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1 ðÒÅÐÒÉÎÔIntroductionStudy of the critical behaviour of the Ising model has several attractions.On the one hand, the Ising-like models are simple enough, which is of aspecial advantage in the statistical physics. On the other hand, in spiteof their simplicity, such models show rich and interesting behaviour atthe critical point. Also, the existence of the exact solution for the two-dimensional Ising model often makes it an object for verifying di�erentapproximation schemes. All the stated above yielded the high interestdevoted to the problem. In particular a great deal of generalization of themodel appeared. Among di�erent ways of generalization, much attentionhas been devoted to the a�ect of the impurities on the critical behaviourof the Ising-like models as well as to the investigation of critical regimesof the models on the lattices of a non-integer dimension (d). There havebeen devised di�erent realizations of the last stated generalization. Forexample, one can approach the concept of non-integer dimensionalityeither by explicit construction of the non-integer dimensional object,which leads to the concept of a fractal [1], or by formal carrying out ananalytic continuation of the function, which by de�nition depends on anatural value of dimension.Within the theory of critical phenomena the latter ambiguity wasreected in examining the critical behaviour of the many-particle systemson fractal [2,3] or on abstract hypercubic lattices of the non-integer (d).There arosed a question whether a model on a fractal lattice (being scaleinvariant) possesses universality as well as a system on a hypercubiclattice (having translation invariance). The problem has been widelystudied but still remains open [4{7]. Today's point of view states thatthe usual demand for "strong universality" (in sense of critical propertiesdepending only on symmetry of the order parameter, interaction rangeand space dimension) seems not to be obeyed by fractal lattice systems,and for them the concept of universality itself should be revised [8,9].However, some kinds of spin systems on fractal lattices may interpolatehypercubic lattices results [10].Speaking about the study of Ising-like models on analytically con-tinued hypercubic lattices of non-integer d, one should note a greatvariety of theoretical approaches devised for these problems. These in-clude: the Wilson-Fisher �-expansion [11] improved by the summationmethod [12]; Kadano� lower-bound renormalization applied to some spe-cial non-integer dimensions [13]; high-temperature expansion improvedby a variation technique [14]; �nite-size scaling method applied to nu-merical transfer-matrices data [15,16]; new perturbation theory based on
ICMP{98{9E 2the physical branch of the solution of the renormalization group equation[17{20]; �xed dimension renormalization group technique [21,22] applieddirectly to arbitrary non-integer d [23,24].Perhaps the �rst paper devoted to the study of the Ising model in dif-ferent, however not non-integer dimension, was [25] where non-universalproperties of the model were discussed.All these approaches, as well as the computer simulations, con�rmthe correctness of the universality hypothesis also for non-integer d hy-percubic lattices and allow to obtain the critical exponents as functionsof d with high accuracy.Returning to the study of the critical behaviour at integer d, oneshould note that the problem becomes more complicated when studyingspin systems with a structural disorder. Whereas the case of the an-nealed disorder is of less interest from the point of view of determiningasymptotical values of critical exponents [26], the weak quenched dis-order has been a subject of intensive study. Here the Harris criterion [28]has been devised. It states that if the heat capacity exponent �pure ofa pure model is negative, that is the heat capacity has no divergence atthe critical point, impurities do not a�ect the critical behaviour of themodel in the sense that critical exponents remain unchanged under dilu-tion. Only in the case �pure > 0, the critical behaviour of the disorderedmodel is governed by a new set of critical exponents. As far as for a 3dm-vector spin model only the 3d Ising model (m = 1) is characterizedby �pure > 0, it is the Ising model which is of special interest. And be-cause of the triviality of the annealed disorder in the sense mentionedabove, the most interesting object for study is just the quenched Isingmodel. The appearance of a set of new critical exponents for that modelat d = 3 is con�rmed by the experiments [29{31], renormalization group(RG) calculations [32{41], Monte-Carlo (MC) [42{46] and MCRG [47]simulations.The situation is not so simple for the 2d Ising model. Onsager exactsolution of the pure model proves the logarithmic divergence of heat ca-pacity, which yields �pure = 0, and allows one, in accordance with theHarris criterion, to clasify this case as a marginal one. Most of the theo-retical works suggest that the 2d Ising model with a quenched disorderhas the same critical behaviour as the 2d pure Ising model (except forlogarithmic corrections) [48{53,39,40] (see also review [54]). This resultis corroborated by MC-simulations on two-dimensional lattices [55{59]and experiments [60,61].Deviations from the expected critical exponents, which sometimes areobserved during such computations, are explained by a system being not



