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Amnoramisi. Merom MacHBHOI TeOpil II0OJ/IA y3araIbHIOETHCA AJIA TOCTII 1K CH-
Hf KPUTHIHOI IOBEIIHKU CHCTEM, OOMEXEHHUX MOBEpXHAMH, Ipu (hikCcoBaHUX
BuMipHOCTAX HpocTopy d < 4. Ile n7ae MOXKJIMBICTH BUBYATU MOBEPXHEBY KPH-
TUYHY HOBEmiHKY 0e3I0CepensHbO0 B PO3MIPDHOCTAX d, MO0 MPEICTABJIATH iH-
Tepec, 0e3 3BepTaHH:A OO €-po3kjany. IlpemcraBiieHo pesysbTaTé IBOIETIIE-
BHUX PO3KJIAIIB [/ TPHUBUMIPDHOI HAIiB-0OMeXk€eHOI n-BEKTOPHOI MOMeJIi THIY
|®|* 3 moBepxnesum BHECKOM X |, oV ®?. Hocmimxeni cremianpuuit i 3pmuaii-
Huit moBepxHesi da30Bi mepexomu. AHasIi3 OTPUMAHUX PAIB IEPEHOPMOBAHOIL
Teopii 30ypens meromamu [lame-Bopesss mpuBoauTh 10 YMCEILHUX OIMIHOK TI0-
BEPXHEBUX KPUTUYHUX IIOKA3HUKIB, M0 100pe y3rOMKyOThCA 3 HAHOBIIIIMEI
pe3yJIbTaTaMyu eKCIIEPIMEHTATbHUX POOIT I KOMIT'IOTEpHHUX PO3PAXYHKIB THILY
Monte Kapuso. Ile cTocyeThcs, 30KpeMa, i MOBEPXHEBOIO0 KPOCOBEPHOTO MOKA3-
nuka @, ng axoro orpumani Besmuunu ®(n = 0) ~ 0.52 i &(n = 1) ~ 0.54,
CYTTEBO HUXKYi BiJ] TONEPEOHIX OIIHOK 3 €-PO3KJIALY.

Surface critical behavior in semi-infinite systems: massive field the-
ory approach

H.W.Diehl, M.Shpot

Abstract. The massive field-theory approach for studying critical behavior in
fixed space dimensions d < 4 is extended to systems with surfaces. This enables
one to study surface critical behavior directly in dimensions d < 4 without re-
sorting to the € expansion. Two-loop calculations are presented for the case
of the semi-infinite |¢|* n-vector model with a boundary term o fav ¢? in
d = 3 bulk dimensions. Both the special and ordinary phase transitions are
investigated. The Padé-Borel analysis of the resulting renormalized pertur-
bation expansions yields numerical estimates of surface critical exponents in
reasonable agreement with the most recent experimental work and Monte Car-
lo simulations. This includes the surface crossover exponent ®, for which we
obtain the values ®(n=0) ~ 0.52 and ®(n=1) ~ 0.54 considerably lower than
the previous e-expansion estimates.
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1. Introduction

Sparked by the emergence of renormalization group (RG) methods at
the beginning of the 1970s, the theory of bulk critical phenomena has
undergone a tremendous development in the past 25 years [1,2]. Thanks
to a very fruitful interaction with field theory, impressive progress has
been achieved both in the theory of bulk critical behavior and in field
theory. While the latter has provided a rich variety of powerful tools such
as Feynman-graph expansions and renormalized perturbation theory, on
which analytical RG approaches could be based, the former has offered a
wealth of challenging physical problems and served as a test laboratory
for the application of new field-theory techniques.

One popular line of approach that has been extensively used with
remarkable success are expansions about the upper critical dimension
d* (= 4 for an ordinary bulk critical point) [3]. The advantage of this
technique is well known: The computational effort required for calcu-
lations to low orders in € = d* — d is relatively modest, in particular,
if the simplifying features of such elegant schemes as dimensional regu-
larization and minimal subtraction of poles [4] are fully exploited. As a
consequence, the calculations can be — and have been [5,6] — pushed
to fairly high orders.

A major reason for this computational simplicity is that the cal-
culations can be performed directly for the critical (massless) theory.
However, there is a price one must pay. The € expansion involves a dou-
ble expansion in € and u, the renormalized coupling constant. In making
this double expansion one by-passes the problem that the perturbation
series of the critical theory in terms of the massless propagator of the free
theory is ill-defined for fixed d < 4 because of infrared singularities. In
the dimensionally regularized theory, these singularities manifest them-
selves as poles at rational values of € which accumulate at d = d* as the
order of perturbation theory increases [7,8]. Thus the problem of sum-
ming these infrared singularities arises. As stressed by Parisi [9], without
an additional hypothesis on the summation of these singularities, any
calculation based on the e expansion and the RG in this perturbative
zero-mass scheme does not contain any information about the critical
behavior in a fixed dimension d < d*.

In practice, the € expansion often works amazingly well for critical
exponents, even if truncated at order €2 and extrapolated to d = 3 in the
most naive fashion by setting e = 1. However, quantitatively accurate
results require higher orders and sophisticated summation techniques
[5,6,10]. The extrapolation problem usually is more severe for other uni-
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versal quantities such as amplitude ratios [11] or scaling functions. One
reason is that the results typically involve (e.g., geometric) factors or
functions with an explicit dependence on d. Thus the question arises
whether and which of these d-dependent terms should be expanded in €
or rather be kept in the extrapolation procedure. As an empirical rule
it has been advocated to choose the scale of u in such a fashion that a
particular d-dependent geometrical factor is absorbed [12]. From a pure-
ly practical point of view, such recipes may well be useful. But they are
hardly satisfactory, since they neither have a firm theoretical basis we
are aware of, nor do they ensure that all ambiguities of the extrapolation
procedure are eliminated in a reliable fashion.

The field-theoretic RG approach based on the e expansion has also
been extended [13-18] to, and successfully used in, the study of critical
behavior of systems with surfaces [17-19]. In the case of such systems
an additional complication may arise: even at low orders of the loop
expansion, the perturbative results may involve both geometric factors
associated with the d dimensional bulk as well as others coming from
the d — 1 dimensional boundaries. Hence it may not even be clear how
to apply the empirical rule just mentioned.

From a fundamental point of view, approaches that work directly
in a fired dimension and therefore avoid the e expansion are clearly
more attractive. An important one of this kind is the massive field-
theory approach for fized d < d* [9,20-27,2]. Its merits are well known:
Pushed to sufficiently high orders of perturbation theory and combined
with sophisticated series summation techniques, it has produced values
of bulk critical exponents [21,22] with an accuracy comparable to that
of the most precise ones obtained so far by alternative methods [5,6,10,
28,29], as well as a set of amplitude ratios of barely inferior precision
[23,24,30]. The method has also been utilized, albeit not to the same
level of precision, to determine the universal ratio of correlation-length
amplitudes for three-dimensional Ising systems [31], in the analysis of
critical behavior in various anisotropic and disordered systems [32-34],
partly even in general, non-integer dimensions 2 < d < 4 [35], as well
as in studies of three-dimensional ¢* theories describing the percolation
transition and the Yang-Lee edge singularity problem [36].

In the present paper (a brief account of which has been given in Ref.
[37]), we generalize the massive field-theory approach for fixed d < d*
to the study of critical behavior in semi-infinite systems. Such an ex-
tension is very desirable, both on account of the general conceptual rea-
sons explained above, and for purely practical purposes. Recently ex-
tensive Monte Carlo calculations [38—43] have been performed for three-
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dimensional Ising models with free surfaces and for the adsorption of
polymers on walls [44,45,38,42]. For most surface critical exponents these
yielded values in reasonable agreement with the ones obtained by set-
ting € = 1 in their € expansion to order €2 [17]. For the surface crossover
exponent ® [17,19], however, the Monte Carlo estimates turned out to
be 20-30% lower. These discrepancies were one of the motives for the
present work.

Our analysis is based on the semi-infinite n-vector model, which is
the appropriate prototype model for studying surface effects on critical
behavior [17]. In Sec. 2 we briefly recall its definition and provide the
necessary background. In Sec. 3 we give normalization conditions for
the massive field theory. Sections 4-6 are devoted to the analysis of
the special transition. In Sec. 4 the general scheme of our approach is
explained; then the Callan-Symanzik equations are given and utilized
to derive the asymptotic scaling forms of the correlation functions near
the multicritical point describing the special transition. After a brief
discussion of some general features of perturbation theory, our two-loop
results for the RG functions are presented in Sec. 5. These are utilized
in Section VI to obtain numerical estimates for the values of the surface
critical exponents of the special transition in three dimensions by means
of Padé analyses and Padé-Borel summation techniques. The ordinary
transition is treated in Sec. 7. Again, two-loop results are given and
exploited to obtain Padé-Borel estimates of its surface critical exponents
for d = 3. Concluding remarks are reserved for Sec. 8.

2. Background

2.1. The model

Let ¢ = (¢%(x)) be an n-vector field defined on the half-space V =
1 ={x=(r,z) € R | r € R¥"! 2z > 0} bounded by the plane z = 0,
which we denote as V. The semi-infinite n-vector model is defined by

the Euclidean action [17,18]
4 Lo
wi e+ quotol!) + [ (Gast) )
ov

gl = | (— (0u) +

Here m3, ug, and co are the bare mass, the bare coupling constant, and
the bare surface enhancement!, respectively.

1Upon mapping a semi-infinite (lattice) Ising model with ferromagnetic nearest-
neighbor interactions of strength K; between surface spins and of strength K else-
where one finds that co decreases as (K1 — K)/K increases [17]. For simplicity, we
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Adding bulk and surface source terms to the action, we introduce the
generating functional

Z[J,J1; K K] = (2)

/D¢ exp [—H+/V (J-¢+%K¢2> +/6V <J1-¢+%K1¢2>}

and the correlation functions

G(N,M;Lh)(wl,..-,Rh) = @

N ) M 0
1:[1 57 (z;) LHI 5Jo (Tk)]
] f ]

For the functions GW-M:0:0) without ¢*-insertions on or off the sur-
face we use the notation G(V-™), The tensorial indices {aj, by} will be
suppressed whenever no confusion is possible. The ultraviolet (uv) sin-
gularities of the theory should be assumed to be regularized by means
of a large-momentum cutoff A.

