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On the theory of dynamic properties for semi—quantum fluids
V.V.Ignatyuk, I.M.Mryglod, M.V.Tokarchuk

Abstract. On the basis of nonequilibrium statistical operator method a
general theoretical framework for the study of dynamic properties of
semi-quantum fluids is developed. We derive the set of equations of
generalized hydrodynamics and analyse the particular case of so-called
thermo-viscoelastic dynamical model of a fluid in more detail consider-
ing hydrodynamic limit. We discuss also some approximate procedures
for evaluation of transport kernels which allow to obtain a closed set
of equations for time correlation functions. The problem is considered
in the context of relation with neutron scattering experiment data and
theoretical results known previously in the literature.
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1. Introduction.

Liquid *He is a sample of quantum liquid that excites permanent inter-
est both for theoretical physicists and experimentalists [1-4]. Being the
system that obeys Bose statistics a liquid *He, together with a number
of Fermi systems [3-5] such as *He, various compounds of hydrogen,
electronic gas, needs applying of quantum mechanics apparatus for its
description.

It is well known that any quantum system may be characterized by
the set of some typical temperatures to be very important for under-
standing of its dynamical properties. One of them is a temperature of
quantum degeneration Ty = /7 which can be estimated both for Bose
and Fermi cases as follows Ty ~ n? /m* where n and m* are the num-
ber density and the effective mass of particle, respectively. The value 7
may be considered as a quantum delocalization time. Another temper-
ature, characterizing quantum systems, in which phonon processes are
dominant in low—temperature region (what one has, in fact, in quantum
“He and 3He [4]) is a Debye temperature Tp = h{)p. This temperature
can be simply estimated using the well know formula for solids, namely,
Tp ~ cn%, where ¢ is an adiabatic sound velocity, and may characterize
the frequency of the vibrational degrees of freedom in a quantum system.

For quantum liquids mentioned above the inequality Ty <« Tp takes
usually place. Depending on the value of equilibrium temperature 7'
considered, all the quantum fluids (for which the melting point is far less
then Tp) could be arbitrarily divided into two main classes:

(i) quantum fluids for which an equality 7' < Tj is satisfied, so that
the quantum effects plays crucial role;

(ii) quantum fluids considered within region Ty < T < Tp.

Estimations, performed for some quantum systems by Andreev [6],
give us for the pressure P = 0 atm, P = 25 atm, P = 64.6 atm, the
following values of Debye temperatures: 13.7 K for *He; 32.7 K for *He;
155 K for Hy, respectively. The temperature Ty is Ty ~ 3 K for *He and
“H and has been estimated as Ty ~ 10 K for H, [7]. So that a number of
quantum fluids being considered as the fluids (ii) with Ty < T < Ty is
much larger. Besides *He and “He, to this class of fluids belong isotopes
of hydrogen as well as its solutions.

Let us discuss now what is the reasons and the physical meaning for
such a division.

According to Frenkel picture of kinetic phenomena in liquids [8], in
case (ii) a vibrational frequency ) of the atoms near equilibrium po-
sition is large in comparison with inverse time 7! of the jump of the
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particles between local positions of equilibrium (7 > 1). Thus, a phe-
nomenological model of the liquid as a system of particles trapped at the
bottom of the potential well which vibrate very frequently and during
certain period of time 7 jump in the closest position of equilibrium can
be constructed. In the Frenkel picture tunnel transitions of the particles
in nonsymmetric potential well, created by neighbouring surrounding,
play the role of elementary excitations. Because of assumption Q7 > 1
these phonon-like excitation are well-defined and they should contribute
essentially both to thermodynamic and dynamic properties.

For a system to remain in a liquid state at 7' < Tp it is necessary that
the amplitude of vibrations to be sufficiently large comparatively with
interatomic distance, or, what is nearly the same, the Debye temperature
to be comparative with interparticle interaction energy U. So far as there
is not long-range order and equilibrium positions are distributed irregu-
larly in space, such a liquid resembles a glass. The only difference consists
in the fact that in quantum liquids all potential barriers are penetrable,
so that a small concentration of excitations may be conditioned only
by low temperatures in comparison with typical difference of energies
in the neighbouring equilibrium positions. Such phenomenological treat-
ment has been developed by Andreev who introduced in the literature
(after Lifshitz proposal) the term “semi—quantum” liquid for description
of the object for which the conditions (ii) are valid. Let us consider one
from the thermodynamical results which obtained by Andreyev. Taking
into account that the main contribution to the thermodynamics is re-
lated to the phonon-like excitations, the free energy per atom can be
written in the form [6]:

FT) = —T/ln(l + exp(—¢/T)) v(e)de, (1.1)

where v(e€) de denotes the probability for some particle to occupy neigh-
bouring equilibrium position with excitation energies in the interval e
and € + de. When € < U the density of levels does not depend on energy
(v(e) = v = const) and could be estimated as z/U, where z denotes an
effective number of neighbouring vacancies. Then free energy per atom
equals
Ty = -1
jr) = -T2,
where from specific heat ¢y (T") could be obtained:

ey (T) = %2I/T. (1.2)
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Hence, instead of phonon-like contribution to ¢y (T') ~ T® observed in
quantum liquids for low temperature region (I < Ty) we got linear
dependence. This very simple and nice formula has been verified for *He,
“He and Hs liquids and it was shown that the expression (1.2) could be
applied for up to temperatures of order T/Tp ~ 0.07. There were also
found the estimations for the value of 1/v: 3.5 K for *He (P = 0 atm); 6 K
for *He (P = 25 atm) and 110 K for Hy (P = 64.6 atm), respectively, to
be seem quite reasonable. In the section 4 the expression for generalized
specific heat via quantum static correlation functions of enthalpy density
will be presented. It may be expected that in microscopic approach, due
to essential anharmonicity of a model Hamiltonian, the linear behaviour
might be also found while in case of degenerated non-perfect Bose gas
one has the well-known dependence cy (T) ~ T3 [9)].

