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1 ðÒÅÐÒÉÎÔ1. Introduction.Liquid 4He is a sample of quantum liquid that excites permanent inter-est both for theoretical physicists and experimentalists [1{4]. Being thesystem that obeys Bose statistics a liquid 4He, together with a numberof Fermi systems [3{5] such as 3He, various compounds of hydrogen,electronic gas, needs applying of quantum mechanics apparatus for itsdescription.It is well known that any quantum system may be characterized bythe set of some typical temperatures to be very important for under-standing of its dynamical properties. One of them is a temperature ofquantum degeneration Td = �h=� which can be estimated both for Boseand Fermi cases as follows Td � n 23 =m� where n and m� are the num-ber density and the e�ective mass of particle, respectively. The value �may be considered as a quantum delocalization time. Another temper-ature, characterizing quantum systems, in which phonon processes aredominant in low{temperature region (what one has, in fact, in quantum4He and 3He [4]) is a Debye temperature TD = �h
D. This temperaturecan be simply estimated using the well know formula for solids, namely,TD � cn 13 , where c is an adiabatic sound velocity, and may characterizethe frequency of the vibrational degrees of freedom in a quantum system.For quantum liquids mentioned above the inequality Td � TD takesusually place. Depending on the value of equilibrium temperature Tconsidered, all the quantum uids (for which the melting point is far lessthen TD) could be arbitrarily divided into two main classes:(i) quantum uids for which an equality T < Td is satis�ed, so thatthe quantum e�ects plays crucial role;(ii) quantum uids considered within region Td � T � TD.Estimations, performed for some quantum systems by Andreev [6],give us for the pressure P = 0 atm, P = 25 atm, P = 64:6 atm, thefollowing values of Debye temperatures: 13.7 K for 3He; 32.7 K for 4He;155 K for H2, respectively. The temperature Td is Td � 3 K for 3He and4H and has been estimated as Td � 10 K for H2 [7]. So that a number ofquantum uids being considered as the uids (ii) with Td � T � Td ismuch larger. Besides 3He and 4He, to this class of uids belong isotopesof hydrogen as well as its solutions.Let us discuss now what is the reasons and the physical meaning forsuch a division.According to Frenkel picture of kinetic phenomena in liquids [8], incase (ii) a vibrational frequency 
 of the atoms near equilibrium po-sition is large in comparison with inverse time ��1 of the jump of the
ICMP{98{08E 2particles between local positions of equilibrium (
� � 1). Thus, a phe-nomenological model of the liquid as a system of particles trapped at thebottom of the potential well which vibrate very frequently and duringcertain period of time � jump in the closest position of equilibrium canbe constructed. In the Frenkel picture tunnel transitions of the particlesin nonsymmetric potential well, created by neighbouring surrounding,play the role of elementary excitations. Because of assumption 
� � 1these phonon{like excitation are well{de�ned and they should contributeessentially both to thermodynamic and dynamic properties.For a system to remain in a liquid state at T � TD it is necessary thatthe amplitude of vibrations to be su�ciently large comparatively withinteratomic distance, or, what is nearly the same, the Debye temperatureto be comparative with interparticle interaction energy U . So far as thereis not long-range order and equilibrium positions are distributed irregu-larly in space, such a liquid resembles a glass. The only di�erence consistsin the fact that in quantum liquids all potential barriers are penetrable,so that a small concentration of excitations may be conditioned onlyby low temperatures in comparison with typical di�erence of energiesin the neighbouring equilibrium positions. Such phenomenological treat-ment has been developed by Andreev who introduced in the literature(after Lifshitz proposal) the term \semi{quantum" liquid for descriptionof the object for which the conditions (ii) are valid. Let us consider onefrom the thermodynamical results which obtained by Andreyev. Takinginto account that the main contribution to the thermodynamics is re-lated to the phonon-like excitations, the free energy per atom can bewritten in the form [6]:f(T ) = �T 1Z0 ln (1 + exp(��=T )) �(�)d�; (1.1)where �(�) d� denotes the probability for some particle to occupy neigh-bouring equilibrium position with excitation energies in the interval �and �+ d�. When �� U the density of levels does not depend on energy(�(�) = � = const) and could be estimated as z=U , where z denotes ane�ective number of neighbouring vacancies. Then free energy per atomequals f(T ) = ��212�T 2 ;where from speci�c heat cV (T ) could be obtained:cV (T ) = �26 �T : (1.2)