We shall also need the (bulk) analogs of these functions for the
|¢|* theory in the infinite space, i.e., with V = R?. The easiest way
to define these is the usual one where all boundary terms in the ac-
tion (1) and the generating functional (2) are dropped, and periodic
boundary conditions are chosen. We denote the so-defined bulk ana-
log of GO0 ({z;};{X}) as Géﬁf)({w]’}; {X}) and introduce their

Fourier transforms C:'Eﬁuf) through

J=J1=K=K1=0

Gimid ({1 {X0}) = @)
/ GO (a s f@e B v 2 X amyis( g, 45 @)
J l

where the integral on the right-hand side indicates integrations fq =
J d%(q/2~) over all d-dimensional momenta g, ...,Q;. For the associ-
ated standard bulk vertex functions and their Fourier transforms we use
the notation Féﬁf) and f‘{ﬁfkl ), respectively.

shall nevertheless use the term surface enhancement for cg, rather than reserving it
for (—co) or (—co + const).
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In the case of our half-space geometry, where translational invariance
is restricted to translations parallel to the surface, it is appropriate to
perform Fourier transformations only with respect to (d—1)-dimensional
parallel coordinates. We denote the (d—1)-dimensional parallel momenta
associated with the operators ¢(x ¢ V) and ¢, = ¢dp(x € IV) by
lower case p’s, and those associated with the insertions ¢* and qﬁi by
upper case P’s. Parallel Fourier transforms are indicated by a hat; for
example, the pair correlation function in this pz representation is written
as G20 (p; 2, 2").

Infinitely far away from the surface all properties must attain their
bulk values. Hence the bulk functions égﬁlkl) can be obtained from
GWN:0:1,0) by letting all N +I perpendicular coordinates z; — oo, keeping
all relative coordinates z;; = z; — 23 fixed:

lim  GVOIO({p); {z)) = G Uy zn)) . ()

21,--;AN4I1—00

where {p} here stands for the set of all N + I parallel momenta.

To proceed, it is necessary to recall a few well-known properties of the
model (1) [17]. Its phase diagram exhibits a disordered phase (SD/BD), a
surface-ordered, bulk-disordered phase (SO/BD), and a surface-ordered,
bulk-ordered phase (SO/BO), provided d exceeds the lower critical di-
mension dso,/gp(n) for the appearance of a SO/BD phase.?

The boundaries between these phases are the lines of surface, ordi-
nary, and extraordinary transitions. They meet at a multicritical point,
(md,co) = (md,,cy’), called special point and representing the special
transition. The ordinary and extraordinary transitions correspond re-
spectively to the portions ¢g > ¢f” and ¢o < ¢” of the line of bulk critical-
ity mg = m3.. The line of surface transitions separates the SD/BD from
the SO/BD phase. At bulk criticality, we thus have three distinct tran-
sitions — the ordinary, special, and extraordinary transition. Of these
only the ordinary and special one can be reached from the disordered

2This lower critical dimension is given by dso,gp(1) = 2 and dsopp(n) = 3 for
the Ising case, n = 1, and the n-vector case with n > 2 and O(n) symmetry, respec-
tively. In the presence of surface terms corresponding to an easy-axis spin anisotropy,
a SO/BD phase is possible for n > 2 if d > 2. This case, studied elsewhere [46], will
not be considered here. The case d = 3 with O(2) symmetry of the Hamiltonian is spe-
cial in that a surface phase with quasi-long-range order can appear, a problem which
will also not be considered here. We shall also refrain from a discussion of (d = 2)-
dimensional n-vector models with noninteger values of n in the range —2 < n < 2
(‘loop models’ [47]; see, e.g., [48] and its references). However, we shall estimate the
surface critical exponents for the n — 0 case of polymer adsorption [44,45], both for
the ordinary and special transition in d = 3 dimensions.
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phase. Since our present analysis is restricted to the disordered phase,
only these latter two types of transitions will be considered.

The restriction to the disordered phase simplifies the analysis con-
siderably. One does not have to deal with a nonvanishing, and spatially
varying, order-parameter profile (¢(x)), and the free propagator in the
pz representation takes the relatively simple form

A 1 “kolz—z'| Co— Ko _ ’
G : 2, nN_— _~ Kolz—z"| _ Kko(z+z") 6
(p ‘ Z) 2[‘.‘,0 |:6 Co+l<.‘,oe ( )

ko = \/p? +m. (™)

The translation invariant first term on the right-hand side of (6) is the
free bulk propagator.

The perturbation series of the correlation functions (3) in terms of
the free propagator (6) can be regularized by setting G'(p; z,2") =0 for
|p| > A. Whenever we do not use dimensional regularization, the theory
is understood to be regularized in this fashion.

with

2.2. Ultraviolet singularities for d < 4

Let us first discuss the uv singularities of the theory. For bulk dimensions
d = 4 — € < 4 the theory is super-renormalizable. Power counting shows
[17,16] that the uv singularities of the functions GN-M) can be absorbed
through a mass shift

mg = g + omj (8)

and a surface-enhancement shift
co = Co + e - (9)

In order that the GV-M) be finite for 2 < d < 4 when expressed in terms
of i and ¢, the contributions of order uj to these shifts must behave

as
SmZ ~ A%(ug/A%) (10)

and
dco ~ A(ug/A%)*? (11)

in the limit A — oco. In contrast to dm3, which is known to be uv-
divergent for d > 2, the shift dcy diverges only for d > 3.
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2.3. Poles of the dimensionally regularized theory

As is well-known [7,8,23], if the theory is regularized dimensionally, then
the uv singularities of the bulk correlation functions manifest themselves
as poles at € = 2/k, with k € N. These poles can be eliminated by means
of an appropriate mass shift dm3(e). We remind that the two-loop graph
shown in Fig. 1 yields a contribution of the form

n+2 5 . 1
—ul F mg Lie), IL(e) = / 5
g (@D +1) |(g+q) +1
(12)
to
F‘E)Qu)lk(q =0)= Xl:ullk ) (13)

the inverse of the bulk susceptibility. The integral has a simple pole at
e =1;1i e, I(e) = Ry(e)/(e — 1), where Ra(e) is regular at ¢ = 1 and
whose value Rz(1) = 1/327% can be calculated. Removal of the pole is
achieved by [23]

2 - 2/6n+2 1
oma(€) =" g ey

(14)

Figure 1. Two-loop Feynman diagram responsible for the poles in the
dimensionally regularized ¢* theory at d = 3

Expressed in terms of 73 and ug, the bare bulk functions Fl(ﬁl)k and

Gl(ﬁl)k are then finite at d = 3. Yet, they also depend through logarithms
on ug, and hence in a non-analytic fashion on it.

Not only does this non-analytic behavior carry over to the correlation
functions of our semi-infinite theory; owing to the appearance of addi-
tional uv (surface) singularities, it shows up already at one-loop order.
To see this, consider the surface susceptibility

x11(mo, o) = G (p = 0;mg, ¢o) - (15)
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Its one-loop graph shown in Fig. 2 has a simple pole at € = 1, which can
be removed by means of an appropriate choice of dcg.

B B

Figure 2. One-loop graph of the surface susceptibility x1; having a simple
pole at d = 3. The crossed circles denote points on the surface.

We have

2
ugmy~ 21 (€, co/mo)+O(2-loops) (16)

o n+
X11(mo,co0)” " = co+mo+

with
T 1 VPP .

El(e,c) = / d26722/7 ]__C P+ 6722 p2+1
0 p2y/p* +1 c+vVpP+1

= Jl (6) + JQ(E,C) + J3(6) y (17)

where [ = (1/2m)*" [ p,

— gdmep—2te/2 F(—l + %) : (18)

. 1
wo= [ oy

c 1 1 1
Ja (e, C E——/ , 19
H69="3 p VPP +11+VpPP+1c+/p2+1 (19)

and

Ta(e) = / 1 L ospmwep IO
pd/PP+114/p>+1 €-1 I[(e+1)/2]

(20)

The functions J; and J, are regular at € = 1; the above-mentioned pole
results from J3. Upon expansion of the I'-functions and computation of

cln2—In(c+1)

J‘Z(]-;C) = ] (I—C) )

(21)
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one arrives at the Laurent expansion

1
Yi(e,c0) = ———~ + Ri(c) + O(e — 1) (22)
8m(e—1)
with n2-ln(c+1) 1 Cp-1
cin?2 — In(c + g —Inm
fi(c) 87 (1—0) 321 167 (23)
Demanding that the pole be canceled by dcq gives
¢ 2 1
dco(e) = (1)/ nt (24)

487 e—1"

Expressed in terms of ¢y, 1Mo, and ug, the bare susceptibility is finite at
d = 3. At the level of our one-loop calculation, one finds

2 R 1.
Ug Rl(CO/mo) — 8_7T hl u— + 0(2 IOOpS)
(25)
The critical values m3, = m3. — 6m3 and ¢ = ¢ — dco of mg and

¢o pertaining to the special point would have to be determined from the
conditions

_1 A A n+
X11 |€:1 =cCo+mo+

Fl(ai)lk(q = 0;mg, =15, + 6mg) =0 (26)

X1t (mgczwﬁlgc +omd, P =P + (5co> =0. (27)

The former is known to have the form [7]

and

m2. = u2 M(e) . (28)
Similarly we have for the latter
&P =/ C(e) . (29)

The reason is that ug is the only dimensionful parameter remaining at
the special point in the dimensionally regularized theory (with A = oo
and € > 0). In view of the non-analytic dependence of the susceptibilities
on ug, it is clear that Symanzik’s observation [7] that M(e) cannot be
determined perturbatively carries over to C(e).

In the next section we describe an appropriate extension of the mas-
sive field theory approach that circumvents these difficulties.
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3. Normalization Conditions for the Massive Field
Theory

Our aim is to study surface critical behavior at a bulk critical point.
Therefore, a necessary property we ought to require from our approach
is that the bulk critical behavior be treated appropriately. A convenient
way to achieve this is to choose it in such a manner that it reduces for
all bulk quantities to a well-established standard procedure. In our case
this will be the conventional one based on normalization conditions (see,
e. g., [2,26,27,49,50]). Alternatively, one could choose an approach based
on minimal subtraction of poles of the massive theory, as described for
the bulk case by Schloms and Dohm [25].

