributions since we expect them to be smaller than the differences
for the fixed point values of the exponents coming from the different
treatments discussed before. Thus we have:

v = 2-60)7 (81)
7= @-G0)R-G0) (82)
a = 2-G0)"E-260). (83)

The flow parameter £ can be related to the relative temperature distance
T. by the matching condition #(¢£) = (&, *¢)?, with & the amplitude of
the correlation length.

We have computed these effective exponents, see Fig. 11 - Fig. 13,
along the flow lines shown in Fig. 10 by inserting [112] values of the
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couplings u(f) and f(¢) into Eqs. (81)-(83). For the separatrix 1 we
started with initial conditions leading to a flow, which did not stick in
the fixed point C1 but slightly missed it although the flow curve did
not differ from the separatrix within the thickness of the lines shown
in Fig. 10. For the curve number 4 we started somewhat further away
from the Gaussian fixed point G leading to the initial values of the
effective exponents between their Gaussian values and their values for the
uncharged fixed point U. Note that the values of the effective exponent
v for the uncharged fixed point U and the charged fixed point C1 are
the same within the accuracy given by the scale of the figure.

Note that when coupling f to the gauge field fluctuations is small (i.e.
for extreme type-II superconductors) the RG flow pass very close to the
uncharged fixed point U and the effective exponents, within some region
of temperatures, coincide with those of the uncharged superfluid liquid.
In this region the effective Hamiltonian (2) may be considered as that
of a superconductor in a constant magnetic field neglecting magnetic
field fluctuations. Recently for such a model it was shown that near
the zero-field critical point the singular part of the free energy scales
as Fying ~ [t|*7F(B|t|~?")with v being the coherence length exponent
[113].

9. Conclusions

Does the above account give the definite conclusion about the order
of a phase transition occurring in a model of superconductor minimally
coupled to the gauge field? First of all one should keep in mind that such
kind of answer may be given in the frames of the analytic theory only by
obtaining exact result or a rigorous proof. Here, the problem was treated
by the perturbation theory approach and the account of the influence of
fluctuations on the order of phase transition was studied within the field
theoretical RG technique. We show that remaining inside this approach
one may get an answer about the second order phase transition occurring
in the above mentioned model.

The main point which is discussed in this context is whether the
equations for S-functions possess a stable fixed point or not. The ab-
sence of the stable fixed point is often interpreted as a change of the
order of phase transition (caused by the presence of the magnetic field
fluctuations) and evidence of the fluctuation-induced first-order phase
transition. However this change of the order of the phase transition (be-
ing of the second-order in the absence of the coupling to the gauge) is
confirmed only by perturbation theory calculations in low orders ([15],
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see [30] and the references therein as well).

Applying a simple Padé analysis to the series under discussion [114]
we have shown how one can recover a stable fixed point in the RG equa-
tions. In the case of one coupling such an approach gives a qualitatively
correct picture of the phase transition and restores the presence of a
stable fixed point ([94], see formulas (38), (42) of this article as well).
The same situation happens here in the case of two couplings: at n = 2
the “uncharged” fixed point U (having coordinates f*U-Fedé — 158
uw*U:Padé — 9 457) appears to be stable, which leads to a new set of
critical exponents. However we note however that the pair correlation
function critical exponent 7 calculated by familiar scaling relations on
the basis of sets of values (75) or (76) remains negative, which agrees
with the result of [61,62,54]. Being calculated only in a two-loop ap-
proximation with the application of Padé analysis, these values for the
critical exponents are to be considered as preliminary ones. The main
point we claim here is that within the framework of the renormalization
group analysis for the superconductor model there still exists the possi-
bility of a second-order phase transition characterized by a set of critical
exponents differing from those of *He.

Another important task could be to calculate the nonasymptotic spe-
cific heat in order to compare with experiments within the region of
crossover to the background.
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n 1 2 3 4 5 6 7 8

w*¥Pedé 1800 1.500 1.269 1.091 0.951 0.840 0.750 0.676

wURes 1315 1.142 1.002 0.888 0.794 0.717 0.652 0.597

Table 1. Fixed point U coordinate u*V as a function of n. u*U-Fadé;

obtained on the basis of [1/1] Padé approximant; u*Y>f¢%; obtained by
Padé-Borel resummation.

n 1 2 3 4 5 6 7 8

frOPir 0,920 0.629 0.500 0.424 0.372 0.333 0.304 0.280
fr&raedé o162 0.158 0.154 0.150 0.146 0.143 0.140 0.136

o= 6.000 3.000  2.000 1.500 1.200 1.000 0.857 0.750

f"o’62 -210.000 -51.000 -22.000 -12.000 -7.440 -5.000 -3.551 -2.625

Table 2. Fixed point C coordinate f*¢ as a function of n. f*“Pi: ob-
tained by direct solution of the equation for fixed point; f*@ ¢ ob-
tained on the basis of [1/1] - Padé approximant; f*¢**: e-expansion result
with the linear accuracy in €; f O e-expansion result with the square
accuracy in €.