3 ðÒÅÐÒÉÎÔHence, instead of phonon-like contribution to cV (T ) � T 3 observed inquantum liquids for low temperature region (T < Td) we got lineardependence. This very simple and nice formula has been veri�ed for 3He,4He and H2 liquids and it was shown that the expression (1.2) could beapplied for up to temperatures of order T=TD � 0:07. There were alsofound the estimations for the value of 1=�: 3.5 K for 3He (P = 0 atm); 6 Kfor 4He (P = 25 atm) and 110 K for H2 (P = 64:6 atm), respectively, tobe seem quite reasonable. In the section 4 the expression for generalizedspeci�c heat via quantum static correlation functions of enthalpy densitywill be presented. It may be expected that in microscopic approach, dueto essential anharmonicity of a model Hamiltonian, the linear behaviourmight be also found while in case of degenerated non-perfect Bose gasone has the well-known dependence cV (T ) � T 3 [9].Hence, having an example when phonon{like non{dispersive excita-tions inuence on thermodynamic properties of semi{quantum liquid,one can asked himself whether these excitations could be observed inkinetic properties? So the next natural step in investigation of semi{quantum helium was the study of dynamic properties. This was per-formed partly in [10] where on the basis of 2{ and 3{levels model thetransport coe�cients were calculated. A remarkable feature, founded inthis study, consists in the fact that in low frequency limit �h! � T shearviscosity and thermal conductivity behave as T�1 and T 1, respectively.A comparison with experimental data supported these results. In the pa-per [7] ultrasound damping in semi{quantum liquids was studied. Kineticequations were written and solved assuming that �(�) � � and di�usioncharacter of relaxation mechanism is dominant. One obtained frequencydependence of damping coe�cient both in high frequency limit and incase !� � 1. Frequency dependence occurs to be proportional !2 in the�rst case and linear in ! in low frequency limit. Now, the next questionnaturally arises. Could these non-dispersion excitations be observed inscattering experiments and in which range of k one can expect to �ndthem?The history of the study of quantum liquids has a long tradition.We restrict themselves only by a short discussion of the results for aquantum 4He liquid related to our topic. What might one expected to�nd? The �rst point, we should consider the temperatures higher thanT=TD � 0:07 and this means for 4He that we are interested in casesT � 4 K depending on the density or pressure. The second point, onemay hope to �nd the excitations with a weak dispersion located aboutthe frequency ! = 
. For 4He one has 
 � 5 ps�1. And these excitationshave to appear when k increases in order to rich the range where the
ICMP{98{08E 4excitations are located. Taking into account the viscoelastic properties ofmedium to be crucial usually, when k is about the position k0 of the �rstmaximum of the static structural factor, one may expect to �nd theseexcitations for k > k0 only as additional side peaks in the symmetrizeddynamic structural factor. According to the conditions formulated abovewe should state that the most part of scattering data known in the lit-erature were obtained for the temperatures and the (k; !)-regions whichare outside of our interest in this study.The most interesting data related to our topic are obtained by groupof experimentalists from Delft Interfaculty Reactor Institute [11,12].They performed two sets of experiments for helium at the states T = 4 K,P = 1 bar and T = 8 K, P = 18.7 bar and determined the dynamic struc-ture factor S(k; !) in the range 1 < k < 30 nm�1. The subject of ourinterest is the symmetrized dynamic structure factor Ssym(k; !) of liquidhelium at T =4 K and gaseous helium at T =8 K which are presentedon �gures 1 and 2. One can see in these �gures that:(i) For small k (k < 2 nm�1) the usual hydrodynamic behaviour is ob-served what is quite similar to classical uids. It is clearly that Ssym(k; !)consists of three lines which form the Rayleigh-Brillouin triplet, namely,a central line corresponding to entropy di�usion, which disappears fork > 3 nm�1 and two side peaks representing all the mechanisms whichnormally related to the propagation of sound waves.(ii) When k increases one may see that at �rst the central peak isdisappearing for both temperatures, and then the sound modes becomeoverdamped and form two broad peaks getting to be indistinguishablefor k > 10 nm�1. It is worth to note that for T =4 K all these e�ectsare started to be visible for smaller k.(iii) For the wave-numbers about the value of k0 = 20 nm�1 (wherethe �rst maximum of static structural factor is approximately located)the spectrum, much like the behaviour in classical uids, gets narrow(de Gennes' narrowing). For large k the width of the spectrum increasesagain with increasing of k.(iv) For larger values of k the side peaks appear again and theirposition is increasing weakly when k increases, so that we face withnew propagating damped sound-like modes which characterize mainlythe dynamic properties of the liquid helium for large k. It should beemphasised that such behaviour is rather special and is not typical forany classical uid.



5 ðÒÅÐÒÉÎÔ

Figure 1. Symmetrized dynamic structure factor Ssym(q; !) of He4 atT = 4K (left) and T = 8K (right) as function of ! for di�erent q.Experiment (error bars), best �ts using 3{variables generalized hydro-dynamics model (solid line) and best �ts using 2{variables model ofdamped harmonic oscillators (dashed line) [12].
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Figure 2. The same as on �gure 4 for q � 4nm�1.



7 ðÒÅÐÒÉÎÔIn the same series of papers [11,12] a semi-phenomenological theoret-ical model, based on the generalized mode approach (see, e.g., [13,14]),has been developed for a description of experimental data. Within thisframework the model parameters has been considered as adjustable pa-rameters giving the best �t of dynamic structure factor. In particulary,it was shown that all the data could be described using a small number lof basic dynamic variables (l � 3) for all k, namely, in the hydrodynamicrange a three Lorentzians scheme was used for description of Rayleigh-Brillouin triplet; for intermediate range of k so-called damped harmonicoscillator model has been applied (l = 2), and the viscoelastic model(l = 3) was utilized for describing of the experimental data when k islarge enough. It is worth to point out that these results have little touse for understanding of the real dynamic properties in a liquid helium.Some anzats has been applied just to �t of experimental data. Hence,one may agree with a conclusion of Gri�n [15] that \the overdampedphonon spectrum may well be an artifact of the particular formula usedin the �ts".Another paper [16] to be important for our discussion reported the re-sults of a neutron-scattering experiments on dense helium at T =13.3 K,P =203 bar in the range 3 < k < 11 nm�1. It was found that thedynamic structure factor S(k; !) has a clearly visible additional peakwhich can not be considered as sound modes. Moreover, the directlyrelated scattering spectrum C(k; !) = !2S(k; !) showed a four-peakedstructure, so that it was necessary to consider at least �ve Lorentziansfor a description of experimental data consistently (i.e., four side linesand one central line). Two additional peaks were treated as the propa-gating temperature waves, which are not seen in dense classical uids.Unfortunately, this study has been only performed for k < 11 nm�1, sothat it is impossible to say anything about the behaviour of a centralpeak as well as side propagating excitations when k increases.The last scattering data that we would like to mention were presentedin Ref. [17] and obtained for dense helium at T =39 K, P =114 bar in therange 3 < k < 24 nm�1. In fact this temperature is nearly the same asDebye temperature TD for 4He, so that one could expected to �nd hereinthe behaviour to be very similar to classical uids. The main conclusionof this paper is that the dynamic structure factor can be described com-pletely by the viscoelastic model. We note that such conclusion is typicalfor classical uids for intermediate values of k. Because of large valuesof k, the presented results do not allow to discuss the hydrodynamicbehaviour of S(k; !) where Rayleigh-Brillouin triplet have to be visible.Now let us summarize our introductory part and underline the main
ICMP{98{08E 8problems which still wait to be solved.(a) There are a lot of reasons to consider semi-quantum uids asa separate class of uids. These uids possess some special propertieswhich could be recognized in thermodynamics, kinetics, and dynamicbehaviour;(b) one can expect that the most part of their typical properties areclosely related with the existence of weak dispersive excitations, whichplay crucial role both for thermodynamics and dynamics;(c) in order to understand the interplay of collective excitations,which are observed in scattering experiments, the additional study hasto be preformed taking into account all the processes to be importantfrom the physical point of view, namely, entropy uctuations, viscoelas-tic properties as well as their mutual interaction. This study should baseon the uni�ed dynamical model to have been applied for all temperaturesfrom the range Td � T � Td. Here the main problems are: a decrease ofcentral peak in the dynamic structure factor and an appearance of newpropagating phonon{like excitations when k increases.The goal of this paper is to develop a general microscopic frame-work for the next ab initio study of generalized collective mode spec-trum, time correlation functions and generalized transport coe�cientsfor semi{quantum uids. We use for this purpose the generalized modeapproach developed [14,18] for the investigation of a dense classical uid.Moreover, comparing the results obtained for the spectrum of general-ized collective modes of a Lennard-Jones uid [19], one may assume thatweak dispersive excitations observed in scattering experiments are in-deed kinetic propagating modes which appear due of coupling thermaland viscous processes. In classical uids these modes are usually over-damped and can not be observed in scattering experiment. However,they become to be visible in some binary mixtures [20{22] with a largedistinction in the masses of components and are known in the literatureas \fast" sound.2. Initial relations.We shall deal in this study with the time correlation funnctions (TCFs)�AB(k; t) de�ned by�AB(k; t)=� ^A(k; t); ^B(�k)�0= 1Z0 d�Sp��^A(k; t) ��0�^B(�k)�1��0 � ; (2.3)� ^A(k; t) = ^A(k; t)� Sp �0 ^A(0; 0);