3.1. Bulk normalization conditions

Starting from the bare bulk vertex functions F,(mlk)( m3,,up), we per-
form a mass shift

mi = m? + dm?(e) (30)
and introduce renormalization factors Zg(u), Zs2(u), Z,(u) (which are
uv-finite for d < 4) as well as a renormalized dimensionless coupling

constant v and renormalized fields such that

. -1 . .
¢ = [Z¢(U)]1/2 ¢ren , ¢Z — [Z¢2 (U,)] |:¢2:|ren , Uy = Zu(u) mcu .
(31)
The mass shift and the renormalization factors are fixed through the
standard normalization conditions

f‘](azu)lkmen(q; u, m)‘q:() = m2 ) (32)
0 #2)
202 L U, =1, 33
BYE bu1k7ren(q u, m) o (33)
2,1
F(ulk) ren(q7 Q; u, m)‘quzo =1 R (34)
~ (4 .
F](311)1k7ren({qi}; u, m)‘{q-zo} =m u (35)

for the renormalized vertex functions

N,I) (NI
Finicren (10, QY u) = [Zs ()]YV? [Zg2 ()] me({q,Q},mo,u?) !
36
Since the mass shift is sufficient to absorb the uv singularities of the

bare functions Fl(mlk at d < 4, they become uv-finite when expressed in
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terms of m and u (or m and ug). The bulk renormalization factors can
be written as

Zo(w]) ! = 5y b lamdm ) wo(mw)| @)
[Zg2(u) Zs(w)] " = T [0} m2(m, w), uo(m, w)] , (38)

and
[Zu(w) Z2(w)] ™" = T [{0}; m3(m, u), ug(m, w)] fug(m,u) . (39)

3.2. Surface normalization conditions

Consider now the cumulants GV-M) and GWNV-M:1.11) of our semi-infinite
¢* model. As we have seen, a surface-enhancement shift éc is required
to absorb uv singularities located on the surface. Hence we write

co =c+dc, (40)

where ¢ is a renormalized surface enhancement whose precise definition
we still have to give.

We also know that the surface operators ¢s = ¢|,—o and (¢s)? should
scale with scaling dimensions that are different from those of their bulk
analogs ¢(x) and [¢(x)]? with ¢ OV. This suggests the introduction
of separate renormalization factors for these surface operators, which we
do via the relations

¢s = [Z¢Z1]1/2 [¢S]ren ) (¢s)2 = [Z¢§]_1 [(¢8)2]ren (41)

between the bare and renormalized operators. For the renormalized cu-
mulants we thus have

ren

G (sm,u,¢) = Z, NHD2ZMEGNID (g ug,c0)  (42)
and

GLMI) (smyu, €)= (43)

25 OGN 7! (2] GO o, o)

We wish to fix dc and the new renormalization factors Z; and Zy2
by appropriate normalization conditions. To motivate our choice, let us
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recall the perturbation expansion of the momentum-dependent surface
susceptibility x11(p) = G(®? (p) to lowest order:

G2 (p; mo,uo,co) = (44)

! + O(uo)
— up) -
co +/pP? +mj
We choose the normalization conditions such that the associated renor-
malized susceptibility and its first derivatives with respect to p? agree
at p = 0 with the corresponding zero-loop expressions implied by (44),
except for the replacements mg — m and ¢y — c¢. This gives

NP 1
(O,Z) - — 4
o mue)| = (45)
and 9 .
2 G2 (p; | = 16
ap2 ren (p,m,u,c) =0 2m(m+c)2 ( )

The following condition fixes the normalization of insertions of the sur-
face operator %2(1)@, at zero external momentum:

GOxOV (p, Pym,u, C)‘ =(m+c) 2. (47)
p=P=0

This choice is motivated by the relation

GO0 ({0)) = — - GO (0) (48)
860

Equation (45) defines the required surface-enhancement shift dc. To-
gether with (32), it ensures that the special point is located at m =
¢ = 0. The ordinary transition corresponds to the limit m — 0 at fixed
¢ > 0. In this limit the renormalized surface susceptibility x11,ren —* c L.
Hence the physical meaning of c is that of the inverse of X1 ren at the
transition.?

Equations (46) and (47) specify the renormalization factors Z; and
Zy2, respectively, in a similar manner as the bulk normalization condi-
tions (33) and (34) define Z; and Z,2. The corresponding expressions
are

7,2, = (49)

~2mlm o+ 0 GO o, 0) o, ) cofe ]|

3Keeping c (and u) fixed while changing m requires, of course, that the bare quan-
tities co (and wo) be varied with m. When exploiting the Callan-Symanzik equations
below, we shall as usual hold these bare quantities fixed while varying m, so that the
renormalized quantities v and ¢ become m-dependent.
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and
Z@h: (50)

_[Z1Z¢]71 (m + 0)2 i G(072) [07 mO(m7 U), UO(ma U), CO] .
(900 co=co(c,m,u)

The above sets of normalization conditions (32)—(35) and (45)—(47)
define m3, wo, Zy, Zy2, co, Z1, and Zy2 as functions of m, u, ¢, and A.
All Z factors have finite A — oo limits in the d < 4 case considered here.

For simplicity, we consider the A = oo limit in the sequel. In our
calculations described below we actually took A = oo from the outset,
employing dimensional regularization. In this limit the bulk Z factors
Zg, Zy2, and Z, become functions of the single dimensionless variable u.
On the other hand, the above choice of normalization conditions (45)-
(47) implies that the surface Z factors Z, and Zg: depend on both u
and the dimensionless ratio ¢/m.

In a full investigation of the crossover from the surface critical be-
havior characteristic of the special transition (for ¢/m < 1) to that of
the ordinary transition (for ¢/m > 1), it would be essential to carry
along the dependence on the variable ¢/m. However, our main objective
in the present work is the calculation of the surface critical exponents of
the special and ordinary transitions. To this end, a study of the critical
behavior in the asymptotic limits ¢/m — 0 and ¢/m — oo is sufficient.
As it turns out, there exist convenient procedures (see [37] and below)
which permit one to focus directly on these limits, avoiding the need to
keep track of the detailed dependence on ¢/m.

4. Special Transition

Let us first consider the case of the special transition. In order to reach
the corresponding multicritical point, we can safely set ¢ = 0. This does
not cause any problems in the theory provided the surface-enhancement
renormalization has been performed. The desired critical behavior at the
special transition can then be obtained by studying the massless limit
of the resulting massive ¢ = 0 theory along lines analogous to those
usually followed in the bulk case. It follows that the asymptotic critical
behavior at this transition is described by the renormalized theory with
the coupling constant u taken at u*, its value at the infrared-stable fixed
point (and ¢ set to zero).
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4.1. Normalization conditions at the multicritical point

For ¢ = 0 the normalization conditions (45)—(47) simplify. The ¢ = 0
analog of (45) fixes the critical value ¢ of ¢y. Expressed in terms of
renormalized variables, it takes the form ¢;” = mf,(u) in the dimension-

ally regularized theory. Equations (49) and (50) become

ZP(u) Zy(u) = (51)
0 A 5
—2m3a—p2 G0:2) [p; mo(m,u),uo(m,u),cop(m,u)] ‘p:O ,
sp -1
Zhw)] = (52)
_m2 [Zip(u)Z(ﬁ(u)]il i GA(O’Z) [OQWO(W:U):UO(W:U):CO] )
aCO cozc(s)p

specifying renormalization factors Z;" (u) = Z1(u,¢/m = 0) and Z35 (u) =
Zy2(u,c/m = 0) appropriate for the analysis of the special transition.
These renormalization factors enter the relations (42) between the bare
and renormalized correlation functions GV-M) for ¢ = 0,

GO (5m,u) = Z;(N+M)/2(Z§p)7M/2G(N’M)(;mo,UO:C?)D) , (53)

ren,sp

and the corresponding ¢ = 0 analogs of the relations (??) for G(N-M:L.11)

4.2. Callan-Symanzik equations

By varying m at fixed ug and ¢, the Callan-Symanzik (CS) equations

(cf. Refs. [2,26,27]) of the correlation functions Gﬁéﬁ;ﬁ!{) can be derived
in a straightforward way. They read

9 o N+M M iewtsp (N,M) (. _
m om —f—ﬂ(u) ou + D) Ne (u) + 9 A (u) Gren,sp (; m, u) =AGhen
(54)
with
AGren = —[2 = 15 (u)] m? /V EX G ), (55)

where the integration is over the position X of the inserted ¢* operator.
The RG functions appearing here are the usual bulk functions

0

Bu) = m -

o | U (56)

0
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and 0 dln Z4(u)
nZgplu
=m—| InZ = —_

M) = | nZy(w) = B A (57

and the additional, surface-related function

d In Z7® (u)

W =ma | Wz =g e

where |o indicates that the derivatives are taken at fixed bare coupling
constant and surface enhancement (and cutoff A).

Just as in the bulk case, and as could be corroborated by means of a
short-distance expansion, the right-hand side of (54), AG\ey, should be
negligible in the critical regime. The resulting homogeneous equations
can be integrated in a standard fashion.

In order to identify the crossover exponent ® we must also consid-
er deviations Acg = ¢g — czp from the multicritical point. We use the
expansion

GNM) (1o, ug, co) = (59)
o0 _ Il
Z %/ GNMOT) (g, ug, 6P)
o 1! oV oV
—_———
I

where the integrations [ 5y are over the positions of the I; inserted 2
operators. No infrared problems arise here because the massive theory
is used.