3 ðÒÅÐÒÉÎÔin the asymptotic region (see [59] for recent study). Nevertheless, someauthors assert that for the 2d Ising model with a quenched disorder anew critical behaviour appears [62,63]While the undiluted Ising model at non-integer d was a subject ofintensive study [11{20], it is not the case for the diluted Ising model.Only the work [36] can be mentioned here, where the model was studiedwithin the Golner-Riedel scaling �eld [64] approach. It is worthwhileto note that the "-expansion technique applied to this model, due tothe fact that RG-equations appear to be degenerated on the one looplevel, results in p"-expansion for the critical exponents [34]. The latter isknown up to the three-loop order [65,66]. The equations of the massive�eld theory at �xed integer d [21,22] �rst applied to the diluted Isingmodel at d = 2; 3 in [35,37] were found to be the most e�ective methodfor investigating this problem. In order to consider an arbitrary non-integer d the Parisi approach [21,22] was generalized in [67] where criticalbehaviour of the model was studied in a two-loop approximation. Theaim of the present work, based on the massive �eld theoretical approach,is to make a more detailed investigation of the critical behaviour of thediluted O(m)-vector model at arbitrary d. Though it is the case m = 1in which we are interested most of all, we consider the RG-equations forany m, which also allow us to study the crossover in the model at any d.We will obtain the RG-equations within the 3-loop approximation andapply to their analysis di�erent resummation procedures in order to �ndthe most reliable one.The set-up of the article is as follows. In the next Section we intro-duce the model and the notation. Then we describe the RG-procedureadopted here and give the series for the RG-functions of the weakly di-luted quenched m-vector model in the three-loop approximation. Beingasymptotic, these series are to be resummed. This is done in Section 2where di�erent ways of resummation are used. Section 3 concludes ourstudy giving results for the quantitative characteristics of the criticalbehaviour and discussing them. In the Conclusions we give some generalcomments to the present work. In the Appendix we list some lengthyexpressions for the coe�cients of the RG-functions in the three-loop ap-proximation.1. The Model and the RG - procedureAs it is well known, the critical behaviour of the quenched weakly-dilutedm - vector model is governed by a Lagrangian with two coupling con-
ICMP{98{9E 4stants [34]:L(�) = Z ddRn12 nX�=1 hjr~��j2 +m20j~��j2i+v04!  nX�=1 j~��j2!2 + u04! nX�=1�j~��j2�2 o; (1)in replica limit n! 0. Here any ~�� is a m-component vector~�� = (��;1; ��;2; : : : ; ��;m); u0 > 0; v0 < 0 are bare coupling constants;m0 is bare mass.As it was already stated above, we adopt here the massive �eld theoryrenormalization scheme [21,22] in order to extract the critical behaviourgoverned by (1). We start from the de�ned by (1) unrenormalized one-particle irreducible vertex functions�(L;N)(q1; ::; qL; p1; ::; pN ;m0; u0; v0; �0; d) (2)depending on the wave vectors fqg; fpg, bare parameters m0; u0; v0 andthe ultraviolet momentum cuto� �0. The vertex functions' dependenceon the space dimension d is explicitly noted here as well. We imposethe renormalization conditions at zero external momenta and non-zeromass (see [68,69] for instance) at the limit �0 !1 for the renormalizedfunctions [70] �(0;2)R ;�(0;4)R;u ;�(0;4)R;v ;�(1;2)R :�(0;2)R (p;�p;m;u; v; d)jp=0 = m2; (3)ddp2�(0;2)R (p;�p;m;u; v; d)jp=0 = 1; (4)�(0;4)R;u (fpig;m;u; v; d)jfpig=0 = m4�du; (5)�(0;4)R;v (fpig;m;u; v; d)jfpig=0 = m4�dv; (6)�(1;2)R;u (q; p;�p;m;u; v; d)jq=p=0 = 1; (7)with m;u; v being the renormalized massm = Z3m1 = Z3�(0;2)(0;m0; u0; v0)and couplings u = md�4Z23Z�11;uu0; v = md�4Z23Z�11;vv0. From these con-ditions there follow expansions for the renormalized constants for �eld(Z3), vertices u (Z1;u), v (Z1;v) and �2 insertion (Z2). Subsequently, these



5 ðÒÅÐÒÉÎÔde�ne the coe�cients �;  entering the corresponding Callan-Symanzikequation: �u(u; v) = @u@ lnm ju0;v0 ; (8)�v(u; v) = @v@ lnm ju0;v0 ; (9)� � 3 = @Z3@ lnm ju0;v0 ; (10)��2 � 2 = � @Z2@ lnm ju0;v0 : (11)In the stable �xed point fu�; v�g to be de�ned by simultaneous zeroof both �-functions: �u(u�; v�) = 0;�v(u�; v�) = 0; (12)the �-function gives the critical exponent � of the pair correlation func-tion: �(u�; v�) = �: (13)The correlation length critical exponent � is de�ned in the stable�xed point by: ��2(u�; v�) = 2� ��1 � �(u�; v�): (14)Using familiar scaling relations, one can easily calculate any othercritical exponents on the base of � and �.Applying the described above procedure, one obtains in the three-loop approximation [71] �- and -functions in the form [72]:�u(u; v) = �(4� d)un1� u� 12mn+ 8v + 8(m+ 8)2 �h(5m+ 22)(i1 � 12) + (m+ 2)i2iu2 +96(m+ 8)(mn+ 8)h(m+ 5)(i1 � 12) +m+ 26 i2iuv + 24(mn+ 8)2 h(mn+ 14)(i1 � 12) +mn+ 23 i2iv2 + �(3LA)u + : : :o (15)�v(u; v) = �(4� d)vn1� v � 2(m+ 2)m+ 8 u+ 8(mn+ 8)2 � (16)
ICMP{98{9E 6h(5mn+ 22)(i1 � 12) + (mn+ 2)i2iv2 +96(m+ 2)(m+ 8)(mn+ 8)hi1 � 12 + i26 iuv +24(m+ 2)(m+ 8)2 hi1 � 12 + i23 iu2 + �(3LA)v + : : :o�(u; v) = �2(4� d)nh2(m+ 2)(m+ 8)2 u2 + 4(m+ 2)(m+ 8)(mn+ 8)uv +2(mn+ 2)(mn+ 8)2 v2ii2 + (3LA)� + : : :o (17)��2(u; v) = (4� d)nm+ 2m+ 8u+ mn+ 2mn+ 8v �12h m+ 2(m+ 8)2u2 + 2(m+ 2)(m+ 8)(mn+ 8)uv +mn+ 2(mn+ 8)2 v2i(i1 � 12) + �(3LA)�2 + : : :oHere d is the space dimension, m is the order parameter componentnumber, n is the replica index, i1 and i2 are dimensionally dependenttwo-loop integrals. The corresponding coe�cients for three-loop parts arelisted in the Appendix. The values for the three-loop integrals i3 : : : i8which appear in three-loop coe�cients for integer d = 2; 3 are listed in[73]. In particular, substituting loop integrals i1; i2 as well as i3; : : : ; i8in (15)-(18) by their values at d = 3 we get at n = 0;m = 1 the cor-responding functions of the 3d weakly diluted Ising model, which inthe 3-loop approximation were obtained in [35]. At d = 3, m;n- arbi-trary corresponding expressions coincide with those, obtained for the 3danisotropic mn-vector model in [74]. Our idea is to keep the dimensionaldependence of the loop integrals and, being based on their numericalvalues for arbitrary d [24], to study the O(mn)-model at arbitrary (non-integer) d as well. But for the reason explained above, the point of maininterest here will be the replica limit n = 0 of the anisotropic mn-vectormodel, especially the case m = 1.Expressions for �- and -functions will be the starting point for thequalitative study of the main features of the critical behaviour whichwill be done in the next section.