9 ðÒÅÐÒÉÎÔwhere the time dependence is in the Heisenberg representation^A(k; t) = exp({ ^H) ^A(k) exp(�{ ^H); ^H = ^H � � ^N : (2.4)Here ^H means Hamiltonian of the system (see eqn.(3.1) for its explicitform), ^N denotes particle number operator, �0 is an equilibrium statis-tical operator �0(xN ) = expn��� �( ^H � ^N�)o of Bose{system withequilibrium inverse temperature � and chemical potential �.TCF �AB(k; t) appear in natural way in the nonequilibrium statisti-cal operator method and are directly related to the so-called correlationGreen's function.The Fourier transform �nn(k; !) of the time correlation function�nn(k; t) constructed on number density operators ^nk,�AB(k; !) = 12� 1Z�1 dt exp({!t)�AB(k; t); A;B = n; (2.5)is straightforwardly related to the experimentally determined dynamicstructure factor S(k; !) as�nn(k; !) = 1� exp(���h!)��h! S(k; !): (2.6)Taking into account that �nn(k; !) is a function of !, one may see thatthe detailed balance relationS(k;�!) = e���h!S(k; !)follows directly from (2.6), and �nn(k; !) can be considered as sym-metrized dynamic structure factor Ssym(k; !) introduced in Ref. [11,12],so that Ssym(k; !) � �nn(k; !):Another expression to be usefull for the next consideration establishesthe relation between the Laplace transfom ~�nn(k; z) of �nn(k; t),~�AB(k; z) = 1Z0 dt e�zt�AB(k; t); A;B = n; (2.7)where z = i!+�, � = +0, and the symmetrized dynamic structure factorSsym(k; !) = 1�Re ~�nn(k; z):

ICMP{98{08E 10Similary to the static structure factor S(k) de�ned byS(k) = 1Z�1 d! S(k; !) ; (2.8)the symmetrized static correlation factor can be de�ned as 1Ssym(k) = 1Z�1 d! Ssym(k; !) : (2.9)It would be useful to write down some additional relations for high-er frequency moments of dynamic structure factor which were given inRef. [12]. The frequency moments S(k; !) and Ssym(k; !) are in generalde�ned by M (l)(k) = 1Z�1 d! !lS(k; !) (2.10)and M (l)sym(k) = 1Z�1 d! !lSsym(k; !); (2.11)where l � 0. Because Ssym(k; !) is an even function of !, all the oddmoments M (2l+1)sym (k) are equal to zero. The additional exact relationsfollow straightforwardly from the detailed balance relation and Eqn. (2.6)M (2l+1)(k) = �h�2 M (2l+2)sym (k): (2.12)In a similar manner the even moments of S(k; !) can be expressed as aseries expantion in the small parameter (�h�)2M (2l)(k) =M (2l)sym(k) + (�h�)212 M (2l+2)sym (k)� (�h�)4720 M (2l+4)sym (k) +O((�h�)6): (2.13)It is clear from expressions presented above that in low frequencyregion �h! � T we face with purely classical behaviour while as in col-lisionless high{frequency domain �h! > T quantum features become es-sential.1Due to de�nition (2.3) we shall deal with symmetrized static correlation functionsonly in all subsequent expressions.