Hence, having an example when phonon-like non—dispersive excita-
tions influence on thermodynamic properties of semi—quantum liquid,
one can asked himself whether these excitations could be observed in
kinetic properties? So the next natural step in investigation of semi-
quantum helium was the study of dynamic properties. This was per-
formed partly in [10] where on the basis of 2— and 3-levels model the
transport coefficients were calculated. A remarkable feature, founded in
this study, consists in the fact that in low frequency limit Aw < T shear
viscosity and thermal conductivity behave as T~! and T, respectively.
A comparison with experimental data supported these results. In the pa-
per [7] ultrasound damping in semi—quantum liquids was studied. Kinetic
equations were written and solved assuming that v(e) &~ v and diffusion
character of relaxation mechanism is dominant. One obtained frequency
dependence of damping coefficient both in high frequency limit and in
case wt < 1. Frequency dependence occurs to be proportional w? in the
first case and linear in w in low frequency limit. Now, the next question
naturally arises. Could these non-dispersion excitations be observed in
scattering experiments and in which range of k£ one can expect to find
them?

The history of the study of quantum liquids has a long tradition.
We restrict themselves only by a short discussion of the results for a
quantum *He liquid related to our topic. What might one expected to
find? The first point, we should consider the temperatures higher than
T/Tp ~ 0.07 and this means for *He that we are interested in cases
T > 4 K depending on the density or pressure. The second point, one
may hope to find the excitations with a weak dispersion located about
the frequency w = 2. For *He one has ) ~ 5 ps~!. And these excitations
have to appear when k increases in order to rich the range where the
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excitations are located. Taking into account the viscoelastic properties of
medium to be crucial usually, when k is about the position kg of the first
maximum of the static structural factor, one may expect to find these
excitations for k > ko only as additional side peaks in the symmetrized
dynamic structural factor. According to the conditions formulated above
we should state that the most part of scattering data known in the lit-
erature were obtained for the temperatures and the (k,w)-regions which
are outside of our interest in this study.

The most interesting data related to our topic are obtained by group
of experimentalists from Delft Interfaculty Reactor Institute [11,12].
They performed two sets of experiments for helium at the states T' = 4 K,
P =1barand T =8 K, P = 18.7 bar and determined the dynamic struc-
ture factor S(k,w) in the range 1 < k < 30 nm~'. The subject of our
interest is the symmetrized dynamic structure factor Ssym (k, w) of liquid
helium at 7' =4 K and gaseous helium at 7" =8 K which are presented
on figures 1 and 2. One can see in these figures that:

(i) For small k (k < 2 nm ') the usual hydrodynamic behaviour is ob-
served what is quite similar to classical fluids. It is clearly that Ssym (k,w)
consists of three lines which form the Rayleigh-Brillouin triplet, namely,
a central line corresponding to entropy diffusion, which disappears for
k > 3 nm~! and two side peaks representing all the mechanisms which
normally related to the propagation of sound waves.

(ii) When k increases one may see that at first the central peak is
disappearing for both temperatures, and then the sound modes become
overdamped and form two broad peaks getting to be indistinguishable
for k > 10 nm~!. It is worth to note that for 7 =4 K all these effects
are started to be visible for smaller k.

(iii) For the wave-numbers about the value of kg = 20 nm~! (where
the first maximum of static structural factor is approximately located)
the spectrum, much like the behaviour in classical fluids, gets narrow
(de Gennes’ narrowing). For large k the width of the spectrum increases
again with increasing of k.

(iv) For larger values of k the side peaks appear again and their
position is increasing weakly when k increases, so that we face with
new propagating damped sound-like modes which characterize mainly
the dynamic properties of the liquid helium for large k. It should be
emphasised that such behaviour is rather special and is not typical for
any classical fluid.
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Figure 1. Symmetrized dynamic structure factor Sy, (g, w) of He? at 0
T = 4K (left) and T = 8K (right) as function of w for different q.
Experiment (error bars), best fits using 3—variables generalized hydro- 0.01}
dynamics model (solid line) and best fits using 2-variables model of '
damped harmonic oscillators (dashed line) [12]. 0 5 0 5
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Figure 2. The same as on figure 4 for ¢ > 4nm™!
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In the same series of papers [11,12] a semi-phenomenological theoret-
ical model, based on the generalized mode approach (see, e.g., [13,14]),
has been developed for a description of experimental data. Within this
framework the model parameters has been considered as adjustable pa-
rameters giving the best fit of dynamic structure factor. In particulary,
it was shown that all the data could be described using a small number [
of basic dynamic variables (I < 3) for all £, namely, in the hydrodynamic
range a three Lorentzians scheme was used for description of Rayleigh-
Brillouin triplet; for intermediate range of k so-called damped harmonic
oscillator model has been applied (I = 2), and the viscoelastic model
(I = 3) was utilized for describing of the experimental data when & is
large enough. It is worth to point out that these results have little to
use for understanding of the real dynamic properties in a liquid helium.
Some anzats has been applied just to fit of experimental data. Hence,
one may agree with a conclusion of Griffin [15] that “the overdamped
phonon spectrum may well be an artifact of the particular formula used
in the fits”.