7 ðÒÅÐÒÉÎÔ2. The ResummationAs we have already mentioned, the values of the -functions in a �xedpoint (u�; v�) lead to the values of the critical exponents � and �. Howev-er, it is well known now that the series forRG-functions are of asymptoticnature [75{77] and imply the corresponding resummation procedure toextract reliable data on their basis. Let us note, however, that as to ourknowledge the asymptotic nature of the series for RG-functions havebeen proved only for the case of the model with one coupling [78], andthe application of a resummation procedure to the case of several cou-pling constants is based rather on general belief than on a proved fact.One of the resummation procedures, which in di�erent modi�cations ismost commonly used in the studies of asymptotic series, is known asthe integral Borel transformation [79]. However, this technique impliesexplicit knowledge of the general term of a series and thus cannot beapplied here, where only truncated sums of the series are known. To getover this obstacle one represents the so-called Borel-Leroy image of theinitial sum in the form of a rational approximant and in such a way re-constitutes the general term of the series. The technique which involves arational approximation and the Borel transformation together, is knownas the Pad�e-Borel resummation technique (in the �eld-theoretical RGcontent see [81,82] as an example of its application).Note here that the resummation technique, based on the conformalmapping, which is widely used in the theory of critical phenomena [83],cannot be applied in our case because its application postulates infor-mation on the high order behaviour of the series for �- and -functions.The latter is still unknown for the theory with the Lagrangian (1).To summarize up the stated let us write that the Pad�e-Borel resum-mation is performed as follows:� constructing the Borel-Leroy image of the initial sum S of n terms:S = nXi=0 aixi ) nXi=0 ai(xt)i�(i+ p+ 1) ; (18)where �(x) is the Euler's gamma function and p is an arbitrary non-negative number. The special cases p = 0 and p = 1 correspondto resumming �-functions without or with prefactors u and v inaccordance with the structure of the functions (15)-(16);� the Borel-Leroy image (18) is extrapolated by a rational approxi-mant [M=N ] (xt), where by [M=N ] one means the quotient of two
ICMP{98{9E 8polynomials; M is the order of the numerator and N is that of thedenominator;� the resummed function Sres is obtained in the form:Sres = Z 10 dt exp(�t)tp [M=N ] (xt): (19)In the two variables case only the �rst step is changed; namely, herewe de�ne the Borel-Leroy image asX0�i+j�n ai;jxiyj ) X0�i+j�n ai;j(xt)i(yt)j�(i+ j + p+ 1) : (20)Generalization to the many-variable case is trivial.Now one can take into account that the second step of the statedscheme can be done in di�erent ways. One can write down various Pad�eapproximants in the variable t to obtain within the three-loop approxi-mation the expressions of the structure [2=1], [1=2] and [0=3]. It is alsopossible to use Chisholm approximants [84] in the variables u and v,which, generally speaking, in the same number of loops can be of type[3=1], [2=2], [1=3] and [0=4], but the explicit de�nition of any approxi-mant needs some additional equations now [84]. The technique, whichinvolves Chisholm approximation together with the integral Borel trans-formation is referred to as the Chisholm-Borel resummation technique.To be consistent, one would have to apply the all di�erent resummationframeworks in order to obtain reliable results on their basis and �ndwhich of the methods is the most e�ective. However, strong restrictionon the number of choices can be imposed.First of all, an approximant should be chosen in the form reconsti-tuting the sign-alternating high-order behaviour of the general term of�- and -functions, which was con�rmed in the particular case m = 1,n = 2 and n = 3 [85]. The approximant generating a sign-alternatingseries might be chosen in a form [M=1] with the positive coe�cientsat the variable t (or u and v). Choosing an approximant with a non-linear denominator, generally speaking, one does not ensure the desiredproperties. Direct calculations a�rm the argumentation: �-functions, re-summed with the Pad�e-Borel and the Chisholm-Borel methods with ap-proximants [M=N ] ; N > 1, for u < 0; v > 0 give the roots which lie farfrom the expected values which for d = 3 are known up to the orderof four loops [39] and for general d were calculated from the two-loop�-functions [67]. This is true for any p. The stated results permit us to



9 ðÒÅÐÒÉÎÔeliminate from the consideration approximants with a non-linear denom-inator.Note as well that choosing representation of the RG-functions (15)-(18) in the form of Pad�e or Chisholm approximant of type [M=1] mightresult in the appearance of a pole in the expression. Here we use ananalytical continuation of the resulting expressions by evaluating theprincipal value of the integral. Treating the task in this way one notesthat the topological structure of the lines of zeros for the resummedby the Pad�e-Borel technique �-functions is very di�erent in the regionnear the solution for the mixed �xed point and strongly irregular whenpassing through the number of loops. In particular this yields that in thethree-loop approximation there exist two solutions close to the expectedvalue of the mixed �xed point. To compare, the results obtained withinthe frames of the Chisholm-Borel method do not have these faults andare more stable from the point of view of proceeding in number