11 ðÒÅÐÒÉÎÔ3. Nonequilibrium statistical operator of liquid 4Heabove Bose{condensation point.Hydrodynamic state of helium above Td will be described on the basisof the model of Bose{system with Hamiltonian^H =Xp p22m^ayp^ap + 12V Xk Xp �(k)^ayp+k2 ^nk^ap�k2 ; (3.1)where ^ayp, ^ap denote creation and annihilation operators in the state withmomentum p, �(q) = R exp({qr)�(jrj) dr denotes Fourier{componentof the interaction potential �(jrj) between helium particles, V meansvolume of the system. ^nk = 1pN Xp ^ayp�k2 ^ap+k2 (3.2)is a Fourier{component of the number density operator, N denotes totalparticle number.Nonequilibrium state of such a quantum system is described by non-equilibrium statistical operator (NSO) �(xN ; t) obeying quantum Liou-ville equation: @@t�(xN ; t) + {^LN�(xN ; t) = 0 ; (3.3)where {^LN denotes Liouville operator determined as {^LN ^A = {�h h ^A; ^Hi.Within Zubarev's method of NSO [23], the retarded solutions of the Li-ouville equation can be obtained by introduction an in�nitesimal sourcein the right hand side of (3.3):@@t�(xN ; t) + {^LN�(xN ; t) = �" ��(xN ; t)� �q(xN ; t)� ; (3.4)(" ! 0 after thermodynamic transition), where �q(xN ; t) is so-calledquasi-equilibrium statistical operator is known to be functional of themean values of the certain set of dynamic operators ^Pn(k). So far aswe investigate hydrodynamic state of the system one can choose as pa-rameters of abbreviated description the most slowly physical quantities^Pn(k), which are thought to determine the nonequilibrium state. Onecan select among them Fourier{transforms of the number density ^nk(see eqn.(3.2)), momentum density ^Jk:^Jk = 1pN Xp p ^ayp�k2 ^ap+k2 (3.5)
ICMP{98{08E 12and total energy density ^"k:^"k = 1pN Xp � p22m � k28m� ^ayp�k2 ^ap+k2+ 12V Xp Xq �(q)^ayp+ q�k2 ^nq^ap� q�k2 (3.6)which obey conservation laws_^Pn(k) � {^LN ^Pn(k) = �{k^In(k) ; (3.7)^Pn(k) = n^nk; ^Jk; ^"ko ; ^In(k) = � 1m ^Jk; ^�k; ^J"k� ;where ^�k is a stress tensor operator and ^J"k denotes operator of energycurrent.Accordingly [23], quasiequilibrium statistical operator �q(xN ; t) is be-ing determined from maximum entropy principle under �xed mean val-ues h ^Pn(k)it and normalization condition Sp �q(xN ; t) = 1 and has thefollowing form:�q(xN ; t) = exp(��(t)�Xk ���k(t)^"k � (�v)�k(t)^Jk�(�(�� m2 v2))�k(t)^nk�o ; (3.8)�(t) = lnSp exp(�Xk ���k(t)^"k � (�v)�k(t)^Jk�(�(�� m2 v2))�k(t)^nk�o (3.9)denotes Massier{Planck functional, where �k(t), vk(t), �k(t) denoteFourier{components of the local values of inverse temperature, hydro-dynamic velocity and chemical potential which are being determinedfrom self{consistency conditions:h^nkit = h^nkitq ; h^Jkit = h^Jkitq ; h^"kit = h^"kitq ; (3.10)h: : :it = Sp �: : : �(xN ; t)� ; h: : :itq = Sp �: : : �q(xN ; t)� :



13 ðÒÅÐÒÉÎÔOne can point out that values �k(t), (�v)k(t) and (�(� � m2 v2))k(t)play the role of Lagrange multipliers in the problem of conditioned max-imum of entropy and due to local thermodynamic relations should beattributed to corresponding thermodynamic forces [23].NSO method allows to solve equation (3.4) and to write down theexplicit form of �(xN ; t) as retarded solution of Liouville equation:�(xN ; t) = �q(xN ; t) +Xk tZ�1 dt0 exp("(t0 � t))T (t; t0) 1Z0 d���q (xN ; t0)� n��k(t0)^J"k � (�v)�k(t0) ^�ko �1��q (xN ; t0): (3.11)Here time evolution is being described by evolution operatorT (t; t0) = exp+8<:� tZt0 (1�Pq(�)){^LN d�9=; ; (3.12)where Pq(�) denotes generalized Kawasaki{Gunton operator [23].The �rst term of (3.11) doesn't contribute to entropy production.On the contrary, integral term in the right{hand side of NSO (3.11) de-scribes dissipative processes. Generalized transport coe�cients - viscos-ity, thermal conductivity and thermoelasticity are being constructed ondissipative uxes ^I"(k; t) and ^IJ (k; t) that are of the following structure:^I"(k; t) = (1�P(t)) _^"k ; (3.13)^Ij(k; t) = (1�P(t)) _^Jk ; (3.14)where P(t) denotes Mori projection operator, constructed on basic vari-ables f^nk, ^Jk, ^"kg, which acts on arbitrary operator ^A accordingly rule:P(t) ^A = h ^Aitq +Xk ( �h ^Aitq�h^nkit �^nk � h^nkit�+ �h ^Aitq�h^Jkit �^Jk � h^Jkit�+ �h ^Aitq�h^"kit �^"k � h^"kit�) (3.15)and has the following properties: P(t)P(t) = P(t), (1�P(t))P(t) = 0,P(t) ^Pn(k) = ^Pn(k).

ICMP{98{08E 14Mori projection operator is connected with Kawasaki{Gunton oper-ator appearing in (3.12) by relationPq(t) ^A�q(xN ; t) = 1Z0 d� ��q (xN ; t)P(t) ^A�1��q (xN ; t):Local energy conservation laws (3.7) averaged by nonequilibrium sta-tistical operator �(xN ; t) form generalized equations of hydrodynamics.These equations together with equations for time correlation functionswill be obtained in the next section.4. Transport equations and time correlation functions.So far as thermodynamic parameters �k(t), vk(t), �k(t) are being de-�ned from self{consistency conditions (3.10) at every step of their deter-mination, NSO becomes the functional of mean values h^nkit, h^Jkit andh^"kit. Given mean values obey generalized transport equations, whichcould be obtained by averaging of local conservation laws (3.7) withNSO (3.11) taking into consideration identities @@t h ~Pn(k)it = h _~P n(k)itq+h(1�P(t)) _~Pn(k)it. In general case such a system of equations can berepresented in the matrix form:@@th ~P (k)it=h _~P (k)itq +Xk0 tZ�1exp("(t0 � t)) ~'(k;k0; t; t) ~F (k0; t0) dt0; (4.1)where ~P (k) =col�^nk; ^Jk; ^"k� is vector{column of the operators of num-ber, momentum and energy densities; ~F (k; t) = ��(�� m2 v2)�k(t);�(�v)k(t); �k(t)g denotes vector{row of thermodynamic parameters;~'(k;k0; t; t0) denotes generalized transport kernels matrix:~'(k;k0; t; t0) = 24 0 0 00 'JJ 'J"0 '"J '"" 35(k;k0;t;t0) (4.2)with nonzero elements of the following structure:'mn(k;k0; t; t0) = Sp�(1�P(t)) _~Pm(k)T (t; t0)