Another paper [16] to be important for our discussion reported the re-
sults of a neutron-scattering experiments on dense helium at 7' =13.3 K,
P =203 bar in the range 3 < k < 11 nm~!. It was found that the
dynamic structure factor S(k,w) has a clearly visible additional peak
which can not be considered as sound modes. Moreover, the directly
related scattering spectrum C(k,w) = w?S(k,w) showed a four-peaked
structure, so that it was necessary to consider at least five Lorentzians
for a description of experimental data consistently (i.e., four side lines
and one central line). Two additional peaks were treated as the propa-
gating temperature waves, which are not seen in dense classical fluids.
Unfortunately, this study has been only performed for k¥ < 11 nm™!, so
that it is impossible to say anything about the behaviour of a central
peak as well as side propagating excitations when k increases.

The last scattering data that we would like to mention were presented
in Ref. [17] and obtained for dense helium at T' =39 K, P =114 bar in the
range 3 < k < 24 nm~!. In fact this temperature is nearly the same as
Debye temperature T for He, so that one could expected to find herein
the behaviour to be very similar to classical fluids. The main conclusion
of this paper is that the dynamic structure factor can be described com-
pletely by the viscoelastic model. We note that such conclusion is typical
for classical fluids for intermediate values of k. Because of large values
of k, the presented results do not allow to discuss the hydrodynamic
behaviour of S(k,w) where Rayleigh-Brillouin triplet have to be visible.

Now let us summarize our introductory part and underline the main
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problems which still wait to be solved.

(a) There are a lot of reasons to consider semi-quantum fluids as
a separate class of fluids. These fluids possess some special properties
which could be recognized in thermodynamics, kinetics, and dynamic
behaviour;

(b) one can expect that the most part of their typical properties are
closely related with the existence of weak dispersive excitations, which
play crucial role both for thermodynamics and dynamics;

(c) in order to understand the interplay of collective excitations,
which are observed in scattering experiments, the additional study has
to be preformed taking into account all the processes to be important
from the physical point of view, namely, entropy fluctuations, viscoelas-
tic properties as well as their mutual interaction. This study should base
on the unified dynamical model to have been applied for all temperatures
from the range Ty < T < Ty. Here the main problems are: a decrease of
central peak in the dynamic structure factor and an appearance of new
propagating phonon-like excitations when k increases.

The goal of this paper is to develop a general microscopic frame-
work for the next ab initio study of generalized collective mode spec-
trum, time correlation functions and generalized transport coefficients
for semi—quantum fluids. We use for this purpose the generalized mode
approach developed [14,18] for the investigation of a dense classical fluid.
Moreover, comparing the results obtained for the spectrum of general-
ized collective modes of a Lennard-Jones fluid [19], one may assume that
weak dispersive excitations observed in scattering experiments are in-
deed kinetic propagating modes which appear due of coupling thermal
and viscous processes. In classical fluids these modes are usually over-
damped and can not be observed in scattering experiment. However,
they become to be visible in some binary mixtures [20-22] with a large
distinction in the masses of components and are known in the literature
as “fast” sound.

2. Initial relations.

We shall deal in this study with the time correlation funnctions (TCFs)
® 4p5(k,t) defined by

®ap(k,t)= (A(k,t),B(—k))oz/drsp(AA(k,t) pSAB(—k)p(l)_T) . (2.3)
0

AA(kat) = A(kat) - Sp pOA(an)a
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where the time dependence is in the Heisenberg representation
A(k,t) = exp(H)A(k) exp(—H), H=H—puN. (2.4)

Here H ‘means Hamiltonian of the system (see eqn.(3.1) for its explicit
form), N denotes particle number operator, pg is an equilibrium statis-
tical operator po(z™) = exp {—<I> — B(H — N,u)} of Bose-system with
equilibrium inverse temperature § and chemical potential pu.

TCF ®4p5(k,t) appear in natural way in the nonequilibrium statisti-
cal operator method and are directly related to the so-called correlation
Green’s function.

The Fourier transform ®,,,(k,w) of the time correlation function
®,,,(k,t) constructed on number density operators fig,

1 oo
Dap(k,w) = Dy / dt exp(uwt)®ap(k,t), A ,B=n, (2.5)

is straightforwardly related to the experimentally determined dynamic
structure factor S(k,w) as
1 — exp(—phw)

D, (k,w) = ho

S(k,w). (2.6)
Taking into account that ®,,,(k,w) is a function of w, one may see that
the detailed balance relation

Sk, —w) = e P S(k,w)

follows directly from (2.6), and ®,,,(k,w) can be considered as sym-
metrized dynamic structure factor Ssy.m (k,w) introduced in Ref. [11,12],
so that

Ssym(k,w) = P (k,w).

Another expression to be usefull for the next consideration establishes
the relation between the Laplace transfom ®,,,(k, z) of ®,,,(k,1),

®ap(k,z) = /dt e *'®,p(k,t), A B=n, (2.7)
0

where z = iw+¢€, € = +0, and the symmetrized dynamic structure factor

1 .
Ssym(k,w) = ;Re D, (K, 2).

ICMP-98-08E 10

Similary to the static structure factor S(k) defined by
S(k) = / dw S(k,w) | (2.8)

the symmetrized static correlation factor can be defined as !

o0

Syym (k) = / dw Saym (k, w) . (2.9)

— 00

It would be useful to write down some additional relations for high-
er frequency moments of dynamic structure factor which were given in
Ref. [12]. The frequency moments S(k,w) and Sgym(k,w) are in general
defined by

o0

MY (k) = /dwwlS(k,w) (2.10)
and .
My (k) = /dwwlSsym(k,w), (2.11)

where [ > 0. Because S5y, (k,w) is an even function of w, all the odd
moments Ms(ﬁif{l)(k) are equal to zero. The additional exact relations

follow straightforwardly from the detailed balance relation and Eqn. (2.6)

A -

MEFY () = 7Ms(;ﬁ;z)(/c). (2.12)

In a similar manner the even moments of S(k,w) can be expressed as a
series expantion in the small parameter (h/3)2
2

M (k) = M) (k) + (hlﬁ) M) ()

sym 2 sym

— B0 prgaten () + 0((18)") (2.13)

720 V™ ' '
It is clear from expressions presented above that in low frequency
region fiw < T we face with purely classical behaviour while as in col-
lisionless high—frequency domain Aw > T quantum features become es-

sential.