Expressing the right-hand side in terms of renormalized functions
and the renormalized variable

-1
Ac= [z;g(u)] Aco (60)
gives

2 (N2 (90) M2 GAN-MD) (i ) = (61)
< (AN
> e / | GO Gmy )

L! ov oV P
I;=0 N———

Iy
Hence

GO (myu, Ac) = [Z(w)] VD2 (280 ()] M2 GV (mg g, co)
(62)
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are well-defined renormalized functions.* Since they depend on the ad-
ditional dimensionless variable

c=Ac¢/m, (63)

their RG equations are analogous to, but differ from, (54) through the
replacement

0 0 0 0 0
i < i 2 _ sP <
Mg B et )~ [, (64)
where 5 p
SP (1)) — SD () — sp
neP (u) = ma— ) InZ:3 (u) = B(u) Tu InZ 2 (u) . (65)

4.3. Scaling behavior near the multicritical point

The CS equations given in the preceding subsection can be utilized in
a familiar fashion to derive the asymptotic scaling forms of the correla-
tion functions near the multicritical point. A detailed exposition of the
derivation of scale invariance and universality of bulk vertex functions
from the CS equations may be found, for example, in [51] or elsewhere
[2]. Since in the present case a completely analogous line of reasoning can
be followed, we can be brief. In particular, we shall avoid carrying along
the various non-universal constants (metric factors setting the scales of
the relevant bulk and surface scaling fields), as would be necessary for an
explicit derivation of four-scale-factor universality[53] within the present
massive RG framework.
We shall need the familiar dependence

mg —mg, ~ T (66)

of the bare mass on 7 = (T — T,)/T,, valid for small deviations from its
critical value mg,.. We also recall that m, which is nothing else than the
inverse of the (second-moment) bulk correlation length £, behaves as

m ~ (m% — m%c)u (67)

near criticality, with
v=_[2+n5]"", (68)

4These should be distinguished from the previously defined c-dependent renormal-
ized functions, which were related to the bare ones via c-dependent renormalization
factors.
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where 17;2 denotes the value of the function

Ng2(u) = mai In Zy2(u) = B(u) dinZg: (u) (69)

m|, du ’
at the infrared-stable zero u* of (u).
Integration of (56), (57), (58), and (65) gives the asymptotic depen-
dencies

Zg ~ (u— u*)”/w ~m", (70)
Z% ~ (u—u*)" W) /w i (W) , (71)

and
Z%P ~ (u— ) W@ e () (72)

for u — u* or m — 0. As usual, w = f'(u*) and n = 7y¢(v*). Equation
(72) can be substituted into (60) and (63) to obtain

Ac~m W) Acy, ¢~ m IHEE@I A (73)

From the latter result we read off the scaling variable 7=® Acg with the
Crossover exponent
S = [l +nPu")]. (74)
Using these results, one easily sees that the CS equations of Sec. 4.2
yield the following asymptotic scaling forms of the correlation functions
near the multicritical point:

GWNM) (1 mg, ug, ¢o) ~ mNFTMOT) /Y g(N.M) (mw,mr,m_¢/”Ac0) .

(75)
Here 3 and (3}" are standard bulk and surface exponents. The latter is
related to the usual surface correlation exponent 7 via the scaling law

14
51=§(d—2+77||) ; (76)
where 7)) in the present case of the special transition is given by

nP =n+n’(u’) . (77)

5. Perturbation Theory

We now turn to the explicit calculation of the surface renormalization
factors Z}¥ and ng and of their associated exponent functions 7;" and

neP. In the one- loop approximation, this will be carried out for general
space dimensions d < 4. However, in our two-loop calculations we shall
restrict ourselves to the case d = 3.
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5.1. General Features

The normalization conditions (45), (46), and (47) we have chosen to fix
the surface counterterms all determine properties of the renormalized

surface susceptibility Gren (p;m,u,c). For calculational purposes it is

more convenient to express these conditions in terms of its bare inverse
1/G©2)(p). From (45) we find

P -1
Z1Zyg [G(O’Z) (05 o, uo, co)] =m+c. (78)
Utilizing this, (46) becomes

which shows that expression (49) for Z; Z, can be cast in the equivalent
form

0 T~ - m 0 [x -1
-1 _ (0,2) _ T mne o (0,2)
(2:2,) 2m op? [G (p)] p=0 11)13% p Op [G (p)}
(80)
Likewise (50) can be rewritten as
- 9 [ A -1
25 =0z [GW) (p= 0)] . (81)

It is useful to decompose the above inverse surface susceptibility into
its free part, which is [G(p;0,0)]™! = ¢p + Ko according to (6), and a
remainder due to perturbative corrections. Thus we write
N -1
(GO )] = o+ r0 = 0(p) - (82)

To compute Gy, we start from the following representation of the full
propagator between two surface points in terms of X, the usual ‘self-
energy’:

GO = |G| + S|GTG|,, T=Y(1-Gx)™! (83)
Here ;| and |, indicate that the left and right points are located on the

surface, respectively. A straightforward calculation yields

oo(p) =




19 IIpenpunT

Y
N

(1) (2)

0.

(3) (4)

~

Figure 3. Feynman graphs to two-loop order of the nominator gT7'g of
the quantity 6o(p) in (84). Full lines denote the free propagator (6),
dashed ones the reduced propagator (85).

where ¢ is a column vector whose components represent the reduced
propagator .
9(p; 2) = (co + ko) G(p; 2,0) = e7"0% (85)

and g7 is its transpose.

The one-loop and two-loop contributions to ¢ originating from the
first two terms on the right-hand side of (84) are depicted in Fig. 3.
Denoting the one from the graph labeled “(i)” by C;(p), we have

o) = Y 0) DO o (36)

co + Ko

where the term oc C? results from the last one in (84).

5.2. One-Loop Approximation

We now specialize to the case ¢ = 0. Upon using the above results one can
easily perform a one-loop calculation of the renormalization functions for
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general dimensions d < 4. Following Ref. [20], let us introduce a rescaled
renormalized coupling constant @ through

)4/
w=bald)i, ()=~ j - (;1(6)/2) . (87)

The advantage of this choice is that the expansion to order @? of the
associated beta function 8 = #0u/0u takes the simple form

B@) = —a (1 —a) + 0(113) . (88)

Our results for the two surface renormalization factors of interest then
read

n+2 u .
)
and
n+2 1 14e 3—€e 14+¢e 3+€¢ 1
[ R L [ R b —re2Te ) g (’)(“"),
& n+8 L+e [ ?’F1< 2 "2 2 2)}“ “

(90)
where oF] is the hypergeometric function [54]. Substituting these power
series into (58) and (65) gives

sp — =SP(~ __n+2 € ~ ~2

m () = 7P (@) =~ S a+ 0() (O1)
1P (u) = 7P (a) = (92)
n+2 € 1te 3—e 14+€ 3+€¢ 1
TS 127 R - =) a+o(a?).
n+81—|—e[ i “( 5 T2 2 ’2)]“+ ()

As a consistency check one can compute the pole parts (PP) of the

Laurent expansion of the above renormalization factors at e = 0. One
finds

s n+2 u .
PPE:O [le - 1] = 3¢ 1672 + O(uz) (93)
= PPy |2 - 1)+ O(u?) . (94)

As it should, this is in conformity with the one-loop terms (of the two-
loop results) of Ref. [15], obtained by means of the usual scheme of
minimal subtraction of poles at d = 4 for the massless theory in 4 — ¢
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dimensions.® Accordingly we also recover the O(u) expressions for the

exponents functions 7; and e of Ref. [15] in the limit € — 0F:

. sp _ n+ 2 U 2\ _ 12 2

Jim i) = =T g + O = i lP(u) + O(e) (95)
From (88) one reads off the value @* = 1 in this one-loop approxima-

tion. Upon inserting this into (5.2), we get

Sp/ * n+2 e e

7y (u™) n+81+€+(9(2—100p)—17” + O(2-loop) (96)
and
sproay_Nt2 € _olfe 3—el+e3+el i
Me (u)_n+81+e 1-272" 1R 5 5 5 0% + O(2-loop).

(97)
The reader may check that the Taylor expansion of these exponents
to first order in e reproduces the known results (see Refs. [15,17] and
references therein).
If we use (96) and (97) to estimate their values for d = 3, we find

BP(n=0) = 7P(n=0)= —é ~ 013, (98)
n(n=1) = nﬁp(nzl) = —é ~ —0.17, (99)
and
nP(n=0) = é (1-4In2)~—0.22, (100)
=1 = é (1—4In2)~—0.30. (101)

Amazingly, the estimates (5.2) of this simple calculation turn out to
be among the best ones for nip resulting from our much more involved

two-loop calculations (see Tables 1 and 2). On the other hand, our best
two-loop estimates for 7P differ appreciably from those listed in (5.2).
5.3. Two-Loop Approximation

At the two-loop order we restrict ourselves to the case d = 3. Details of
the calculation will be published elsewhere [?]. Here we just quote the

5Since in Refs. [15] and [17] a factor 297%/2 was absorbed in the renormalized
coupling constant, the quantity u/1672 here takes the place of the variable u of these
references.
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final results. They read

+2
ZSDZ =1 n U 102
12(n+2) n 4+ 2 n+14] _, 5
— A-— 1-In2)ln2—
L { 3 ( n2)ln 18 }u + O(a’)
sp n+ 2 1\ .
12(n + 2) n n+2 5 2n+1] _, 3
———~ |A—-B—-—-1In2 In” 2
1 8)? { 5 10 + 5 o + 0 }u + O(a?)
P (& :_LH 104
12 (n+2) n+2 n—101 _, 3
24 — 1-In2)In2 @)
(n +8) [ g (1mimBn2+ =g }“ +ol@)
and
oy 2 91 2_1 _ 24(n+2) A—B—n+11 5
ne(@) =~ og \2n2 -5 )i - gy 2 M
2. 17 22 .
+%1n22+%]ﬂz+0(113), (105)

where A and B are integrals originating from the two-loop graph (2) of
Fig. 3 whose values
A ~0.202428 (106)

and
B ~ 0.678061 (107)

we have determined by numerical means [52].

6. SURFACE CRITICAL EXPONENTS OF THE SPE-
CIAL TRANSITION

We shall now discuss how the above perturbative results can be utilized
to estimate the surface critical exponents of the special transition. Our
starting point are the series expansions of these exponents in powers
of 4, which are implied by (104) and (105). To generate these series,
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we substitute the expansion (104) for 7" into the following well-known

scaling-law expressions for surface exponents:

sp
Il

v
Ay = 5 (d— 77\\) ) (108)
g =10 (109)
2
v

bi=g (d=2+mn), (110)
Y11 =V (1 —77||) ) (111)
M =v(2-nL), (112)

A d+2-—n
=2 =0T27h 113
! 51 d—2+7)|| (113)

Ay __d-my
1= — = ——1 114
H 51 d—2+17H (114)

These scaling relations hold for the surface critical exponents of the
ordinary transition as well; therefore, we have omitted the superscript
“sp”. We also need the expansions of the bulk exponents v and 7. To
the required order in @*, they read for the case d = 3:

B _1 n+2 _, (n+2)(27m—38) ,_ ..o ~%\3
e e R T L T R ERL +ola’
(115)
and 8( 2)
gy = B ol
We shall also consider the exponents
o =a+v—1+®=1-v[d—2—7Pu") (117)
and
AP =a+v—2+28=—v[d—3— 2 u")] (118)

of the layer and local specific heats C1(T") and C11(T'), respectively [17].
To obtain the expressions on the extreme right-hand side, we have sub-
stituted (74) for ® and used the hyperscaling relation a = 2 — dv.