15 ðÒÅÐÒÉÎÔ� 1Z0 d���q (t0)(1�P(t0)) _~Pn(k0)�1��q (t0)�: (4.3)Components of transport kernels 'JJ(k;k0; t; t0) are dealt with general-ized shear and bulk viscosities, '""(k;k0; t; t0) de�nes generalized ther-mal conductivity and 'J"(k;k0; t; t0) describes correlation between vis-cous and thermal processes. Transport equations (4.1) are not closed,so on every step of their solution thermodynamic parameters are to bedetermined from self{consistency conditions (3.10). In the case whenhydrodynamic processes are characterized by slight deviations of meanvalues h ~Pn(k)it or corresponding thermodynamic forces ~Fn(k; t) fromtheir equilibrium values, generalized transport equations (4.1) could besimpli�ed essentially due to linearization on deviations ��k(t), �vk(t),��k(t). Moreover, in spatially homogeneous case longitudinal (parallel towave-vector) and transverse (orthogonal to wave-vector) dynamic vari-ables are independent and can be studied separately. In particular, wepresent momentum density as sum of two terms:^Jk = ^J jjk + ^J?k (4.4)and in all subsequent expressions for TCF shall take longitudinal part^J jjk. Hence, in linear approximation on uctuations matrix equation (4.1)can be presented in the form:@@t h� ~B(k)it � {~
(k)h� ~B(k)it+tZ�1 exp("(t0 � t)) ~'(k; t; t0)h� ~B(k)it0dt0 = 0; (4.5)where � ~B(k) = ~B(k)�h ~B(k)i0, ~B(k) = col �^nk; ^J jjk; ^hk� denotes vector{column, ^hk denotes Fourier{component of enthalpy density operator^hk = ^"k � (^"k; ^n�k)0 (^nk; ^n�k)0 ^nk; (4.6)that appears due to exclusion of thermodynamic force 1=2�(��mv2)k(t)accordingly to self{consistency condition. In (4.6) (^"k; ^n�k)0, (^nk; ^n�k)0are equilibrium quantum correlation functions de�ned as� ^A; ^B�0 = Sp0@� ^A 1Z0 d���0� ^B�1��0 1A (4.7)
ICMP{98{08E 16(see eqn.(2.3) for comparison). Equation (4.5) forms a basis of molecu-lar hydrodynamics of semi{quantum helium. Frequency matrix {~
(k) in(4.5) has a structure:{~
(k) = 24 0 {
Jn 0{
nJ 0 {
hn0 {
Jh 0 35(k) ; (4.8)with elements{
Jn(k) = � _^J jjk; ^n�k�0 (^nk; ^n�k)�10 = {k�S(k) ;{
nJ (k) = � _^nk; ^J jj�k�0 �^J jjk; ^J jj�k��10 = {km;{
Jh(k) = � _^J jjk; ^h�k�0 �^hk; ^h�k��10 = {k 1ncV (k) �(k)kT (k) ; (4.9){
hJ(k) = � _^hk; ^J jj�k�0 �^J jjk; ^J jj�k��10 = {kmn� �(k)kT (k) :We have used in (4.9) the following denotations for generalized thermo-dynamic quantities: S(k) for static structure factor, cV (k) for generalizedspeci�c heat at constant volume, �(k) for generalized thermal expansioncoe�cient and kT (k) for generalized compressibilityMatrix of the kernels from (4.5) has the structure similar to (4.3),however its elements are normalized TCF:'JJ (k; t; t0) = �^IJ (k); T0(t; t0)^IJ (�k)�0 �^J jjk; ^J jj�k��10 ;'Jh(k; t; t0) = �^IJ (k); T0(t; t0)^Ih(�k)�0 �^hk; ^h�k��10 ;'hJ(k; t; t0) = �^Ih(k); T0(t; t0)^IJ (�k)�0 �^J jjk; ^J jj�k��10 ; (4.10)'hh(k; t; t0) = �^Ih(k); T0(t; t0)^Ih(�k)�0 �^hk; ^h�k��10 :Dissipative uxes IJ(k), Ih(k) in (4.10) are of the following structure:IJ(k) = (1�P0) _^J jjk; Ih(k) = (1�P0) _^hk : (4.11)