Due to definition (2.3) we shall deal with symmetrized static correlation functions
only in all subsequent expressions.
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3. Nonequilibrium statistical operator of liquid “He
above Bose—condensation point.

Hydrodynamic state of helium above T,; will be described on the basis
of the model of Bose—system with Hamiltonian

2
- P 1 At A A
e

where &;f,, ap denote creation and annihilation operators in the state with
momentum p, v(q) = [ exp(igr)®(|r|)dr denotes Fourier—-component
of the interaction potential ®(|r|) between helium particles, V' means
volume of the system.

1
L e
ng = N Ep ORI (3.2)

is a Fourier—component of the number density operator, IV denotes total
particle number.

Nonequilibrium state of such a quantum system is described by non-
equilibrium statistical operator (NSO) p(z",t) obeying quantum Liou-
ville equation:

) .
ap(mN, t) +1Lyp(a™N,t) =0, (3.3)

where 1Ly denotes Liouville operator determined as 1Ly A = 5 [A, I:I]

Within Zubarev’s method of NSO [23], the retarded solutions of the Li-
ouville equation can be obtained by introduction an infinitesimal source
in the right hand side of (3.3):

&p(wNa t) + ZLNp(wNa t) =€ (p(wNa t) - pq(mN, t)) ) (34)
(e = 0 after thermodynamic transition), where p,(z",t) is so-called
quasi-equilibrium statistical operator is known to be functional of the
mean values of the certain set of dynamic operators P, (k). So far as
we investigate hydrodynamic state of the system one can choose as pa-
rameters of abbreviated description the most slowly physical quantities
Pn(k), which are thought to determine the nonequilibrium state. One
can select among them Fourier—transforms of the number density 7
(see eqn.(3.2)), momentum density Jp:

~ 1 . .
Jk:\/—NZpaL_%ap+% (3.5)
P
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and total energy density £g:

which obey conservation laws

Po(k) = 1l Bo(k) = —ikIn(K), (3.7)

Pn(k:):{nkaJkask}a In(k):{EJkaﬂkaJsk}a

where II}, is a stress tensor operator and J.j denotes operator of energy
current.

Accordingly [23], quasiequilibrium statistical operator p,(z®,t) is be-
ing determined from maximum entropy principle under fixed mean val-
ues (P,(k))! and normalization condition Sp p,(zV,t) = 1 and has the
following form:

pa(a™,t) = exp {—@(t) =3 (B 0k — (B0) w(H) T

k

~(8(n = 50"k ) | (38)
®(t) = In Spexp {— > (6_k<t)ék — (Bv) k() Tk

(Bl = Fv*)-k(B)ine) } (3.9)

denotes Massier—Planck functional, where [Bi(t), vg(t), ur(t) denote
Fourier-components of the local values of inverse temperature, hydro-
dynamic velocity and chemical potential which are being determined
from self—consistency conditions:

(k)" = (), (Tr)t = (jk:x:p (€)' = (Er)b, (3.10)
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One can point out that values Sk (t), (Bv)k(t) and (B(n — Fv?))k(t)
play the role of Lagrange multipliers in the problem of conditioned max-
imum of entropy and due to local thermodynamic relations should be
attributed to corresponding thermodynamic forces [23].

NSO method allows to solve equation (3.4) and to write down the
explicit form of p(z,t) as retarded solution of Liouville equation:

1
p(Nt)—pq(Nt-f-Z/dtexp (e(t' —t)T tt/d'rpq t
0

x {Bor(@) T = (B0) ()} o~ @V, 8). (3.11)
Here time evolution is being described by evolution operator

t

T(t,t') = exp, —/(1—Pq(7))zﬁN dr (3.12)

t

where P,(7) denotes generalized Kawasaki-Gunton operator [23].

The first term of (3.11) doesn’t contribute to entropy production.
On the contrary, integral term in the right-hand side of NSO (3.11) de-
scribes dissipative processes. Generalized transport coefficients - viscos-
ity, thermal conductivity and thermoelasticity are being constructed on
dissipative fluxes I.(k,t) and I;(k,t) that are of the following structure:

IL(k,t) = (1 =P(t))é, (3.13)

Ik, t) = (1= P(t)) T, (3.14)

where P(t) denotes Mori projection operator, constructed on basic vari-
ables {7k, Jk, £k}, which acts on arbitrary operator A accordingly rule:

o S(AY, o S(AY
P(t)A:<A)q+Zk:{6<ﬁk>t (’I’Lk—<nk))+6<:j) (Jk—(Jk))

+(5<ék)i (ék — <ék>t)} (3.15)

and has the following properties: P(t)P(t) = P(t), (1 —P(t)) P(t) = 0,
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Mori projection operator is connected with Kawasaki—-Gunton oper-
ator appearing in (3.12) by relation

PutAp, (™, 0) = [ dr (™, 0P sy (N ).

Local energy conservation laws (3.7) averaged by nonequilibrium sta-
tistical operator p(z™,t) form generalized equations of hydrodynamics.
These equations together with equations for time correlation functions
will be obtained in the next section.