For each one of these surface exponents we arrive at an expansion of
the form

f@) =3 fe @) = fo+ i+ L @) +0[@)’] . (119)
k=0
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As is known from the much studied bulk case (for background and refer-
ences, see, e.g., [2]), such series are asymptotic; they have zero radius of
convergence. The reason for this is that the coefficients fi grow propor-
tional to k! as k — oo; more precisely, their large-k behavior typically
can be written as fr ~ Ck!k" 1 A~*, where the factor k! basically re-
flects the enormous growth of the number of diagrams contributing at
a given order of the loop expansion. We expect that these features will
carry over to the power series of surface quantities considered here. The
large-order behavior of their coefficients and the values of the numbers
A, b, and C should be obtainable by means of an appropriate extension
of the instanton calculus utilized in the case of the |¢|* bulk theory.
Furthermore, in view of the rigorously established Borel summability of
the d = 3 dimensional |¢|* model [55], we may be confident that these
series are Borel summable.

In order to obtain meaningful numerical estimates from the above
series expansions for surface critical exponents, we must invoke appro-
priate and sufficiently powerful summation techniques. The simplest pro-
cedure is to construct the table of Padé approximants [56]. This works
well if successive elements Sy, Syy1 of the sequence of partial sums
Sn(a*) = chvzo fr(@*)* vary little at low orders of N. A better and
more sophisticated one is the Padé-Borel method used in Ref. [20]. At
the order of perturbation theory we are going to use it here, this involves
the analytic continuation of the Borel transform

Bp(a) =y % (a*)" (120)
k=0

by a [1/1] Padé approximant.

Our estimates given in Tables I-IV were produced as follows. For each
exponent f, we rearranged the expansion as f/fo = My = 1+(f1/ fo)u*+
(f2/fo)(@*)* or f+ (1 — fo) = My = 1+ f1a@* + fo (@*)?, depending on
whether |fo| > 1 or |fo| < 1, respectively. Then Padé approximants of
the type indicated in Tables I-IV were constructed for the so-defined
modified quantities My, and [1/1] Padé approximants for their Borel
transforms. For consistency reasons, these approximants were evaluated
using the values of @*(d, n) one gets from the Padé-Borel resummed beta
functions B(ﬂ) at this two-loop order, namely® [20,57]

@*(d=3,n=0) = 1.632 (121)

6The n = 0 value (121) is given by the negative of the value v} of the fixed point
denoted U in Ref. [57].
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and
u*(d=3,n=1) = 1.597. (122)

Finally, the resulting approximate values of the M were converted into
estimates for the exponents by inverting the above equations defining M
in terms of f. Note that we used the hyperscaling relations with d = 3.
This is why our zeroth approximations (gathered in the column [0/0]) do

not always reproduce the Landau (or € = 0) values 0, 1, 0, %, %, 1, 3,2
and 0, 0, —3, 1 of the exponents ..., 01 and nf,..., @ listed in the

first columns of Tables I/II and III/IV, respectively.

The quantities O1, Oz, O1;, and O; appearing in Tables I-IV are
defined through the expansions My =14+ 01 + Oz +... = [1 + Oq; +
Os; + ...]7! of the modified quantities My = f/fo or My = f +1 — fo.
Using the latter quantity to generate such truncated expansions in the
case |fo| < 1 rather than simply factoring out fy yields better behaved
‘inverse expansions’, i.e., series for Mf_l.

The bigger the absolute values of the ratios O; /02 and O1;/04; are,
the better is the quality of the resulting series for M; and its recipro-
cal 1/My, respectively. All ratios O;;)/O4(;) have negative sign or else
vanish. Thus all series produced by these expansions are alternating,
and hence adapted to the above-mentioned Padé-Borel summation tech-
nique. (If a series were not alternating, it would be unsuitable for this
method because the [1/1] approximant of its Borel transform would have
a pole on the positive real axis, i. e., inside the integration range [21].)
The estimates obtained via Padé-Borel resummation of the power series
for My and 1/M; are listed in Tables I-TV as R and R; ', respectively.

In most cases the resulting power series in @ have second-order cor-
rections Oy(; whose absolute values are smaller than those of their first-
order ones. Thus the sequences of associated partial sums appear to be
slowly convergent, to the available low order. Exceptions are some series
involving 7P, whose behavior is rather bad. In the first group of expo-
nents, related to n”(u) and shown in Tables I and II, the most reliable
estimates are obtained from the direct series for the exponent A;, which
appear to exhibit the best convergence properties. These estimates are
A1 =0.921 forn = 0 and A; = 0.997 for n = 1. Substituting these along
with the standard bulk values [22,2] v(n=0) = 0.588, n(n=0) = 0.027,
v(n=1) = 0.630, and n(n=1) = 0.031 into the scaling laws (108)—(114),
we have computed the remaining seven exponents of this group. The
resulting values f(Aj,v,n) are presented in the last columns of Tables 1
and 2. By and large, the agreement with the results obtained from the
individual expansions is quite reasonable. The deviations of the values
f(A1,v,n) from the other resummation estimates might serve as a rough
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-3

f(ala v, 77)
—0.119
0.342
—0.140
0.518
—0.144
0.279
—0.182
0.539

| f(alayan)

-1

R

—1

R

—0.160
0.342
—0.170
0.474
—0.215
0.279
—0.237
0.463

R
—0.168
0.336
—0.180
0.474

R
—0.230
0.268
—0.253
0.463

| B!

0.483

0.475

—0.144
R
0.482

0.350
—0.157

0.479
—0.200
0.284
—0.226
0.470
0.474

0.055
0.399
—0.021
0.657
—0.052
0.304
—0.153
0.661
0.487
0.480

3) based on the € expansion.

0.740
0.757

0.467
0.642
0.168
0.393
0.042
0.649

0.670
0.683

—0.266 | 0.183
0.280
—0.266 | 0.109
0.427
0.230
—0.321
0.407

—-0.321

0.444
0.429

—0.362
0.217
—0.362
0.421
—0.472
0.131
—0.472
0.397

0.438
0.417

0.00
0.50
0.00
0.50
0.00
0.50
0.00

0.50
Table 5. Estimates for ®(n, d

n || 01/0s | 01:/0s | [0/0] | [1/0] | [0/1] | [2/0] | [0/2] | [1/1] |

0.5
0.5

—0.9
~1.7
~1.1
—0.4
—1.1
—2.9
~16
—0.4

-0.28

-0.33

-0.7
—-11
-0.8
-04
-0.7
—-14
-0.9
-04

| 01/02 | 01i/Oxi | [0/01 | [1/0] | [0/1] | [2/0] | [0/2] | [1/1] |
| 01/02 | 01i/Oxi | [0/01 | [1/0] | [0/1] | [2/0] | [0/2] | [1/1] |

-0.27
-0.31

Te
aq
Qg1
Tlc
Qg
Qg1

0
1

Table 4. Surface critical exponents of the special transition involving the RG function 7P for the case n = 1 and

d=3.

Table 3. Surface critical exponents of the special transition involving the RG function 7P for the case n = 0 and

d=3.
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measure of the numerical accuracy achieved here.

The situation is less favorable for the second group of exponents,
e = nP(u*),..., P, whose estimates are given in Tables 3 and 4. Their
series exhibit poor convergence properties. One should be cautious in
relying on estimates derived from individual series expansions of an ap-
parently divergent nature, like in the case of the crossover exponent ®. In
this group the exponent a; has the estimates with the least scattering.
The best series convergence has afl, and the corresponding Padé-Borel
estimates are a; = 0.342 for n = 0 and «; = 0.279 for n = 1. Accepting
these together with the bulk values of v and 7 given above, the estimates
of n¥, ai1, and @ listed as f(ay,v,n) in the last columns of Tables 3 and
4 were derived via scaling laws.

Table 6. Monte Carlo estimates for surface critical
exponents of the special transition in d = 3 dimensions.
n=>0

71 || 0.805(15) | Meirovitch & Livne, 1988 [38]
(6) | Hegger & Grassberger, 1994 [42]

" 1.304(6) | Meirovitch & Livne, 1988 [38]
1.230(2) | Hegger & Grassberger, 1994 [42]
(7)
(4)

® 0.530 Meirovitch & Livne, 1988 [38]

Hegger & Grassberger, 1994 [42]
n=1

51 0.18(2) Landau & Binder, 1990 [39]
0.22 Vendruscolo et al., 1992 [40]

0.237(5) | Ruge et al.. 1993 [41]

0.2375(15) | Ruge & Wagner 1995 [43]

v || 0.969) | Landau & Binder, 1990 [39]

0.788(1) | Ruge & Wagner 1995 [43]

" 1.41(14) | Landau & Binder, 1990 [39]

1.328(1) | Ruge & Wagner 1995 [43]

@ 0.59(4) Landau & Binder, 1990 [39]
0.74 Vendruscolo et al., 1992 [40]

0.461(15) | Ruge et al., 1993 [41]

The numerical values of surface critical exponents gathered in Tables
1-4 generally are in reasonable agreement both with previous estimates
based on the € expansion as well as with those obtained by other means.
For comparisons we refer to Section IIL.8 of Ref. [17], where € expansion
estimates and estimates that had been gained by alternative techniques
till 1985 are given, and to Table 6 for more recent results. Note, however,
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that our estimates for the crossover exponent ® are definitely lower than
the values ®(n =1) ~ 0.68 and ®(n =0) ~ 0.67 quoted in Ref. [17].
The latter were obtained by setting ¢ = 1 in the € expansion of ® to
order €2. On the other hand, recent Monte Carlo simulations yielded the
significantly lower estimates ®(1) = 0.461 £ 0.015 [41], ®(0) = 0.530 £
0.007 [38], and ®(0) = 0.496+£0.005 [42]. Our present results ®(1) ~ 0.54
and ®(0) ~ 0.52 are fairly close to these values.