of loops.So, the results given below are obtained by the Chisholm-Borel me-thod applied to the approximant of type [3=1]. In order to determinethe form of this approximant completely one must de�ne two additionalconditions. The approximants are expected to be symmetric in variablesu and v, otherwise the properties of the symmetry related to these vari-ables would depend, except for the properties of the Lagrangian, on themethod of calculation. By the substitution v = 0 all the equations whichdescribe the critical behaviour of the diluted model are converted in-to appropriate equations of the pure model. However, if pure model issolved independently, the resummation technique with the application ofPad�e approximant is used. Thus, Chisholm approximant is to be chosenin such a way that, by putting any of u or v equal to zero, one obtainsPad�e approximant for a one-variable case. This also implies a specialchoice of additional conditions. In the present study amidst all the pos-sible expressions which satisfy the stated demand we choose Chisholmapproximant [3=1] by putting coe�cients at u3 and v3 to be equal tozero.3. ResultsNow we are going to apply the mathematical framework which was dis-cussed in previous sections in order to obtain numerical characteristicsof the critical behaviour of the weakly-diluted Ising model in generaldimensions. It was noted in the Section 1 that the critical behaviour ofthe quenched weakly-diluted Ising model is described by the e�ectiveLagrangian (1) in the case m = 1 and zero replica limit n = 0. Namely,
ICMP{98{9E 10the task in the end comes to obtaining �xed points which are de�nedby simultaneous zero of the both �-functions. Among all the possible�xed points one is interested only in those in the ranges u� > 0; v� � 0and only in stable ones where the stability means that two eigenvaluesb1; b2 of the stability matrix B = @�ui=@uj ju�i , ui � fu; vg are positiveor possess positive real parts. The structure of the �-functions (15)-(16) yields the possibility of four solutions for the �xed points. The �rsttwo fu� = 0; v� = 0g and fu� = 0; v� > 0g in our case at d < 4 areout of physical interest, while the second pair which consists of purefu� > 0; v� = 0g and mixed fu� > 0; v� < 0g points, are responsible fortwo possible critical regimes. The critical behaviour of the diluted modelcoincides with that of the pure model when the pure �xed point appearsto be stable. If the mixed point is stable, the new (diluted) critical be-haviour of the system takes place. The type of the critical behaviourdepends on the number m of the order parameter components and onthe dimensionality d: at any d; 2 � d < 4 a system with large enoughm isnot sensitive to the weak dilution in the sense that asymptotic values ofcritical exponents do not change; only starting from some marginal valuemc, at m < mc a mixed �xed point becomes stable and the crossover tothe random critical behaviour occurs. The problem of determining mc asa function of d will be discussed later. Now we would like to state thatmc � 1 for any d; 2 � d < 4, and thus just the mixed �xed point governsthe asymptotic critical behaviour of the diluted Ising model.If one attempts to �nd the �xed points from the �-functions (15)-(16)without resummation, there always appears only the Gaussian fu� =0; v� = 0g trivial solution; the existence of the rest possible three �xedpoints depends on the concrete details of the �-functions portions in thebraces in expressions (15)-(16). In a 3d case it appears that without aresummation the non-trivial mixed �xed point does not exist in one-, two- and four-loop approximations [39,40]. It is only the three-loopapproximation where all the four solutions of the set of equations (12)exist [35]. In �gure 1 we show the behaviour of the non-resummed �-functions of the three-dimensional weakly diluted Ising model in thethree-loop approximation. Resummed functions are shown in the sameapproximation in �gure 2. Note that in this approximation the shapeof the functions remains alike in the region of small couplings u and v.Fixed points correspond to the crossing of the lines �u = 0; �v = 0 as it isdemonstrated in �gures 3, 4. The left-hand column in �gures 3, 4 showsthe lines of zeros of non-resummed �-functions in three-dimensions inone-, two-, three- and four-loop (results of [39,40]) approximations. Onecan see in the �gures that without resummation all non-trivial solutions



11 ðÒÅÐÒÉÎÔare obtained only within the three-loop level of the perturbation theory.In the next order all �xed points disappear which is a strong evidenceof their accidental origin. At any arbitrary d, 2 � d < 4 the qualitativebehaviour of the functions is very similar to that shown in �gures 3 and4. As it has already been mentioned, in order to reestablish the lost pureand mixed points one applies the resummation procedure to �-functions.In the three-dimensional space the result of resummation is illustratedby the right-hand column in �gures 3 and 4. Here we have used theChisholm-Borel resummation technique choosing Chisholm approximantin the form discussed in the previous Section with p = 1 in successiveapproximation in the number of loops. The icons in the �gures whichcorrespond to a one-loop level are the visual proof of the degeneracyof the �-functions in this order of the perturbation theory: the plotsof root-lines are parallel independently of resummation. The rest threeimages in the right-hand columns are a good graphic demonstration ofthe reliability of the Chisholm-Borel resummational method: two-, three-and four-loop