n 1 2 3 4 5 6 7 8

C1 0.184 0.181 0.179 0.177 0.175 0.175 0.176 0.179

C2 3.309 2.457 1.781 1.150 0.473 0.369 0.305 0.256

Table 3. Fixed point C coordinates u*“>F24¢ obtained on the basis of

[1/1] Padé approximant for the “resolvent” series as a function of n. C1
: unstable fixed point; C2 : stable fixed point.
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FP. AT/A~ « v u

U 1.81 -0.33 0.72 1.500

C2 1.07 -1.14 0.86 2.457

U 0.78 0.15 0.62 1.500

C2 1.06 -0.31 0.77 2.457

Table 4. Asymptotic values for the specific heat amplitude ratio
at various fixed points. The exponents in the first two lines corre-
spond to the procedure leading to (75). The third and the fourth
lines correspond to the procedure leading to (76).
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Super conductor. 1-Loop approximation
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Figure 1. B-functions of the model of superconductor B, (u, f), B¢(u, f)
in one-loop approximation for d = 3, n = 2. The fixed points have
coordinates (u* = f* =0), (u* = 0.6, f* =0).
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Super conduct or. 2-Loop approxi mation Diluted Ising. 1-Loop approximation
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Figure 2. B-functions of the model of superconductor 3y (u, f), B (u, f) Figure 3. S-functions of the diluted Ising model 3,(u,v), B,(u,v) in
in two-loop approximation for d = 3, n = 2. Only the Gaussian fixed one-loop approximation for d = 3. The fixed points have coordinates
point u* = f* = 0 survives. (u* =v* =0), (u* =0.667, v* =0).
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Diluted |Ising. 2-Loop approxi mation, Pade-Borel resunmation

Diluted |Ising. 2-Loop approxi mation
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Figure 5. S-functions of the diluted Ising model By(u,v), By(u,v) in

Figure 4. S-functions of the diluted Ising model 8, (u,v), B, (u,v) in two- two-loop approximation for d = 3 obtained by applying Padé-Borel re-
loop approximation for d = 3. Only the Gaussian fixed point u* = v* =0 summation technique. Resummations restores the presence of the fixed
survives. point u* # 0, v* = 0 and results in the appearance of a new stable fixed

point u* # 0, v* # 0.
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Figure 6. 3,-function of the uncharged model 8¢ at d = 3, n = 2.

ICMP-98-10E

46

0.500

0.300

0.100

-0.100

-0.300

-0.500

By

sk Non-resummed function

"~ [1/1] Padé-approximant

Figure 7. 8;-function at d = 3,n = 2.
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Super conductor. 2-Loop approxination, resolvent series
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Figure 8. Intersection of the function 8 (u, f) at d = 3, n = 2 with

the plain f = f*C-Pad¢ i two-loop approximation. Figure 9. B-functions of the model of superconductor B, (u, f), B¢(u, f)

in two-loop approximation for d = 3, n = 2 obtained by Padé analysis for
the resolvent series. The stable ”charged” fixed point C2 with coordinates
u* = 2457, f* = 0.158 as well as the unstable fixed point C1 u* =
0.181, f* = 0.158 are seen on the front side of the cube. Gaussian (u* =
f* =0) and ”uncharged” (u* = 1.500, f* = 0) fixed points are located
on the back side of the cube.
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Figure 10. Flow lines for the case n = 2, d = 3 given by equations (57),
(58). Fixed points G, U, C1 are unstable, fixed point C2 (shown by a
box) is a stable one (for further description see text).
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Figure 11. Effective exponent v for the flows shown in Fig.10 (for further
description see text).
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Figure 12. Effective exponent -y for the flows shown in Fig.10 (for further
description see text).
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Figure 13. Effective exponent « for the flows shown in Fig.10 (for further
description see text).




Ipenpunrn Incruryry disuku konnencoBanux cucrem HAH Ykpainu
PO3IOBCIOKYIOTHCS Cepell HAyKoBuX Ta indopmatiitiux ycranos. Bonn
TAKOXK HOCTYIIHI IO eJIeKTPOHHI#T KoM toTepHilh mepexi Ha WWW-cep-
Bepi iHcTHTYTY 32 agpecoro http://www.icmp.lviv.ua/

The preprints of the Institute for Condensed Matter Physics of the Na-
tional Academy of Sciences of Ukraine are distributed to scientific and
informational institutions. They also are available by computer network
from Institute’s WWW server (http://www.icmp.lviv.ua/)

Peitnrapn ®@ostbk
IOpiit I'osoBau

KPUTUYHI OJIIOKTYALIIT Y ®A30BOMY IIEPEXO/I 3 HOPMAJIBHOI'O B
HAJITPOBIAHUII CTAH

Pobory orpumano 3 xBitaa 1998 p.

Barsepmxkeno 10 apyky Buenoio panoio IOKC HAH Ykpaiau

PexomvennoBano mo IpyKy ceMiHApOM BIIJILITYy CTATUCTUIHOI T€Opii
KOHJIEHCOBAHOTO CTAHY

Burorossieno npu IOKC HAH Yxkpainu
© Vci npaBa 3acrepexeni