To see whether comparatively small estimates for ®(n,d=3) can be
obtained from the € expansion, we have applied the analogous summation
techniques to the series

20 =1+ a1(n) e+ as(n) e, (123)

whose coefficients are known to be [15,17]

L-0125 forn=0
2 8
a(n) = ——F=_ __ (124)
2(n+8) % ~0.167 forn=1
and
n+ 2
as(n) yTET] [87%(n + 8) — (n* + 35n + 156)]
11—67r2 — % ~ (0.4645 for n = 0.

= (125)

22—77r2 - g ~0.5336 forn=1.

The results are shown in Table VI. It is reassuring that the estimates
obtained via Padé-Borel summation compare reasonably well both with
our above ones based on the perturbation series at fixed d = 3 as well as
with the Monte Carlo results mentioned. That these estimates deviate
considerably from the values obtained from the [2/0] approximant (123)
at € = 1 seems to be due to the unusual largeness of the O(e?) term of
®. In summary, we conclude that the values of the crossover exponent
®(n,d) with n = 0,1 and d = 3 are indeed significantly smaller than
previously thought, being close to 0.5.

An interesting aspect of the above results is worth mentioning: We
may be quite confident that the inequality

a <0 (126)

is satisfied for d = 3 and n = 1. For one thing, our best numerical
estimate based on the massive RG approach at fixed d = 3 is of}(n =
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1,3) ~ —0.18. Second, the scaling relation (118) can be rewritten at
d=3as
aii(n,3)(n,d=3) = —2(v — ®) . (127)

In view of the various estimates given above it seems rather unlikely that
®(1,3) will be larger than v(1,3) ~ 0.630, so that (126) should be valid
at d = 3 and n = 1, a conclusion which may also be reached for n = 0.

This has important consequences. As has been shown in Ref. [58],
(126) plays the role of an irrelevance criterion for weak, short-range
correlated randomness that couples to the surface energy density (and is
restricted to the surface). If it is satisfied, the fixed point describing the
special transition of the pure model is stable with respect to this kind
of randomness., so that such random “surface-enhancement disorder”
should be irrelevant at the special transition. According to our numerical
estimates, this irrelevance should indeed apply. It has been verified by
Monte Carlo simulations recently [59].

7. ORDINARY TRANSITION

In our analysis of the asymptotic critical behavior at the special transi-
tion it turned out to be advantageous to set the bare and renormalized
surface enhancements to their respective critical values ¢y = ¢ and
¢ = 0. The benefit was that we did not have to deal with renormaliza-
tion functions depending on two mass parameters m and ¢, a fact which
facilitated the computation of the required Feynman graphs consider-
ably.

In the case of the ordinary transition we must study the limit ¢/m —
00. For the sake of achieving a similar simplification, it would be desirable
to set ¢ = 0o (or ¢y = 00) from the outset. In doing so one is faced with
a known difficulty: Studying the functions G™>™) with ¢y = oo does not
easily give access to surface critical exponents via the RG equations of
their renormalized analogs because these bare functions as well as the
renormalized ones with ¢ = oo satisfy Dirichlet boundary conditions.
Fortunately it is known from previous studies based on alternative RG
approaches [13,14,17,60] how this problem can be overcome: one must
study the functions

{ N _| " cum
GNM) () ry) = < [H P (%’)J [H 0" (Tk)] > , (128)
k=1

j=1

where 0,, means the derivative along the inner normal. The functions
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GWNV-M) with M > 0 do not vanish for ¢y = 00, and the scaling dimension
of 0,,¢ yields nfrd, the sole missing surface exponent.”

That the reievant information can be obtained from these functions
can be seen either by expanding the bare cumulants G(™-M) in powers of
co ! or by noting that because of the Dirichlet boundary condition 8,,¢
is the leading operator appearing in the boundary operator expansion

[14,17] of .

7.1. General considerations and the limit ¢/m — o

Let us denote the functions GV-M) with ¢y = oo as gééV’M). Although we
shall not present a complete analysis of the c-dependent normalization
conditions of Sec. 3.2 and of the crossover from special to ordinary surface
critical behavior here, we will at least verify that this renormalization
procedure is consistent with the one based on the gééV’M), a scheme whose
results were briefly described in Ref. [37] and which will be exploited
below.
We start by performing the mass renormalization and introduce

&(p;m,cg), the analog of 6¢(p), via
GO g mom). o, o] = +0 = dprmco)l ™ (129

Assuming that the renormalized surface enhancement ¢ has an arbitrary
value 0 < ¢ < oo, we imagine that the surface-enhancement renormaliza-
tion has been carried out. Substituting the resulting form of [G(*?) (p)] -

into (80) yields (for more details see Ref. [52])

[Z1(u, ¢/m) Zg(u)] ™ =1 = (130)
3 m 6 ~ . pal .
_})IL% > op [6(p;m,c+ dc) — 6(0;m,c+ dc)] .

We wish to study what happens to the perturbation expansion in u
of the right-hand side of (130) in the limit ¢/m — co. To this end, we set
m =1 and let ¢ = oco. Then the free propagator — namely (6), with cg
and ko replaced by ¢ and &, respectively — goes over into the Dirichlet
propagator. Further, the perturbative corrections caused by the shift dc
to the term inside the square brackets of (130) vanish as ¢ — 00.® Hence

"Since the scaling dimension Afe1] of the surface energy density €; at the ordinary
transition is exactly given by Ale1] = d, the analogs of (117) and (118) read a$*d =
a — 1 and a‘ﬂd = a — 2 — v, respectively [60,14]. The other surface exponents are
given by the scaling relations (6).

8 A simple way to see this is to note that such corrections involve free propagators
with points on the surface. Dimensional arguments lead to the same conclusion.
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we have

CILI& [6(p;m, ¢+ dc) —6(0;m, ¢+ dc)] = op(p;m) —op(0;m)  (131)
with 6p(p;m) = 6(p;m,o0). As we have seen, the graphs of op(p;m)
are obtained from those of &(p;m,c) by associating with all full lines
the Dirichlet propagator Gp rather than the c-dependent one (6). All
remaining “surface” lines (cf. Ref. [52]) related to the second term in (6)
are given now in the limit ¢y = oo (and with kappag replaced by k). Note
that these graphs are not in general uv finite at d = 3. But subtraction
of their values at p = 0, which is provided by the last term in (131), is
sufficient to make them so. In other words, in the limit ¢ — oo, surface-
enhancement renormalization reduces to an additive renormalization.

To see how this relates to our approach based on the ¢y = oo functions

(VM) e return to the representation (84) of 6¢ in terms of the self-
energy . Since the denominator of the fraction in (84) becomes one for
¢o = 00, we have 6p = §LT[Gp]j, where T[G] is the T-matrix introduced
in (83). Now the reduced propagator (85) can be written as

R ks 0 A
Ip2) = e = o Go(psz,2)| (132)
z z=0
Thus we get .
Qég’Q) [p; mo(m)] = —k + 6p(p;m) , (133)

where it should be remembered [16,17,60] that 626er¥D(p;z,z’) has a
contribution of the form [—d(z — z')]; we have dropped the implied sin-

~ <
gularity [—4(0)] in the zero-loop term (—), interpreting 9,,Gp 0, as the
limit of 0,0.,Gp(p;z,2') as z,2/ — 0 with z # 2’. Combining these
findings with (130) and (131) yields

o r- .

Z Zow)]! = — lim == [¢OD(p) — O ()] . (134
(21w, 00) Z ()]~ = = lim = o0 [602 () - GOV O)] - (139
Next, let us recapitulate our renormalization scheme for the Q((XIDV M)

[37]. Aside from the previous bulk renormalization functions, it involves a
renormalization factor Z; o (), which enters the definition of the renor-
malized surface operator:

(an¢)ren = [Z1,00Z¢]71/2 6n¢ y (135)

and of the renormalized functions:

GO ({p}; {25} m,u) = (136)
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—(N+M)/2 ,—M/2 [ 5 500,
2y WL ZT I G ({p; {23)) — MR 6L 0)] . (137)
One evident normalization condition is
G2 (0 m,u) = 0. (138)
The other,
1

= (139)

5(0,2) (o, =
goo,ren(pamau) p=0 2m )

9

op?
(suggested by the corresponding zero-loop result) serves to fix Zj . In
conjunction with (136) it implies the relation:

21w 0)Zs(w) = =ty ™ L [0 ) - 02 0)] . (140)

whose comparison with (134) reveals that

[21(w,00)Zo(w)] = im |71 efm) Zo(w)]| = Zreew) Zo(w)
(141)

to any order of perturbation theory.
We introduce the analog of the exponent function ;" by

Oln Zl,oo(u)
Ou ’

InZ; oo(u) = B(u)
0

M1,00 (W) = M,00(8) = Mm—=— (142)

m

where @ is the rescaled coupling constant of (87). The fixed-point value
of this function, 710 (u*), is related to 7™ via [37] (cf. Ref. [17])

it = 2477 () + g (u) (143)
as we shall verify below. Reasoning in a standard fashion, we find that
Zi oo ~ (u— u*) Moo (W)@ co (W) (144)

as m — 0 (or w — u*), with fixed bare interaction constant ug (and
cop = 00).

The renormalized functions G(()].X ’rJeVQ satisfy the analog of the CS equa-
tion (54): R
Oco G(()é\t’r]:ﬁ) (; m, U) = AGvoo,ren (145)
with
0 0 N+ M M
=mo— a0 - 14
O ma +/3(u)8u + ng(u) + 5 T 00 (1) (146)
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in which the inhomogeneous term AG o ren is defined just as AGye, in
: (N,M;1,0) (N,M;1,0) :

(55), but with Grensp replaced by Geojen” ", the corresponding cu-

mulant with an insertion of % fv #?. Neglecting AG o ren, We can exploit

in the usual fashion the resulting homogeneous CS equation together

with the asymptotic forms (70) and (144) of Z, and Z; o to conclude

that the bare cumulants behave as

GO (@, 7;mo, up) ~ mNOEMOTN/Y GNM) (g ) (147)

near criticality. That these scaling forms carry over to the asymptot-
ic behavior of the functions G™>M)(x,r;mg,uo, co) near the ordinary
transition can be seen in the ways mentioned in the introduction to this
section and expounded in Refs. [17] (use either the expansion of the bare
functions in powers of 1/¢y or the boundary operator expansion). Here
we shall present an alternative derivation, which is based directly on our
c-dependent renormalization scheme.