pictures are quantitatively similar, the coordinates of thepure and mixed point are close.The numerical results of our study are given in table 1. Here, thecoordinates of the stable mixed �xed point and the values of the criti-cal exponents of the quenched weakly diluted Ising model are listed asfunctions of d between d = 2 and d = 3:8. The eigenvalues b1 and b2 ofthe stability matrix are given as well.It was already noted that the values of -functions in a stable pointyield the numerical characteristics of the critical behaviour of the model.For example, given the resummed functions Res� and �Res�2 , the pair ofequations Res� (u�; v�) = �; (21)�Res�2 (u�; v�) = 2� ��1 � � (22)allows us to �nd the exponents � and �. All other exponents can beobtained from the familiar scaling laws.However, one can proceed in a di�erent way. That is, by means ofthe scaling laws it is possible to reconstitute the expansion in couplingconstants of any exponent of interest or of any combination of exponents,and only after that to apply the resummation procedure. If exact cal-culation were performed the answer would not depend on the sequenceof operations. However, this is not the case for the present approximatecalculations. We have chosen the scheme of computing where the resum-mation procedure was applied to the combination ��1�1 = 1� ��2��
ICMP{98{9E 12and �1 = (2� ��2 � �)=(2� �). The exponents �, � and � have beencalculated on the basis of numerical values of the exponents  and �.The resummation scheme appears to be quite insensitive to the choiceof the parameter p given by (18), (19). However note, that computationshave been performed here, as well as in [67], with p = 1.Comparing our data from table 1 for the critical exponents at d = 2with the results for the pure Ising model one can see that the exponent di�ers from the exact value 7=4 by the order of 5%, the exponent �is smaller from the exact value � = 1 less than by 4%. This con�rm theconjecture that the critical behaviour of the weakly diluted quenchedIsing model at d = 2 within logarithmic correction coincide with thatof the pure model (see [54] for review). It is also interesting to comparenumbers given in table 1 with those obtained for general d within the2-loop approximation [67]: all the exponents of the three-loop level lieslightly farther from the expected exact values of Onsager than thoseof the two-loop approximation. This may be explained by the oscilla-tory nature of approaching to the exact values depending on the orderof the perturbation theory. It is also interesting to note that the two-loop approximation yields better estimates for the heat capacity criticalexponent � for all d in the range under consideration. Namely, in ac-cordance with the Harris criterion, the exponent � for the diluted Isingsystem should remain negative. This picture is con�rmed much betterby the two-loop approximation where � is negative in the whole rangeof d, unlike the three-loop level of the perturbation theory, the results ofwhich yield � > 0 for 2 � d � 2:8.However, table 1 shows that the next (third) order does improve ourunderstanding of the critical behaviour of the model in general dimen-sions. The results of the two-loop calculations [67] show that startingfrom some marginal space dimension the approach to the stable pointbecomes oscillatory: the eigenvalues b1 and b2 turn to be complex pos-sessing positive real parts. This is an artifact of the calculation schemeand therefore it was expected [67] that by increasing the accuracy ofcalculations one decreases the region of d which corresponds to the com-plex eigenvalues. It is really the case. In the three-loop approximationthe region of complex b1; b2 is bounded from below by d = 3:3, whereasin the two-loop approximation [67] the corresponding value is lower andis equal to d = 2:9. Thus, the region of d characterized by the oscillatoryapproach to the stable �xed point shrinks with the increase of the orderof the perturbation theory.The comparison of the three-dimensional value of � with the four-loopresult [40] � = 0:6701 gives the accuracy of 0:05% for our computations



13 ðÒÅÐÒÉÎÔ(compare with 1% for two-loops, where the value �(d = 3) = 0:678 wasobtained). Thus, it may be stated that the general accuracy of calcula-tions decreases when passing from d = 4 to d = 2 which, in particular,results from the fact that our approach is asymptotically exact at uppercritical dimension d = 4.The comparison of the present results with the other data availableis provided by �gure 5. Here, the behaviour of the correlation lengthcritical exponent � obtained by di�erent methods is demonstrated ingeneral dimensions. The results of the massive �eld-theoretical schemeare plotted by solid (three-loop approximation; the present paper) anddashed (two-loop approximation; ref. [67]) lines. One can see that thetwo lines practically coincide far enough from d = 2, in particular, bothlie very close to the most accurate result for d = 3 [40] which is shown bythe box. The application of the scaling-�eld method [36] yields numbersshown in �gure 5 by stars. The limit from below (d = 2:8) of the methodapplicability is caused by the truncation of the set of scaling-�eld equa-tions, which was considered in [36]. One can also attempt to obtain someresults by resumming the p"-expansion which is known for the dilutedIsing model up to three-loop order [65,66] and for the exponents � and� reads: � = 12 + 14� 653"�1=2 + 535� 756�(3)8(53)2 "; (23)� = � "106 + � 653�1=2 9(53)2 (24 + 7�(3))"3=2; (24)where �(3) � 1:202 is Rieman's zeta