17 ðÒÅÐÒÉÎÔHere P0 denotes Mori projection operator constructed on basic operators^nk, ^J jjk, ^hk, which are mutually orthogonal, and its action is de�ned asP0 ^A =Xl Xk � ^A; ~Bl(�k)�0 � ~Bl(k); ~Bl(�k)��10 ~Bl(k): (4.12)P0 has the properties of Mori projector: P0P0 = P0, (1�P0)P0 = 0,P0 ~Bn(k) = ~Bn(k); T0(t; t0) means time evolution operator with projec-tion acting as T0(t; t0) = expn�(t� t0)(1�P0){^LNo :In molecular (or linear) hydrodynamics the system of equations (4.5)plays very important role because gives possibility to calculate hydrody-namic modes spectrum (heat di�usion and sound propagation) and toinvestigate TCF of hydrodynamic variables ^nk, ^J jjk, ^hk, which could bepresented in a matrix form:~�(k; t) = 24 �nn �nJ �nh�Jn �JJ �Jh�hn �hJ �hh 35(k;t) : (4.13)On the basis of the system of transport equations (4.5) one can showTCF to obey the system of equations analogous to (4.5):@@t ~�(k; t)� {~
(k)~�(k; t) + tZ�1exp("(t0 � t)) ~'(k; t� t0)~�(k; t0)dt0 = 0: (4.14)Using Laplace transformation matrix equation (4.14) can be rewrittenas z ~�(k; z)� {~
(k)~�(k; z) + ~'(k; z)~�(k; z) = ~�(k); (4.15)where ~�(k) is a diagonal matrix of static correlation functions~�(k) = � ~Bn(k); ~Bm(�k)�0 �mn (4.16)with elements �nn(k) = (^nk; ^n�k)0 = S(k) ;�JJ(k) = �^J jjk; ^J jj�k�0 = m=� ; (4.17)
ICMP{98{08E 18�hh(k) = �^hk; ^h�k�0 = 1�2 cV (k) :In matrix equation (4.15) the elements of transport kernels ~'(k; z) de�negeneralized transport coe�cients'JJ (k; z) = k2�43�(k; z) + �(k; z)� =mn ;'Jh(k; z) = {k2�(k; z)=ncV (k) ; (4.18)'hh(k; z) = k2�(k; z)=ncV (k) :Here �(k; z), �(k; z) and �(k; z), are, correspondingly, generalized co-e�cients of shear, bulk viscosity and thermal conductivity. Coe�cient�(k; z) describes correlation between viscous and heat processes in semi{quantum helium. In hydrodynamic limit k ! 0, ! ! 0 (z = ! + {","! 0) generalized transport coe�cients �(k; z), �(k; z) and �(k; z) tendto their hydrodynamic values while �(k; z) vanishes (we have introducedimaginary unit factor in the expression for 'Jh(k; z) to show that �(k; z)is pure imaginary when k 6= 0 and z = 0).From the system of equations (4.15) we can de�ne nine time corre-lation functions ���(k; z), �, � = fn; J; hg. The functions of greatestinterest are �nn(k; z), �JJ(k; z), �hh(k; z) that are expressed via staticcorrelation functions of frequency matrix (4.9) and generalized transportcoe�cients (4.18) because �rst of them is directly dealt with dynamicstructure factor and the second one { with its frequency moments. Hence,the problem of calculation of generalized transport coe�cients as func-tions of wave{vector k and frequency ! becomes very important.In [18,19] the method of extension of abbreviated description param-eters, when TCF (4.13) and transport coe�cients (4.18) were expressedthrough the same generalized (higher memory functions) transport ker-nels, had been proposed. Using scheme considered above we shall �ndrelation between generalized transport coe�cients of Bose{system andhigher{order memory functions, whose time evolutions is being describedon the extended space of the operators orthogonal to operators of gen-eralized uxes IJ (k), Ih(k) that form generalized transport coe�cients.For this purpose we supplement the set of reduced description parame-ters f^nk, ^Jk, ^hkg by generalized uxes ^�k, ^Qk:^�k = (1�P0) _^Jk ; (4.19)^Qk = (1�P0) _^hk : (4.20)



19 ðÒÅÐÒÉÎÔAs a result we obtain the extended set of abbreviated description param-eters ^Ym(k) = col �^nk; ^Jk; ^hk; ^�k; ^Qk�, which are mutually orthogonal:� ^Yi(k); ^Yl(�k)�0 = 0; i 6= l:Now using NSO method we can obtain the system of equations for av-eraged operators h^nkit, h^Jkit, h^hkit, h^�kit, h ^Qkit in Laplace transformrepresentation that can be written down in matrix formzh ^Y (k)iz � {~
1(k)h ^Y (k)iz + ~'1(k; z)h ^Y (k)iz = �h ^Y (k)it=0; (4.21)where {~
1(k) = �{^LN ^Y (k); ^Y (�k)�0 �^Y (k); ^Y (�k)�0 =266664 0 {
nJ 0 0 0{
Jn 0 {
Jh {
J� 00 {
hJ 0 0 {
hQ0 {
�J 0 0 {
�Q0 0 {
Qh {
Q� 0 377775(k) (4.22)denotes the frequency matrix; ~'1(k; z) means the matrix of Laplace{transforms of higher{order memory functions with non{zero elements'��(k; t; t0) = �^I�(k); �T (t; t0)^I�(�k)�0 (^�(k); ^�(�k))�10 ;'�Q(k; t; t0) = �^I�(k); �T (t; t0)^IQ(�k)�0 � ^Q(k); ^Q(�k)��10 ;'Q�(k; t; t0) = �^IQ(k); �T (t; t0)^I�(�k)�0 (^�(k); ^�(�k))�10 ; (4.23)'QQ(k; t; t0) = �^IQ(k); �T (t; t0)^IQ(�k)�0 � ^Q(k); ^Q(�k)��10 ;where dissipative uxes are determined in the following way:^I�(k) = (1�PH) _^�k ;^IQ(k) = (1�PH) _^Qk : (4.24)Here Mori projection operator PH is de�ned asPH = P0 + P1 ; (4.25)
ICMP{98{08E 20where the �rst term is determined in (4.12) while the second term ac-cordingly to P1 ^A =Xk n� ^A; ^��k�0 (^�k; ^��k)�10 ^�k+� ^A; ^Qk�0 � ^Qk; ^Q�k��10 ^Qk� : (4.26)Projection operator PH possesses propertiesPH(1� PH) = 0; PHPH = PH ; PH ^Yi(k) = ^Yi(k)and forms time evolution operator �T (t; t0) = expf�(t� t0)(1�PH){^LNg.On the basis of transport equations (4.21) one can obtain the systemof equations for 25 TCF ~�H(k; t) = �^Y (k; t); ^Y (�k)�0, constructed onoperators ^Yi(k). In Laplace{transform representation they can be writ-ten in the matrix form very similarly to (4.15):z ~�H(k; z)� {~
1(k)~�H(k; z) + ~'1(k; z)~�H(k; z) = ~�H(k); (4.27)where ~�H(k) = � ^Y (k); ^Y (�k)�0 (4.28)is a diagonal matrix of static correlation functions.Some remarks concerning relations of our results with those of [12]ought to be done.(i) An explicit form of dynamic matrix in [12] directly follows from(4.15) and (4.21).(ii) Nondiagonal elements in memory kernels were neglected in [12]while these elements (as shown by the calculations for Lennard{Jones uid [14]) become very important for intermediate values ofk and !.(iii) Reduction of the number of dynamical variables was performed in[12] in nonconsistent way when passing to viscoelastic and dampedharmonic oscillators approximations. In fact, "rolling{up proce-dure" of elimination of redundant variables leads to the appear-ance of time{spatial dispersion of transport coe�cients and hadbeen used in a number of papers [18,19,24,25].In the next section we present the results for collective modes spec-trum in hydrodynamic limit taking into account kinetic excitations insemi{quantum helium.