First, we need the asymptotic scale dependence of the variable ¢ =
¢(m) near the ordinary fixed point. This can be conveniently obtained
from the reformulated normalization condition (78). The bare function
G(02)(p=0) = x11 approaches a finite value x99 (ug, co,A) as T — T,
(m — 0) with fixed ug and ¢ < ¢”. Using the limiting behavior (141) of
ZyZ, for ¢/m — oo together with the asymptotic forms (70) and (144)
of Zy and Z; ,, we arrive at the relation

(¢ +m)mmHme )  yord (148)
which yields
ord
cr~m (149)

The second ingredient we shall need is the asymptotic behavior of
the dimensionless function

—(N+M)(d-2)/2 (N M) (

(N, M)

m ren

z,r;m,u,c) =G (mx,mr;1,u,c/m)
(150)
as ¢ = ¢/m — oo. Based on our knowledge of the 1/¢y expansion (cf. the

analogous considerations in Sec. III C 6 of Ref. [17]), we anticipate that

GNM (g 7 1,u,c) NN cMFENM) (g p o) + cflR(u)(S%ﬁé(rm) ,

— 00
(151)
where 715 = r; — ro. When these results are inserted into G(V-M) —

Z(N+M)/2wa2G£g{M), each one of the M surface operators ¢, is found

to contribute a factor

=122, (u) Zy,oo ()] 772 (efm) ™ ~m S22 (159)
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to the prefactor of féoN’M). Hence we recover indeed the familiar scaling
form [cf. (147)]:

GW-M) (xz,7) ~ m(NB+MBE) v féoN’M)(ma:,mr,u*) . (153)

In the special case (N, M) = (0, 2), a contribution m D R(u*)d(r12)
and similar subleading ones o §(r12) appear, which we have suppressed
in (153).

7.2. Results of perturbation theory to two-loop order

We now turn to the explicit calculation of the renormalization factor
Z1,00(1) Zy(u) up to two-loop order, restricting ourselves again to the
case d = 3.

Setting ¢g = 0o we wright down the perturbation expansion of 6p
to second order in ug. This we insert into (133), and the so-obtained
form of G0 then into (140). There are two simplifying features we
can benefit from. First, the one-loop graph of p differs from its ¢ = 0
counterpart by a minus sign. This means that the term linear in wg
agrees with its counterpart for Zj"Z,. Second, as we shall show in Ref.
[52], the contributions from the two-loop graphs (3) and (4) of Fig. 3
cancel. Hence we get

D
n+t2 u .m0 D
ZioZy = 1 —lim —— { —— -
Lo e + 12 8mm pli’%pap{

~ 5. g Yo [I(m?) — m*I3(m?)] } + O(ud) . (154)

The required uf term is easily calculated by combining the Feynman
integrals evaluated previously for the case of the special transition. One
finds

n+2 ug n+2 /7 uy \?2 3
Z1 oy =1 1
Loodo = L4 —o— g 3 (87rm) C +0(up) (155)
with 107 7. 4
= 2 2 0.094299 = —0.1 . 1
O'= g5 — 5lng — 0.094299 = ~0.105063 (156)
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Upon expressing ug in terms of the rescaled renormalized coupling con-
stant @ = u (n + 8)/48mm [cf. (87)], the result becomes

_ n+2 _ 12(n+2) n+8\ _,
Zl,oo(u)Z¢(u)_1+2(n+8)u+ CFOE <C+ 54 >u +O(u?) .
(157)

From it the exponent function appearing on the right-hand side of (143)
can be deduced in a straightforward fashion. One obtains

0™ (w) = 7™ (@) = (158)
n+2 _ 24(n+2) n+ 14\ _,
_2(n—|—8)u_ n13)? <C’ 96 >u + O(u?). (159)

The corresponding series expansions of the surface exponents A9 n9rd,

ord ord “~ord - sord “and 6989 follow again by substituting (158) together
with the expansions (6) of v and 7 into the scaling-law expressions (6).

7.3. Numerical estimates for the surface critical exponents of
the ordinary transition

Following the strategy described in Sec. 6, one can analyze the above
power series for the critical exponents of the ordinary transition and
extract numerical estimates. The results are shown in Tables 7-10, where
the entries have the same meaning as in Tables 1-2 (Sec. 6). As before,
the fixed-point values u*(n) of Refs. [20] and [57], obtained by Padé-Borel
resummation of the two-loop result for the 3 function, were used.

For most of the obtained truncated series expansions, the coefficients
do not alter in sign, and the truncated series of their reciprocal (i.e.,
their ‘inverse series’) display a similar behavior. Of this kind are the
series for nﬁrd, Agrd prd 1 59rd and 6914 with n = 0,...,3, and for 49T
with n = 2 and 3. Let s[4, with p + ¢ < 2, be the values resulting
from Padé approximants of type [p/q] (and listed in the columns marked
[p/q]), and let s, = s/0). Looking at Tables 7-10 one realizes that the
sequences of values s[, /4 associated with each one of these critical indices
have the following feature: The values move away from s¢ such that the
second-order approximants [p/(2 — p)] give values farther away from s
than the first-order ones [p/(1 — p)] and that furthermore s; 1] is the
most distant one. In other words, either they increase according to

Sp < 51 < 89 < 511/1) and sp < 50/1] < 8[0/2] < 8[1/1] (160)

or else they decrease in the corresponding fashion. In most cases even
the stronger chain of inequalities

Sp < min {51, 5[0/1]} < max {51, 5[0/1]} < (161)




Table 7. Surface critical exponents of the ordinary transition for d = 3 and n = 0. As fixed-point

value we used u*

| 01/0; | 01,/02, | [0/0] | [1/0]

| [0/1] | [2/0] | [0/2]

[1/1] | f(y,v,m)

ull 2.5 2.0 2.00 1.796 1.815 1.715 1.734 | 1.660 1.660
Ay 4.4 7.8 0.25 0.352 0.364 0.375 0.380 | 0.382 0.394
n 3.6 2.6 1.00 0.898 0.907 0.870 0.877 | 0.859 0.843
B -1.9 -1.6 0.75 0.852 0.864 0.799 0.790 | 0.817 0.782
Y1 0.0 0.0 —0.50 | —0.500 | —=0.500 | —0.424 | —0.434 - —0.388
" 15.4 —11.4 0.50 0.653 0.681 0.663 0.662 | 0.664 0.680
01 2.5 3.1 1.67 1.780 1.788 1.825 1.832 | 1.854 1.870
011 2.1 2.7 0.33 0.424 0.433 0.466 0.476 | 0.504 0.504

Table 8. Surface critical exponents of the ordinary transition for d = 3 and n = 1. As fixed-point

value we used *

| 0:/0: | 011/021 | [o/0] | [r/0] | [o/a] | [2/0] | [0/2] | [1/1] | f(my,v.m)
ull 2.3 1.8 2.00 1.734 1.765 1.618 1.655 | 1.528 1.528
Ay 3.0 5.0 0.25 0.383 0.404 0.427 0.440 | 0.450 0.464
n 3.0 2.2 1.00 0.867 0.883 0.823 0.837 | 0.801 0.779
51 -25 -1.9 0.75 0.883 0.904 0.829 0.815 | 0.845 0.796
Y1 0.0 0.0 —0.50 | —0.500 | —0.500 | —0.402 | —0.418 - —0.333
" 5.7 —40.4 0.50 0.700 0.749 0.735 0.742 | 0.742 0.769
01 2.2 2.7 1.67 1.815 1.829 1.883 1.898 | 1.941 1.966
011 1.9 2.5 0.33 0.452 0.468 0.514 0.533 | 0.582 0.582

Table 9. Surface critical exponents of the ordinary transition for d = 3 and n = 2. As fixed-point

value we used u* =

| 01/0; | Oh/OzZ | [0/0] | [1/0]

| [0/1] | [2/0] | [0/2]

[1/1] | f(y,v,m)

ull 2.2 1.6 2.00 1.688 1.730 1.545 1.598 | 1.422 1.422
Ay 24 3.9 0.25 0.406 0.435 0.470 0.493 | 0.514 0.528
un 2.7 1.9 1.00 0.844 0.865 0.787 0.808 | 0.753 0.727
B -3.2 -21 0.75 0.906 0.935 0.856 0.840 | 0.868 0.810
Y1 0.0 0.0 —0.50 | —0.500 | —0.500 | —0.387 | —0.408 - —0.282
" 3.9 42.1 0.50 0.734 0.805 0.794 0.814 | 0.815 0.851
01 2.0 2.5 1.67 1.840 1.860 1.928 1.952 | 2.019 2.051
011 1.8 2.3 0.33 0.472 0.494 0.550 0.579 | 0.651 0.652

Table 10. Surface critical exponents of the ordinary transition for d = 3 and n = 3. As fixed-point
value we used 4* =

| 01/0: | Ou/Ozl | [o/0] | [r/o] | [o/a] | [2/0] | [0/2] | [1/1] | f(my,v,m)
ull 21 1.5 2.00 1.654 1.705 1.489 1.556 | 1.338 1.338
Ay 2.1 34 0.25 0.423 0.459 0.504 0.538 | 0.574 0.586
1L 2.5 1.8 1.00 0.827 0.853 0.759 0.787 | 0.714 0.685
B —4.1 —24 0.75 0.923 0.959 0.880 0.862 | 0.889 0.824
Y1 0.0 0.0 —0.50 | —0.500 | —0.500 | —0.377 | —0.401 - —0.238
" 3.1 16.3 0.50 0.759 0.850 0.842 0.880 | 0.882 0.927
01 1.8 2.3 1.67 1.859 1.884 1.963 1.995 | 2.088 2.124
011 1.7 2.3 0.33 0.487 0.515 0.578 0.617 | 0.711 0.711
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min {52, 5[0/2}} < max {52, 5[0/2}} < 811 (162)

or its decreasing analog applies.

The value s;/1) always comes last in these sequences. Using it to
extrapolate the series amounts to anticipating that the next (thus far
unknown) terms of the power series expansion in @ have coefficients of
the same sign. This assumption might well be true for some of the series
(an example of this kind is the bulk exponent 7), and in view of the just
mentioned feature of the sp, /) with p+¢ < 2 it seems legitimate to us to
accept it. Accordingly we consider s[; /1) to be the best among all those
estimates sp,/, with p + ¢ < 2 for a given exponent that we obtained
from its individual series expansion.