4. Transport equations and time correlation functions.

So far as thermodynamic parameters (g (t), vi(t), pr(t) are being de-
fined from self—consistency conditions (3.10) at every step of their deter-
mination, NSO becomes the functional of mean values (fig)t, (J& )t and
(ér)t. Given mean values obey generalized transport equations, which
could be obtained by averaging of local conservation laws (3.7) with

NSO (3.11) taking into consideration identities 2 (P, (k))! = (P, (k)) +

q
(1 = P(t)) Pn(k))t. In general case such a system of equations can be
represented in the matrix form:

%(ﬁ(k»t:(ﬁ(k»g +;/exp(5(t' —0))p(k, k' t,OF(K' t)dt',  (4.1)

where P(k) =col (ﬁk, jk, ék) is vector—column of the operators of num-

ber, momentum and energy densities; F(k,t) = {—(u— 2v?)Be(t),
—(Bv)k(t), Be(t)} denotes vector—row of thermodynamic parameters;
@o(k,E',t,t') denotes generalized transport kernels matrix:

0 0 0
@(kaklatat’) = 0 wss $ue (42)
0 @7 e (kK t,t")

with nonzero elements of the following structure:

(b K 1 11) = Sp((l PP (KTt 1)
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< [ @)a = PEDPLR (), (43)
0

Components of transport kernels ¢ (k, k', t,t') are dealt with general-
ized shear and bulk viscosities, ¢..(k, k', t,t') defines generalized ther-
mal conductivity and . (k, k', t,t') describes correlation between vis-
cous and thermal processes. Transport equations (4.1) are not closed,
so on every step of their solution thermodynamic parameters are to be
determined from self-consistency conditions (3.10). In the case when
hydrodynamic processes are characterized by slight deviations of mean
values (P, (k))? or corresponding thermodynamic forces F,(k,t) from
their equilibrium values, generalized transport equations (4.1) could be
simplified essentially due to linearization on deviations df8k(t), dvk(t),
Op(t). Moreover, in spatially homogeneous case longitudinal (parallel to
wave-vector) and transverse (orthogonal to wave-vector) dynamic vari-
ables are independent and can be studied separately. In particular, we
present momentum density as sum of two terms:

Je=JdV 4 Jy (4.4)

and in all subsequent expressions for TCF shall take longitudinal part

J ‘k‘ Hence, in linear approximation on fluctuations matrix equation (4.1)

can be presented in the form:

2 (6Bk)) — k) (6B R +
[ explett — 0)ph.t. )6 dt =0, (43)

where 0B(k) = B(k) —(B(k))o, B(k) = col (i, gl ) denotes vector-

column, I denotes Fourier—component of enthalpy density operator
hie = € — (Eky N—ie) g (Teke, T—ie ) Tk (4.6)

that appears due to exclusion of thermodynamic force 1/2 B(u—mwv?)g(t)
accordingly to self-consistency condition. In (4.6) (€k,"—k)q, (e, -k ),
are equilibrium quantum correlation functions defined as

(A,E)O =Sp AA/dTpSABp(IJ_T (4.7
0
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(see eqn.(2.3) for comparison). Equation (4.5) forms a basis of molecu-
lar hydrodynamics of semi—quantum helium. Frequency matrix (k) in
(4.5) has a structure:

B 0 ’Lﬂjn 0
1Q(k) = | Qg 0 19798 , (4.8)
0 ZQJh 0

with elements

(k) = (ik,ﬁ_k>0 (i) = Fh0
s k) = (i, 3L) (T T) =%
(k) = (h,m)o (b ) = ““ncvlw)%(’;))’ (4.9)
s (k) = (e, I'4) (JL',J”,J(? - 7;:612’((’61:))'

We have used in (4.9) the following denotations for generalized thermo-
dynamic quantities: S(k) for static structure factor, cy (k) for generalized
specific heat at constant volume, a(k) for generalized thermal expansion
coefficient and kr (k) for generalized compressibility

Matrix of the kernels from (4.5) has the structure similar to (4.3),
however its elements are normalized TCF:

N

)
ok, 1) = (IJ(k),TO(t,t’)fh(—k))
ens(htt') = (In(k), To(t, ) s (=k)) (

onn (k1) = (fh(k),To(t,t’)fh(—k))O (ﬁk,ﬁ,k): .

Dissipative fluxes I;(k), I (k) in (4.10) are of the following structure:

k) = (1 -Po)d e (k)= (- P (411)
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Here Py denotes Mori projection operator constructed on basic operators

Nk, J lkl, ﬁk, which are mutually orthogonal, and its action is defined as

Pod =33 (A Bu-H) (Bilk). Bu(—k).
[

Po has the properties of Mori projector: PoPy = Po, (1 —"Po)Po = 0,
PoBn(k) = Bn(k); To(t,t') means time evolution operator with projec-
tion acting as

' By(k). (4.12)

To(t,t') = exp {—(t )1 - PO)ZEN} .

In molecular (or linear) hydrodynamics the system of equations (4.5)
plays very important role because gives possibility to calculate hydrody-
namic modes spectrum (heat diffusion and sound propagation) and to

el

investigate TCF of hydrodynamic variables nig, J, ka, which could be
presented in a matrix form:

N <I)nn <I)nJ <I)nh
@(k,t) = D5, P55 Py . (4.13)
Prn Phs Phn | 4y

On the basis of the system of transport equations (4.5) one can show
TCF to obey the system of equations analogous to (4.5):

%@(k,t) — (k) D(k, 1) +/exp(z—:(t' —1)@(k,t —t")®(k,t")dt' = 0. (4.14)

—0o0

Using Laplace transformation matrix equation (4.14) can be rewritten
as
2®(k,z) —1Qk)®(k,2) + ¢k, 2)®(k, z) = ®(k), (4.15)

where ®(k) is a diagonal matrix of static correlation functions
d(k) = (Bn(k),Bm(—k))Oémn (4.16)

with elements

k) = (T dL4) = m/B, (4.17)
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(I)hh(k)) = (ﬁk,ﬁ—k)o = /6—120\/(’@).