21 ðÒÅÐÒÉÎÔ5. Collective modes spectrum of semi{quantum4 He in hydrodynamic limit.We shall consider Markovian approximation for transport kernels in thesystem of equations (4.27), when memory functions (4.23) are beingapproximated by expressions'��(k; z) � '��(k; 0) = 1Z0 '��(k; t)dt ;'�Q(k; z) � '�Q(k; 0) = 1Z0 '�Q(k; t)dt ;'Q�(k; z) � 'Q�(k; 0) = 1Z0 'Q�(k; t)dt ; (5.1)'QQ(k; z) � 'QQ(k; 0) = 1Z0 'QQ(k; t)dt :Under this condition the system of transport equations (4.21) can bewritten down in the following manner:zh ^Y (k)iz + ~T (k)h ^Y (k)iz = �h ^Y (k)it=0 ; (5.2)where matrix ~T (k) has the structure:~T (k)=266664 0 {
nJ 0 0 0{
Jn 0 {
Jh {
J� 00 {
hJ 0 0 {
hQ0 {
�J 0 '�� 00 0 {
Qh 0 'QQ 377775(k;z=0): (5.3)In the limit k ! 0 linear system of equations allows solutions on eigen-values, which are the following:heat mode: zh(k) = DTk2 + o(k4) ; (5.4)two complex conjugated sound modes:z�(k) = �{c k + �k2 + o(k4) ; (5.5)
ICMP{98{08E 22two nonvanishing in the limit k ! 0 kinetic modes:z�(k) = '��(0; 0) + o(k2) ; (5.6)zQ(k) = 'QQ(0; 0) + o(k2) : (5.7)In (5.4)-(5.7) DT means temperature di�usion coe�cient:DT = v2TQ'QQ(0; 0) = �(0; 0)nmcp(0) (5.8)v2TQ = m�QQ(0; 0)�2cV (0) ;  = cp(0)=cV (0); (5.9)cp(0) and cV (0) denote, correspondingly, thermodynamic values of thespeci�c heats at constant pressure and volume, �(0; 0) means generalizedthermal conductivity coe�cient at k = 0, z = 0, c = nmS(k=0) denotesadiabatic sound velocity,� = 12( � 1)DT + 12�jj (5.10)is the sound damping coe�cient with�jj = v2J�'��(0; 0) = �43�(0; 0) + �(0; 0)� =nm (5.11)v2J� = ����(0; 0)m ; (5.12)where �(0; 0) and �(0; 0) are generalized shear and bulk viscosities atk = 0, z = 0. Expressions (5.6)-(5.7) and (5.8)-(5.12) give us relationsbetween kinetic modes z�, zQ and transport coe�cients:z�1Q = �mncV (0)v2TQ ; (5.13)z�1� = �43�(0; 0) + �(0; 0)� =mnv2J� : (5.14)It should be mentioned that kinetic modes (5.6)-(5.7) are very importantin the context of the study of non{dispersive phonon{like excitations.For instance, it was found that for a Lennard{Jones uid the interplayof these two kinetic modes forms (starting from some �xed value of k)propagating excitations, the dispersion of which for larger k is very small[19]. A similar situation was found recently for a binary mixture [22].



23 ðÒÅÐÒÉÎÔHence, on the basis of the system of TCF (4.27) in hydrodynamiclimit k ! 0, ! ! 0 we obtained collective excitations spectrum, whichis being formed by heat mode zh(k), two sound modes z�(k) and twokinetic modes z�(k), zQ(k).In Markovian approximation for memory functions solutions of TCF(4.27) can be expressed via eigenvalues z� and eigenvectors X� = jjXi�jjof matrix ~T (k): �il(k; z) = 5X�=1 Gil�(k)z + z�(k) ; (5.15)where Gij� (k) = 5Xl=1 Xi�X�1l� ~�lj(k; 0) (5.16)and X�1 denotes matrix inverse to X = jjXi�jj. In time representation(5.15) has the form�ij(k; t) = 5X�=1Gij� (k) expf�z�(k) tg ; (5.17)so TCF in Markovian approximation appear to be the sum of weightedexponents related with collective modes of semi{quantum 4He.TCF "density{density", which has been expressed in our approxi-mation via sum of �ve Lorenz lines (5.15), gives us possibility to studythe behaviour of dynamic structure factor. Each of the modes can moreor less contribute to S(k; !). For instance, half-width on half-height ofthe central peak of dynamic structure factor at small wave{number (seeFig.2) is being determined by (5.4), whose value, in its turn, is renormal-ized via kinetic mode (5.7). Hence, hydrodynamic limits of correspondingTCF �QQ(0; 0) together with memory kernel 'QQ(0; 0) as well as somethermodynamic values completely de�ne central resonance clearly dis-tinguishable at k = 1� 2 nm�1.Localization of the sound peak is being determined by sound fre-quency and its half-width is a result of interplay of two processes: heatdi�usion (�rst term in (5.10)) and shear ow (second term), whose val-ue is de�ned by kinetic mode (5.6). It should be stressed that one caneasily derive from (5.8)-(5.9) and (5.10)-(5.12) the explicit forms of heatconductivity �(0; 0) and longitudinal viscosity �jj(0; 0) and these resultscoincide with those for simple uids [26].What about kinetic modes (5.6)-(5.7) themselves, that are being de-termined in the limit k ! 0, ! ! 0 by memory kernels '��(0; 0),
ICMP{98{08E 24'QQ(0; 0), their role becomes important in the intermediate region ofwave-vectors and can results in phenomena mentioned on previous pages.Hence, the main di�erence of our approach from [12] is the follow-ing: we would like to study the system within �ve{variables set for thewhole range of k and !. The role of each mode may be established bycalculations of generalized collective modes spectrum as well as weightcoe�cients (5.16). In such a way one may conclude about the disappear-ance of heat mode or application of damped phonon model much morebased on a microscopic treatment.6. Discussion.In previous sections the set of equations for TCFs within a �ve- vari-ables thermo-elastic model is derived. In the hydrodynamic limit we useMarkovian approximation for memory functions, which is indeed exactin this case, and study the hydrodynamic spectrum of collective modes.As it was shown for a simple uid [14] as well as for a binary mixture[22], the Markovian anzats for the higher{order memory functions couldbe applied for the subsequent calculations of dynamic quantities for allk and !, and not only the low frequency domain. To simplify the schemefor a classical uid the inverse transformation to initial non-orthogonalset of dynamic variables has been performed after Markovian approxi-mation, and it was shown [14,18,19] that the matrix T (k)- matrix (seeEq.(5.3)) could be presented in a more simple and computer-adaptedform. In such a case the main input of the theory are static correlationfunctions and the hydrodynamic correlation times. All these quantitiesfor a classical uid can be calculated by either integral equations methodor computer simulations. We note also that recently for the calculationsof correlation times a new iterating procedure, based on the knowledgeof static correlation functions only, has been developed [27]. In a such away the problem of calculations of generalized collective modes, TCFsand generalized transport coe�cients can be reduced on the �rst stageto the obtaining of corresponding static correlation functions.The problem becomes much more complicated for a quantum uidwhere the computer methods for the study of higher-order static corre-lation functions are not so developed. From this point of view one mayunderstand the approach used in [12] based on a �tting procedure for allthe parameters of the theory. However, as it was mentioned above, thephysical meaning of some interesting phenomena remains outside of ourunderstanding in such a case. Hence, a continuation of this study mayfollow by several main ways.