function. The corresponding resultsare shown by open diamonds. They were obtained by applying the Pad�e-Borel resummation scheme to the series of p"- expansion (23) [65,66].The value of � obtained in such a way is of physical interest only veryclose to d = 4. Even in the next orders of the expansions the valuesof critical exponents are not improved [86]; this is an evidence of thep"-expansion unreliability in tasks like the one under consideration. Tocompare, one can state that the situation with the applied in the presentpaper theoretical scheme is contrary to thep"-expansion. While the two-loop approximation is valid in ranges 2 � d < 3:4, the next order of theperturbation theory enlarges the upper bound up to d = 3:8. One canexpect that the next steps within the perturbation theory will allow oneto obtain the description of the critical behaviour of the model withenough accuracy for any d, 2 � d < 4.Let us recall now that expressions (15)-(18) for the RG-functions, aswell as their three-loop parts listed in the Appendix, allow us to study
ICMP{98{9E 14asymptotic critical properties of the mn-vector model with arbitrary mand n in arbitrary d not only for the case m = 1, n = 0. In particu-lar, by keeping m as an arbitrary number and putting n = 0 one canobtain the numerical estimates for the marginal order parameter com-ponent number mc which divides the diluted (governed by the mixed�xed point) asymptotic critical behaviour from the pure one, when theO(m)-symmetric �xed point remains stable. In accordance with the Har-ris criterion the case m = mc corresponds to zero of the heat capacitycritical exponent � of the model. One may extract the value of mc fromthis condition. However, the above discussed results of the three-loopapproximation do not yield enough accuracy for �. Alternatively, the�xed mixed point should coincide with the pure �xed point at m = mc,which in particular means that v�(m = mc)jmixed = 0. The last condi-tion was chosen as a basis of our calculation. The appropriate numbersof the present three-loop approximation (thick solid line) together withthe data of the two-loop approximation (dashed line) [67] are shown in�gure 6. The result of "-expansion mc = 4 � 4" is depicted by the thinsolid line. In the three-loop approximation we obtain mc = 1:40; d = 2and mc = 2:12; d = 3. These values are to be compared with the exactresults of Onsager which yield mc = 1 at d = 2, and the theoreticalestimate mc = 1:945 � 0:002 [87]. One can see that the two-loop re-sults are closer to the expected values for both d = 2 and d = 3. For atwo-dimensional case the two-loop value mc = 1:19 [67] di�ers from theexact one by 20%, while the three-loop number decreases the accuracyto 40%. The case d = 3;mc > 2 contradicts the suggestion that the xy-model asymptotic critical behaviour should not change under dilutionin three-dimensions. The reason for decreasing the calculation accuracywith increasing the order of the perturbation theory may lie in oscillatoryapproach to the exact result. One can expect that already the four-loopcase will improve the estimates for mc for all 2 � d < 4. Let us alsonote that the determination of mc may serve as a test for improving theresummation scheme.4. ConclusionsThe goal of this paper is to study the critical behaviour of the weaklydiluted quenched Ising model in the case when the space dimension dcontinuously changes from d = 2 to d = 4.As it was mentioned in the Introduction, the study of the pure Isingmodel at arbitrary d, which corresponds to a scalar �eld-theoretical mod-el with one coupling constant, is the subject of a great deal of papers.



15 ðÒÅÐÒÉÎÔIt is not the case for the model with a more complicated symmetry. Inparticular, here we study a model with two couplings corresponding toterms of di�erent symmetry in the Lagrangian (1). Such a problem wasstudied previously on the basis of the scaling-�eld method [36], and �eld-theoretical �xed dimension renormalization group calculations within atwo-loop level of the perturbation theory are available [67].Our calculations hold within the theoretical scheme of [24,67]. Thisapproach appears to be one amidst other possible calculation schemesfor many tasks; however, in our case it seems to have no alternativeswithin the �eld-theoretical approach.Being asymptotic, the resulting series for the RG-functions are to beresummed. In the present study we have chosen the Pad�e-Borel and theChisholm-Borel resummation techniques. Restricting ourselves to ana-lytic expressions for the resummed functions, we present numerical datamainly obtained on the basis of the Chisholm-Borel resummation tech-nique. Note that the absence of any information on the high-order be-haviour of the obtained series for the RG-functions does not allow oneto apply other resummation schemes, e.g. those based on the conformalmapping technique [83].The quantitative description of the critical behaviour of the modelis steady from the point of view of passing from the two- to the three-loop approximation. Smaller agreement between the two- and the three-loop approximations at d far away from d = 4 may be explained in away that the precision of computing falls down with the increase of theexpansion parameter which takes place at decrease of d. The real parts ofeigenvalues corresponding to the mixed point seem to remain positive upto d = 4, which testi�es that at arbitrary d the weakly diluted quenchedIsing model is described by the mixed �xed point.The work was supported in part by the Ukrainian Foundation ofFundamental Studies (grant No 24/173).