In matrix equation (4.15) the elements of transport kernels @(k, z) define
generalized transport coefficients

pra(h2) = (k. 2) + G(k2) ) fmn,

@Jh(kaz) = Zk?f(kaz)/ch(k) ) (418)
onn(k,z) = k2/\(k,z)/ncv(k) .

Here n(k, z), ((k,z) and A\(k,z), are, correspondingly, generalized co-
efficients of shear, bulk viscosity and thermal conductivity. Coefficient
&(k, z) describes correlation between viscous and heat processes in semi—
quantum helium. In hydrodynamic limit ¥ — 0, w = 0 (z = w + 1€,
e — 0) generalized transport coefficients n(k, z), ((k, z) and A(k, z) tend
to their hydrodynamic values while £(k, z) vanishes (we have introduced
imaginary unit factor in the expression for pp (k, z) to show that £(k, z)
is pure imaginary when k # 0 and z = 0).

From the system of equations (4.15) we can define nine time corre-
lation functions ®,5(k,z), «, § = {n,J,h}. The functions of greatest
interest are ®,,(k, z), ®55(k,z), ®nn(k, z) that are expressed via static
correlation functions of frequency matrix (4.9) and generalized transport
coefficients (4.18) because first of them is directly dealt with dynamic
structure factor and the second one — with its frequency moments. Hence,
the problem of calculation of generalized transport coefficients as func-
tions of wave—vector k and frequency w becomes very important.

In [18,19] the method of extension of abbreviated description param-
eters, when TCF (4.13) and transport coefficients (4.18) were expressed
through the same generalized (higher memory functions) transport ker-
nels, had been proposed. Using scheme considered above we shall find
relation between generalized transport coefficients of Bose—system and
higher—order memory functions, whose time evolutions is being described
on the extended space of the operators orthogonal to operators of gen-
eralized fluxes Iy(k), Iy (k) that form generalized transport coefficients.
For this purpose we supplement the set of reduced description parame-
ters {7, T, ﬁk} by generalized fluxes 7, Qu:

e = (1 - Po)jk, (4.19)

Qr=(1- Po);Lk . (4.20)
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As aresult we obtain the extended set of abbreviated description param-

eters Y, (k) = col (ﬁk, Tk, hie, 7, Qk), which are mutually orthogonal:

(Vitk). V(=) =0, AL

Now using NSO method we can obtain the system of equations for av-
eraged operators (fig)?, (Jr)t, (he)t, (7k)t, (Qr)! in Laplace transform
representation that can be written down in matrix form

AV (K))z =1 (k)Y (K)) + @1 (k, 2)(V(R)). = ~(V(R)'=°,  (4.21)

where

(k) = (Ly¥ (k), V(=) (V(k),V(-k)) =

0 0

0 10y 0 0 0
Zﬂjn 0 ZQJh ZQJﬁ 0

0 ZQhJ 0 0 ZQhQ (4.22)

0 10y 0 0 g

0 0 ZQQh ZQQ,r 0 (k)
denotes the frequency matrix; ¢;1(k,z) means the matrix of Laplace—
transforms of higher—order memory functions with non—zero elements

(107T7I'(k7t7t’) = (fﬂ(k)aT(tatl)jﬂ(_k))o (ﬁ(k)aﬁ(_k))al )

-1

pao(k.t,t) = (Io(k), T(t ) Io(—k)) (Qk),Q(R))

0
where dissipative fluxes are determined in the following way:
I(k) = (1 - Pg) 7,
Io(k) = (1= Pu) Q. - (4.24)
Here Mori projection operator Py is defined as

P =Po+P1, (4.25)
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where the first term is determined in (4.12) while the second term ac-

cordingly to
PlA Z{(A T k:) Wk,ﬁ,k)al’frk,

PN A A -1 4
+ (Aan:)O (Qk;ka:)O Qk:} : (4.26)
Projection operator Py possesses properties
Pu(l—Pr) =0, PuPu=Pu, PuYik)="Yi(k)

and forms time evolution operator T'(t,t') = exp{—(t —t')(1— Py )1Ln}.
On the basis of transport equations (4.21) one can obtain the system

of equations for 25 TCF &y (k,t) = (f’(k,t), Y(—k)) , constructed on
0

operators Yl(k) In Laplace—transform representation they can be writ-
ten in the matrix form very similarly to (4.15):

2@k, z) — 1 (k) @y (k,z) + &1 (k, 2)Pn(k,2) = Pu(k),  (4.27)

where

B (k) = (f/(k),ff(_k)) (4.28)

0
is a diagonal matrix of static correlation functions.

Some remarks concerning relations of our results with those of [12]
ought to be done.

(i) An explicit form of dynamic matrix in [12] directly follows from
(4.15) and (4.21).

(ii) Nondiagonal elements in memory kernels were neglected in [12]
while these elements (as shown by the calculations for Lennard—
Jones fluid [14]) become very important for intermediate values of
k and w.

(iii) Reduction of the number of dynamical variables was performed in
[12] in nonconsistent way when passing to viscoelastic and damped
harmonic oscillators approximations. In fact, ”rolling—up proce-
dure” of elimination of redundant variables leads to the appear-
ance of time-spatial dispersion of transport coefficients and had
been used in a number of papers [18,19,24,25].

In the next section we present the results for collective modes spec-
trum in hydrodynamic limit taking into account kinetic excitations in
semi—quantum helium.
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5. Collective modes spectrum of semi—quantum
* He in hydrodynamic limit.