25 ðÒÅÐÒÉÎÔ(i) Semi-phenomenological approach. For small values of k, takinginto account the next order with respect to k, all the elements of gen-eralized hydrodynamic matrix (5.3) can be written via thermodynamicquantities (such as speci�c heats, thermal expansion coe�cient, com-pressibility, etc.), transport coe�cients (kinematic viscosity and thermalconductivity), and some parameters to have been treated as phenomeno-logical. For thermodynamic quantities as well as for transport coe�cientsthe experimental data may be used. Phenomenological coe�cients maybe considered as �tting parameters. Thus, one may to study the dy-namical properties of a semi-quantum uid within thermoelastic model.We note that similar schemes are widely used in the theory of complexclassical uids, i. e. see Ref. [16,28] .For a semi{quantum liquid some semi-microscopic models have beendeveloped. As has been noted in the Introduction, for a semi{quantumuid it is important to take into account kinetic jumping processes. Todo it, Andreyev proposed to consider 2{ and 3{level models [6,7,10] andobtained reasonable results for entropy, speci�c heat, shear viscosity andthermal conductivity. However, in this case many processes have to beimportant for scattering were not incorporated into the theory.(ii) Statistical mechanics approach. Developing the previous point thestatic correlation functions can be calculated using one from the meth-ods of quantum statistical physics applied for approximate calculations.For instance, in [9] one has calculated a set of generalized thermody-namic values (speci�c heat, static structure factor etc.) of slightly non{ideal Bose gas using Green's functions methods for evaluation of staticsusceptibilities. Well known cV (T ) � T 3 was found as well as smallwave{number corrections to corresponding static correlation functions.A similar approach had been used in [29] in application to investigationof generalized hydrodynamics equations. In [30] the authors calculat-ed single particle density matrix using pair correlation functions methodand presented formulae for evaluation of Bose condensation temperature.Other problems dealt with �{transition in 4He have been examined in[31,32].(iii) Decoupling of memory functions. It should be stressed that quan-tum case occurs to be even somewhat easier for investigation then clas-sical one because it gives us clear picture how to take into considerationthe relation between kinetics and hydrodynamics on the stage of de-coupling of memory kernels. It ought to be mentioned that decouplingof mass operator could be performed in terms of either single particleGreen's function [33] or many particle correlation functions [34,35]. Ofcourse, both way can be followed separately thought our assumption
ICMP{98{08E 26about intermixing between kinetics and hydrodynamics can be applied.Though above �{point there is not direct coupling between singleparticle and collective modes on microscopic level [2], one may con-sider correlation between these processes on the stage of decoupling ofmemory kernels representing them via convolution integrals of Laplace{transforms of nonequilibrium single particle time correlation function�^ayk; ^ak�z together with integrals of TCF constructed on hydrodynam-ic variables. Then, corresponding memory kernel or "collision integral"in the kinetic equation can be decomposed in the same approximationtaking into account the order of operators. Thus, an interesting questionabout the contributions from one-particle kinetic and hydrodynamic pro-cesses into dispersion of generalized transport coe�cient appears.We note there are also alternative ways to construct a closed chainof equations for TCFs. In one of them the hydrodynamic velocities andthermodynamic forces are presented as an expansion in terms of higher{order uctuations with further closure of memory functions in form ofconvolution integrals of TCFs. This method is known as mode{couplingtheory and is widely used for an analysis of time{spatial dispersion oftransport coe�cients as well as for the study of TCFs behaviour. How-ever, a decoupling procedure is known to be valid, generally speaking, inlow{wavelength and low{frequency limit only [36,37] and allows one toobtain nonanalytical corrections to transport coe�cients, e.g. the well{known k5=2 contribution to sound velocity [38]. Generalization of mode{coupling theory on high k, ! region was considered in a number of pa-pers and was shown to give reliable results in some cases [34,35,39{41].In majority of cases viscoelastic approach was applied (in this frameworkknowledge of triple static structure factor only is necessary). Considera-tion of energy uctuation gives more correct description of the processesoutside roton minimum region, where viscoelastic description is quite suf-�cient. For instance, in [41] the total energy density has been consideredin addition and the dynamic structure factor of a simple Lennard-Jonesliquid was calculated using mode{coupling approach up to k = 0:9�A�1.However, using the mode coupling theory for a quantum uid we faceonce again with the problem of calculations of higher{order static corre-lation functions.We thank Prof. V.Morozov for his interest and his suggestions. I.M.acknowledges the support from Fonds f�ur F�orderung der wissenschaft-lichen Forschung under Project P 12422 TPH.
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