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ICMP{98{9E 20AppendixHere we have collected the most lengthy expressions for the three-loopcontributions to the RG-functions. The three-loop part of the �u-fun-ction reads:�3LAu (u; v) = �3;0u u3 + �2;1u u2v + �1;2u uv2 + �0;3u v3; (25)where�3;0u = � 1(m+ 8)3 h� 4(31m2 + 430m+ 1240)i1 +(m+ 8)(m+ 2)�� (3d+ 8)i2 + 12(i3 + i8)�+48(m2 + 20m+ 60)i4 + 24(2m2 + 21m+ 58)i5 +6(3m2 + 22m+ 56)i6 + 24(5m+ 22)i7 +8(4m2 + 61m+ 178)i;�2;1u = � 2(m+ 8)2(mn+ 8)h� 12(17m2 + 256m+ 780)i1 +(m+ 2)�� (3dm+ 42d+ 16m+ 80)i2 +12(m+ 14)i3 + 18(m+ 8)i8�+24(3m2 + 70m+ 224)i4 + 6(15m2 + 158m+ 448)i5 +6(3m2 + 32m+ 100)i6 + 48(5m+ 22)i7 +6(9m2 + 146m+ 448)i;�1;2u = � 1(m+ 8)(mn+ 8)2 �h� 12(19m2n+ 80mn+ 470m+ 2032)i1 ��8(mn+ 8)(3d+ 4) +m(3dmn+ 40mn+ 78d+ 176)�i2 +12(m2n+ 8mn+ 26m+ 64)i3 +48(m2n+ 8mn+ 68m+ 292)i4 +12(11m2n+ 34mn+ 136m+ 584)i5 +6(m2n+ 8mn+ 50m+ 256)i6 + 576(m+ 5)i7 +36(m+ 2)(mn+ 8)i8 +



21 ðÒÅÐÒÉÎÔ12(5m2n+ 22mn+ 136m+ 584)i;�0;3u = � 4(mn+ 8)3 h6(mn+ 10)(�2(mn+ 23)i1 + 3i6) +(mn+ 2)�� (4mn+ 9d+ 8)i2 + 36i3 +3(mn+ 8)i8�+ 72(3mn+ 22)i4 +9(m2n2 + 14mn+ 88)i5 + 24(mn+ 14)i7 +3(m2n2 + 38mn+ 264)i:The three-loop part of the �v-function reads:�3LAv (u; v) = �0;3v v3 + �1;2v uv2 + �2;1v u2v + �3;0v u3; (26)where�0;3v = � 1(mn+ 8)3 h� 4(31m2n2 + 430mn+ 1240)i1 +(mn+ 8)(mn+ 2)�� (3d+ 8)i2 + 12(i3 + i8)�+48(m2n2 + 20mn+ 60)i4 +24(2m2n2 + 21mn+ 58)i5 +6(3m2n2 + 22mn+ 56)i6 + 24(5mn+ 22)i7 +8(4m2n2 + 61mn+ 178)i;�1;2v = � 4(m+ 2)(mn+ 8)2(m+ 8)h� 4(28mn+ 275)i1 �(3dmn+ 4mn+ 15d+ 56)i2 + 12(mn+ 5)i3 +24(2mn+ 27)i4 + 3(13mn+ 100)i5 +6(3mn+ 13)i6 + 96i7 + 9(mn+ 8)i8 +(29mn+ 316)i;�2;1v = � m+ 2(mn+ 8)(m+ 8)2 h� 12(mn+ 42m+ 224)i1 �(3dmn+ 12dm� 8mn+ 48d+ 16m+ 256)i2 +12(mn+ 4m+ 16)i3 + 48(5m+ 34)i4 +12(13m+ 56)i5 + 6(3mn+ 14m+ 40)i6 +144i7 + 36(m+ 8)i8 + 12(11m+ 64)i;
ICMP{98{9E 22�3;0v = �2(m+ 2)(m+ 8)3 h� 4(11m+ 70)i1 � 3(dm+ 2d+ 16)i2 +6(m+ 2)(2i3 + 3i6) +2(m+ 8)(12i4 + 3i5 + 3i8 + 5)i:The three-loop part of the �-function reads:3LA� (u; v) = �h m+ 2(m+ 8)2u3 + 3(m+ 2)(m+ 8)(mn+ 8)u2v + (27)3(m+ 2)(m+ 8)(mn+ 8)uv2 + mn+ 2(mn+ 8)2 v3i(3i8 � 4i2):The three-loop part of the ��2-function reads:��2(u; v) = �3;0�2 u3 + �2;1�2 u2v + �1;2�2 uv2 + �0;3�2 v3; (28)where�3;0�2 = m+ 2(m+ 8)3 h� 4(11m+ 70)i1 + (m+ 2)�� (3d� 8)i2 +12i3 + 18i6�+ 2(m+ 8)(12i4 + 3i5 + 5)i;�2;1�2 = m+ 2(m+ 8)2(mn+ 8)h� 12(mn+ 10m+ 70)i1 +(mn+ 2m+ 6)�� (3d� 8)i2 + 12i3 + 18i6�+6(m+ 8)(12i4 + 3i5 + 5)i;�1;2�2 = 3(m+ 2)(m+ 8)(mn+ 8)2 h� 4(11mn+ 70)i1 +(mn+ 2)�� (3d� 8)i2 + 12i3 + 18i6�+2(mn+ 8)(12i4 + 3i5 + 5)i;�0;3�2 = mn+ 2(mn+ 8)3 h� 4(11mn+ 70)i1 +(mn+ 2)�� (3d� 8)i2 + 12i3 + 18i6�+2(mn+ 8)(12i4 + 3i5 + 5)i:



23 ðÒÅÐÒÉÎÔFIGURE CAPTIONS.Figure 1 The non-resummed �-functions in the three-loop approxima-tion; d = 3;m = 1; n = 0. The dark surface corresponds to the �u-function.Figure 2 The Chisholm-Borel resummed �-functions in the three-loopapproximation; d = 3;m = 1; n = 0. The dark surface corresponds tothe �u-function.Figure 3 The lines of zeros of non-resummed (left-hand column) and re-summed by the Chisholm-Borel method (right-hand column) �-functionsfor m = 1; n = 0 in di�erent orders of the perturbation theory: one- andtwo-loop approximations. Circles correspond to �u = 0, thick lines depict�v = 0. Thin solid and dashed lines show the roots of the analyticallycontinued functions �u and �v respectively. One can see the appearanceof the mixed �xed point u > 0; v < 0 in the two-loop approximation forthe resummed �-functions.Figure 4 The lines of zeros of non-resummed (left-hand column) and re-summed by the Chisholm-Borel method (right-hand column) �-functionsfor m = 1; n = 0 in three- and four-loop approximations. The notationsare the same as in �gure 3. Close to the mixed �xed point the behaviourof the resummed functions remains alike with the increase of the orderof approximation. This is not the case for non-resummed functions.Figure 5. The correlation length critical exponent � of the weakly dilutedIsing model as a function of the space dimension d. The results of two-[67] and three-loop (the present paper) approximations are shown by thedashed and the solid lines respectively, the square reects the number ofthe four-loop approximation [40] at d = 3, stars correspond to work [36]and open diamonds refer to the resummed p"-expansion.Figure 6. The dependence of the marginal order parameter componentnumber mc on the space dimension d. Two- and three-loop results areshown by the dashed and thick solid lines respectively, the "-expansiondata mc = 4� 4" are depicted by the thin solid line.