We shall consider Markovian approximation for transport kernels in the
system of equations (4.27), when memory functions (4.23) are being
approximated by expressions

oo

onn(ks2) & orn (R, 0) = / omn(k, 0}t
0

QOTrQ(kaz) ~ QOTrQ(kao) = /‘pﬂ'Q(kat)dta
0

oo

pon(k,2) ~ pan(k,0) = / pon(k, )t (5.1)

vaalk.z) ~ paq(k,0) = / oo (k. t)d.
0

Under this condition the system of transport equations (4.21) can be
written down in the following manner:

AV (K)): + T(k)(Y (k). = —(¥ (k)" (5.2)
where matrix T'(k) has the structure:

0 10y 0 0 0
ZQJn 0 ZQJh ZQ_]ﬂ— 0
0 1y O 0 g (5.3)
0 1Oy 0 Orr 0
0 0 ZQQh 0 PRQ (k,2=0).

T(k)=

In the limit £ — 0 linear system of equations allows solutions on eigen-
values, which are the following:
heat mode:
zn(k) = Drk® + o(k*) ; (5.4)

two complex conjugated sound modes:

z4(k) = f1ck + Tk* + o(k*) ; (5.5)
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two nonvanishing in the limit ¥ — 0 kinetic modes:

zw(k) = 907”7(070) + O(k2) ) (56)
20(k) = 9 (0,0) + o(k?). (5.7
In (5.4)-(5.7) D means temperature diffusion coefficient:
2
Liryle) )\(0, 0)

Dy = = 5.8
" S0aq(0,0) ~ mme,(0) )

m®go(0,0)32
ho = "PROIT v, 69)

UTQ - cy (0) )

¢p(0) and ¢y (0) denote, correspondingly, thermodynamic values of the
specific heats at constant pressure and volume, A\(0,0) means generalized

thermal conductivity coefficient at k =0, 2 =0, ¢ = m denotes
adiabatic sound velocity,
1 Ly

= 5(7 —1)Dp + 2" (5.10)

is the sound damping coefficient with
o Vi _ (4 (0,0) + ¢(0,0) ) /nm (5.11)

77 - (,Oﬂ—ﬂ-(o,o) - 377 ) ) .
2 /gq>ﬂ'7r (07 0)

=—F 5.12
Vim m ) ( )

where 17(0,0) and ¢(0,0) are generalized shear and bulk viscosities at
k =0, z = 0. Expressions (5.6)-(5.7) and (5.8)-(5.12) give us relations
between kinetic modes 2z, zg and transport coefficients:

A

= 5.13
“Q mch(O)U%Q ’ ( )

2t = (%n(o, 0) + ¢(0, 0)> /mnv3 . (5.14)

It should be mentioned that kinetic modes (5.6)-(5.7) are very important
in the context of the study of non—dispersive phonon—like excitations.
For instance, it was found that for a Lennard—Jones fluid the interplay
of these two kinetic modes forms (starting from some fixed value of k)
propagating excitations, the dispersion of which for larger £ is very small
[19]. A similar situation was found recently for a binary mixture [22].
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Hence, on the basis of the system of TCF (4.27) in hydrodynamic
limit k¥ — 0, w — 0 we obtained collective excitations spectrum, which
is being formed by heat mode z,(k), two sound modes z4(k) and two
kinetic modes z.(k), zq (k).

In Markovian approximation for memory functions solutions of TCF
(4.27) can be expressed via eigenvalues z, and eigenvectors X, = || Xia||
of matrix T'(k):

5 i
Ok, z) =) M, (5.15)

— 2+ za(k)
where
G (R) = 3 Xia X, by (k,0) (5.16)
=1
and X ~! denotes matrix inverse to X = ||X;4||. In time representation
(5.15) has the form
5 ..
O;i(k,t) = > G (k) exp{—za(k)t}, (5.17)

a=1

so TCF in Markovian approximation appear to be the sum of weighted
exponents related with collective modes of semi—quantum “He.

TCF ”density—density”, which has been expressed in our approxi-
mation via sum of five Lorenz lines (5.15), gives us possibility to study
the behaviour of dynamic structure factor. Each of the modes can more
or less contribute to S(k,w). For instance, half-width on half-height of
the central peak of dynamic structure factor at small wave—number (see
Fig.2) is being determined by (5.4), whose value, in its turn, is renormal-
ized via kinetic mode (5.7). Hence, hydrodynamic limits of corresponding
TCF ®¢(0,0) together with memory kernel g (0,0) as well as some
thermodynamic values completely define central resonance clearly dis-
tinguishable at k = 1+ 2 nm™!.

Localization of the sound peak is being determined by sound fre-
quency and its half-width is a result of interplay of two processes: heat
diffusion (first term in (5.10)) and shear flow (second term), whose val-
ue is defined by kinetic mode (5.6). It should be stressed that one can
easily derive from (5.8)-(5.9) and (5.10)-(5.12) the explicit forms of heat
conductivity A(0,0) and longitudinal viscosity 1//(0, 0) and these results
coincide with those for simple fluids [26].

What about kinetic modes (5.6)-(5.7) themselves, that are being de-
termined in the limit & — 0, w — 0 by memory kernels ¢, (0,0),
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©0q(0,0), their role becomes important in the intermediate region of
wave-vectors and can results in phenomena mentioned on previous pages.

Hence, the main difference of our approach from [12] is the follow-
ing: we would like to study the system within five—variables set for the
whole range of k& and w. The role of each mode may be established by
calculations of generalized collective modes spectrum as well as weight
coefficients (5.16). In such a way one may conclude about the disappear-
ance of heat mode or application of damped phonon model much more
based on a microscopic treatment.