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Table 1. The stable point coordinates, critical exponents and the eigen-values of the stability matrix of the weakly diluted Ising model at arbi-trary d. The three-loop approximation (the superscript "c" denotes thatreal parts of the corresponding eigenvalues are given).d u� v�  � � � b1 b22.0 2.0268 -0.2802 1.840 0.966 0.067 0.097 0.2176 1.51892.1 2.0327 -0.3156 1.768 0.923 0.062 0.084 0.2373 1.46082.2 2.0412 -0.3523 1.703 0.884 0.056 0.073 0.2562 1.40112.3 2.0525 -0.3908 1.643 0.848 0.049 0.064 0.2742 1.33952.4 2.0671 -0.4312 1.588 0.816 0.041 0.055 0.2913 1.27592.5 2.0854 -0.4740 1.536 0.787 0.033 0.047 0.3074 1.21002.6 2.1081 -0.5196 1.489 0.760 0.025 0.040 0.3226 1.14182.7 2.1359 -0.5687 1.445 0.735 0.016 0.034 0.3370 1.07092.8 2.1698 -0.6219 1.404 0.712 0.007 0.028 0.3505 0.99712.9 2.2113 -0.6803 1.365 0.691 -0.002 0.023 0.3635 0.91973.0 2.2621 -0.7454 1.328 0.671 -0.016 0.019 0.3764 0.83803.1 2.3250 -0.8190 1.294 0.652 -0.021 0.015 0.3905 0.75043.2 2.4039 -0.9038 1.261 0.634 -0.030 0.012 0.4095 0.65283.3 2.5044 -1.0040 1.230 0.618 -0.038 0.009 0.4653 0.51273.4 2.6359 -1.1259 1.200 0.602 -0.046 0.006 0.4436c 0.4436c3.5 2.8140 -1.2804 1.171 0.587 -0.054 0.004 0.3946c 0.3946c3.6 3.0678 -1.4869 1.144 0.572 -0.061 0.002 0.3411c 0.3411c3.7 3.4570 -1.7849 1.116 0.558 -0.066 0.001 0.2822c 0.2822c3.8 4.0852 -2.2303 1.087 0.544 -0.066 0.000 0.2136c 0.2136c



ðÒÅÐÒÉÎÔÉ ¶ÎÓÔÉÔÕÔÕ Æ¦ÚÉËÉ ËÏÎÄÅÎÓÏ×ÁÎÉÈ ÓÉÓÔÅÍ îáî õËÒÁ§ÎÉÒÏÚÐÏ×ÓÀÄÖÕÀÔØÓÑ ÓÅÒÅÄ ÎÁÕËÏ×ÉÈ ÔÁ ¦ÎÆÏÒÍÁÃ¦ÊÎÉÈ ÕÓÔÁÎÏ×. ÷ÏÎÉÔÁËÏÖ ÄÏÓÔÕÐÎ¦ ÐÏ ÅÌÅËÔÒÏÎÎ¦Ê ËÏÍÐ'ÀÔÅÒÎ¦Ê ÍÅÒÅÖ¦ ÎÁ WWW-ÓÅÒ-×ÅÒ¦ ¦ÎÓÔÉÔÕÔÕ ÚÁ ÁÄÒÅÓÏÀ http://www.icmp.lviv.ua/The preprints of the Institute for Condensed Matter Physics of the Na-tional Academy of Sciences of Ukraine are distributed to scienti�c andinformational institutions. They also are available by computer networkfrom Institute's WWW server (http://www.icmp.lviv.ua/)

àÒ¦Ê ÷ÁÓÉÌØ×ÉÞ çÏÌÏ×ÁÞôÁÒÁÓ ¶ÇÏÒÏ×ÉÞ ñ×ÏÒÓØËÉÊëÒÉÔÉÞÎ¦ ÐÏËÁÚÎÉËÉ ÒÏÚ×ÅÄÅÎÏ§ ÍÏÄÅÌ¦ ¶ÚÉÎÁ ÐÒÉ×ÉÍ¦ÒÎÏÓÔÑÈ ÐÒÏÓÔÏÒÕ ×¦Ä 2 ÄÏ 4òÏÂÏÔÕ ÏÔÒÉÍÁÎÏ 3 Ë×¦ÔÎÑ 1998 p.úÁÔ×ÅÒÄÖÅÎÏ ÄÏ ÄÒÕËÕ ÷ÞÅÎÏÀ ÒÁÄÏÀ ¶æëó îáî õËÒÁ§ÎÉòÅËÏÍÅÎÄÏ×ÁÎÏ ÄÏ ÄÒÕËÕ ÓÅÍ¦ÎÁÒÏÍ ×iÄÄiÌÕ ÓÔÁÔÉÓÔÉÞÎÏ§ ÔÅÏpi§ËÏÎÄÅÎÓÏ×ÁÎÏÇÏ ÓÔÁÎÕ÷ÉÇÏÔÏ×ÌÅÎÏ ÐÒÉ ¶æëó îáî õËÒÁ§ÎÉc õÓ¦ ÐÒÁ×Á ÚÁÓÔÅÒÅÖÅÎ¦