6. Discussion.

In previous sections the set of equations for TCFs within a five- vari-
ables thermo-elastic model is derived. In the hydrodynamic limit we use
Markovian approximation for memory functions, which is indeed exact
in this case, and study the hydrodynamic spectrum of collective modes.
As it was shown for a simple fluid [14] as well as for a binary mixture
[22], the Markovian anzats for the higher—order memory functions could
be applied for the subsequent calculations of dynamic quantities for all
k and w, and not only the low frequency domain. To simplify the scheme
for a classical fluid the inverse transformation to initial non-orthogonal
set of dynamic variables has been performed after Markovian approxi-
mation, and it was shown [14,18,19] that the matrix T'(k)- matrix (see
Eq.(5.3)) could be presented in a more simple and computer-adapted
form. In such a case the main input of the theory are static correlation
functions and the hydrodynamic correlation times. All these quantities
for a classical fluid can be calculated by either integral equations method
or computer simulations. We note also that recently for the calculations
of correlation times a new iterating procedure, based on the knowledge
of static correlation functions only, has been developed [27]. In a such a
way the problem of calculations of generalized collective modes, TCF's
and generalized transport coefficients can be reduced on the first stage
to the obtaining of corresponding static correlation functions.

The problem becomes much more complicated for a quantum fluid
where the computer methods for the study of higher-order static corre-
lation functions are not so developed. From this point of view one may
understand the approach used in [12] based on a fitting procedure for all
the parameters of the theory. However, as it was mentioned above, the
physical meaning of some interesting phenomena remains outside of our
understanding in such a case. Hence, a continuation of this study may
follow by several main ways.
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(i) Semi-phenomenological approach. For small values of k, taking
into account the next order with respect to k, all the elements of gen-
eralized hydrodynamic matrix (5.3) can be written via thermodynamic
quantities (such as specific heats, thermal expansion coefficient, com-
pressibility, etc.), transport coefficients (kinematic viscosity and thermal
conductivity), and some parameters to have been treated as phenomeno-
logical. For thermodynamic quantities as well as for transport coefficients
the experimental data may be used. Phenomenological coefficients may
be considered as fitting parameters. Thus, one may to study the dy-
namical properties of a semi-quantum fluid within thermoelastic model.
We note that similar schemes are widely used in the theory of complex
classical fluids, i. e. see Ref. [16,28] .

For a semi—quantum liquid some semi-microscopic models have been
developed. As has been noted in the Introduction, for a semi—quantum
fluid it is important to take into account kinetic jumping processes. To
do it, Andreyev proposed to consider 2— and 3-level models [6,7,10] and
obtained reasonable results for entropy, specific heat, shear viscosity and
thermal conductivity. However, in this case many processes have to be
important for scattering were not incorporated into the theory.

(ii) Statistical mechanics approach. Developing the previous point the
static correlation functions can be calculated using one from the meth-
ods of quantum statistical physics applied for approximate calculations.
For instance, in [9] one has calculated a set of generalized thermody-
namic values (specific heat, static structure factor etc.) of slightly non—
ideal Bose gas using Green’s functions methods for evaluation of static
susceptibilities. Well known cy (T) ~ T3 was found as well as small
wave—number corrections to corresponding static correlation functions.
A similar approach had been used in [29] in application to investigation
of generalized hydrodynamics equations. In [30] the authors calculat-
ed single particle density matrix using pair correlation functions method
and presented formulae for evaluation of Bose condensation temperature.
Other problems dealt with A-transition in *He have been examined in
[31,32].

(iii) Decoupling of memory functions. It should be stressed that quan-
tum case occurs to be even somewhat easier for investigation then clas-
sical one because it gives us clear picture how to take into consideration
the relation between kinetics and hydrodynamics on the stage of de-
coupling of memory kernels. It ought to be mentioned that decoupling
of mass operator could be performed in terms of either single particle
Green’s function [33] or many particle correlation functions [34,35]. Of
course, both way can be followed separately thought our assumption
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about intermixing between kinetics and hydrodynamics can be applied.

Though above A—point there is not direct coupling between single
particle and collective modes on microscopic level [2], one may con-
sider correlation between these processes on the stage of decoupling of
memory kernels representing them via convolution integrals of Laplace—
transforms of nonequilibrium single particle time correlation function

(&L, dk) together with integrals of TCF constructed on hydrodynam-

ic variables. Then, corresponding memory kernel or ”collision integral”
in the kinetic equation can be decomposed in the same approximation
taking into account the order of operators. Thus, an interesting question
about the contributions from one-particle kinetic and hydrodynamic pro-
cesses into dispersion of generalized transport coefficient appears.

We note there are also alternative ways to construct a closed chain
of equations for TCFs. In one of them the hydrodynamic velocities and
thermodynamic forces are presented as an expansion in terms of higher—
order fluctuations with further closure of memory functions in form of
convolution integrals of TCFs. This method is known as mode—coupling
theory and is widely used for an analysis of time—spatial dispersion of
transport coefficients as well as for the study of TCFs behaviour. How-
ever, a decoupling procedure is known to be valid, generally speaking, in
low—wavelength and low—frequency limit only [36,37] and allows one to
obtain nonanalytical corrections to transport coefficients, e.g. the well—
known k°/? contribution to sound velocity [38]. Generalization of mode—
coupling theory on high k, w region was considered in a number of pa-
pers and was shown to give reliable results in some cases [34,35,39—41].
In majority of cases viscoelastic approach was applied (in this framework
knowledge of triple static structure factor only is necessary). Considera-
tion of energy fluctuation gives more correct description of the processes
outside roton minimum region, where viscoelastic description is quite suf-
ficient. For instance, in [41] the total energy density has been considered
in addition and the dynamic structure factor of a simple Lennard-Jones
liquid was calculated using mode—coupling approach up to k = 0.9A4.
However, using the mode coupling theory for a quantum fluid we face
once again with the problem of calculations of higher—order static corre-
lation functions.
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lichen Forschung under Project P 12422 TPH.
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