For 79* with n = 0 and 1, only the first chain of inequalities of (160)
holds. Its inverse series has first-order and second-order corrections of
different signs, and hence may be treated by the Padé-Borel method.
The resulting resummation values (the analog of the ones denoted R, !
in Tables 1-4) agree with s[; /1] up to three decimals.

In the case of 49" (with n = 0,1, 2, 3) both the direct and the inverse
series are alternating in signs. The results of our resummations differ
from the values of the [1/1] approximants only in the third decimal.
(Therefore we have not listed them separately.) The series for 794 have
zero first-order corrections and hence are not well adapted for estimating
this critical exponent.

In order to gain further improved estimates, we follow a similar strat-
egy as we did in Sec. 6 when estimating the critical exponents of the spe-
cial transition: we try to exploit the above results in conjunction with
the available high-precision estimates for the bulk exponents v and 7.
To this end we substitute our [1/1] values for nﬁrd, together with the
estimates taken from [22], v = 0.588, n = 0.027 (for n = 0), v = 0.630,
1 = 0.031 (for n = 1), v = 0.669, n = 0.033 (for n = 2), and v = 0.705,
7 = 0.033 (for n = 3), into the scaling-law expressions (6). The results
are given as f(n,v,n) in the last row of Tables 7-10. As one sees, in
those cases in which the Padé values s, ;) move away from s¢ in a given
direction such that either (160) — or even (161) — or else their corre-
sponding decreasing analogs hold, the estimates f(1,v,7) turn out to
be displaced even further in the same direction.

We consider our estimates f(1),v,n) as the best we could attain
from the available knowledge on the series expansions, within the present
approximation scheme. In some cases they differ significantly from the
zeroth-order values sg we started from. Like in the case of the special
transition, our best estimates agree reasonably well both with the ear-
lier ones based on the e expansion [17,61] as well as with more recent
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computer-simulation results [38,42,59,62-65]. The latter are gathered in
Table 11. For references to earlier numerical estimates and their com-
parison with e-expansion results, the reader may consult Ref. [17].

Table 11. Monte Carlo estimates for the surface critical
exponents of the ordinary transition in d = 3 dimensions.

n=>0
1 | —0.33(2) Meirovitch & Livne, 1088 [38]
—0.353(17) De’Bell et al., 1990 [62]
—0.383(5) Hegger & Grassberger, 1994 [42]
71 | +0.718(8) De’Bell & Lookman, 1985 [63]
+0.687(5) | Meirovitch & Livne, 1988 [3]
+0.694(4) | De’Bell et al., 1990 [62]
+0.679(2) Hegger & Grassberger, 1994 [42]
n=1
B | +0.79(2) Kikuchi & Okabe, 1085 [64]
+0.78(2) Landau & Binder, 1990 [39]
+0.75(2) Ruge et al., 1993 [41]
+0.807(4) Ruge & Wagner, 1995 [43]
+0.80 £ 0.01 | Pleimling & Selke, 1998 [59]
7 | +0.78(6) Landau & Binder, 1990 [39]
+0.760(4) Ruge & Wagner, 1995 [43]
+0.78 £ 0.05 | Pleimling & Selke, 1998 [59]
y1 | —0.25+0.1 | Pleimling & Selke, 1998 [59]
01 | +2.00(8) Kikuchi & Okabe, 1985 [64]
n=2
81 | +0.84 Landau et al., 1989 [65]
| =2 Landau et al., 1989 [65]

Specifically, our estimates 797%(n = 0) ~ —0.388 and 7{*4(n =0) ~

0.680 for the polymer universality class (n = 0) are in excellent agree-
ment with the recent (apparently very precise) Monte Carlo estimates
yrd(n = 0) = —0.383(5) and ™4 (n = 0) = 0.679(2) by Hegger and
Grassberger [42]. Likewise for the Ising universality class, our numerical
values 49" (n=1) ~ 0.80 and {*4(n =1) ~ 0.77 are very close to the
Monte Carlo estimates 39" (n=1) = 0.807(4) and 72" (n=1) = 0.760(4)
of Ruge et al. [43]. Landau and Binder’s earlier Monte Carlo estimates
[39] Byrd(n =1) ~ 0.78 and v¢*Y(n = 1) = 0.78(6) are slightly smaller
and larger, respectively. The more recent ones by Pleimling and Selke
[59] coincide within their error bars with those of Ref. [43] and our best
estimate.
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There also exist some experimental results with which these theo-
retical Ising values can be compared. Sigl and Fenzl [66] were able to
extract the value f; = 0.83 £ 0.05 from capillary-rise experiments on
the transition from partial to complete wetting in critical mixtures of
lutidine and water with different amounts of dissolved potassium chlo-
ride. Using the technique of x-ray scattering at grazing incidence [67—
70], Maildnder et al. [71] investigated the surface critical behavior of a
FeAl alloy at its B2-DO3 disorder-order transition [72-74]. The values
n = 1.52+0.04, 81 = 0.75 £ 0.06, and 11 = —0.33 £ 0.06 they found
are consistent with our estimates® 79" (n=1) ~ 1.53, #"!(n=1) ~ 0.80,

and 7¥4(n=1) ~ —0.33 (taken from the last column of Table 8).

An x-ray scattering experiment has also been performed on the A2-B2
disorder-order transition in a semi-infinite FeCo alloy that is bounded
by a (001) surface [75]. This yielded 8; = 0.79 £+ 0.10, in conformity
with the above theoretical values for 394 (n=1). Yet it should be noted
that the chosen (001) surface breaks the symmetry of interchanging the
two sublattices [76-78]. Therefore the Hamiltonian one encounters in a
coarse-grained continuum description of the large-scale physics is not
invariant under a sign change ¢ — —¢ of the order parameter and will
generically have surface contributions involving odd powers of ¢ and
its derivatives [79,17]. In particular, surface contributions linear in @,
i.e., a surface ordering field g1 # 0, normally should be present, and
since g; is a relevant scaling field, the asymptotic critical behavior must
be characteristic of the normal [80] rather than the ordinary transition
[77,78].

In their experiment, Krimmel et al. [75] actually found evidence of the
presence of such a surface ordering field g;. On the other hand, they did
not observe the crossover to the normal surface transition. The reason
seems to be that g; is rather small. In order to see clear manifestations
of this crossover or even verify the true asymptotic behavior, one must
therefore resolve a temperature regime fairly close to T,.. The one studied
in the experiment was apparently not close enough, a possibility which
has already been suggested by the experimentalists themselves [75]. A
recent reanalysis [81] of their data indicates that these are even better
consistent with the behavior one should expect near T, when the scaling
variable g |7'|_Ac1’rd is still small (so that the crossover to the normal sur-
face transition has not yet set in) than the original analysis by Krimmel

9The case of the B2-DO3 transition is more complicated than that of the A2-B2
transition, for the DO3 structure involves four sublattices and hence a larger number
of composition variables [72]. Nevertheless the B2-DO3 transition is expected to
belong to the Ising universality class [73,74]; see the note added in proof in Ref. [18].
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et al. revealed.

The experiments [71] on the B2-DO3 transition of FeAl also require
a comment. Just as in the measurements on FeCo [75], a small amount of
long-range order near the surface was found to persist at and above 7.
It is tempting to attribute this again to the presence of a surface ordering
field g1 (cf. Ref. [69]). However, the orientation of the surface plane of
the FeAl crystal investigated in Ref. [71] was symmetry preserving in the
sense of Refs. [76] and [78], so surface contributions breaking the ¢ — —¢
symmetry of the Hamiltonian should not occur. Thus, if the explanation
of the experimental findings must indeed be sought in the presence of a
surface ordering field, then the question of its origin arises.!® It appears
that further theoretical and experimental work is required to clarify this
issue.

X-ray scattering experiments have also been performed on a NH4Br
single crystal [82]. The authors argue that the critical fluctuations at
the observed order-disorder transition should be described by the three-
dimensional Ising model, but also point out that the transition is coupled
to a first-order displacive transition. The effective exponents they mea-
sured, 7 = 1.3 £ 0.15 and §; = 0.8 £ 0.1, are compatible with the
theoretical predictions for the n = 1 ordinary transition. In view of the
coupling to the displacive transition it is however not clear to us how
serious such a comparison can be taken.

Our estimates for n = 2 and 3, given in Tables 9 and 10, also con-
form nicely with the previous e-expansion estimates gathered in Table

VI (p. 186) of Ref. [17], from which we quote the value nﬁrd(n:2) ~ 1.38

as an example (to be compared with our present best estimate ~ 1.42).
For n = 2, there exist some recent Monte-Carlo results by Landau et al.
[65], as mentioned in Table 11. For a comparison with series-expansion
estimates for the cases n = 2 and 3, we refer to Table VII of Ref. [17]
and the original work [83].

Our values 7™ (n=3) ~ 1.34 and "!(n=3) ~ 0.82 are fairly close

to the estimates 7™ (n=3) =~ 1.29 £ 0.02 and "¢ (n=3) ~ 0.84 £ 0.01

Diehl and Niisser [61] obtained from Padé approximants that exploited
the results of both the ¢ expansion and the d — 2 expansion to second

order. We are not aware of any recent Monte-Carlo predictions for surface

10 Any real surface will, of course, not be ideally planar. Hence the symmetry in-
voked in proving the absence of symmetry-breaking terms in the Hamiltonian [78]
will not be strictly realized. Nevertheless, one would not expect such unavoidable
imperfections to manifest themselves through symmetry-breaking contributions pro-
portional to the surface area, unless the crystal was not carefully prepared and its
surface not well-defined.
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critical exponents of the n = 3 ordinary transition. On the experimental
side, there is the result 3, = 0.82570 035 Alvarado et al. [84] found for a
Ni(100) surface using spin-polarized low-energy electron diffraction.

8. CONCLUDING REMARKS

In this work we have extended the massive field-theory approach for
studying critical behavior in a fixed space dimension below the upper
critical dimension to systems with surfaces. We have carried out two-loop
calculations for the ordinary and special surface transitions in d = 3 bulk
dimensions and performed a Padé-Borel analysis of the resulting series
for the respective surface critical exponents. The behavior of the trun-
cated series we have obtained and analyzed, though less good-natured
for some than for other exponents, is in general very similar to what one
finds for those of bulk exponents at the same two-loop order of trun-
cation. We take this as a clear indication of the potential power of the
approach: when pushed to an order of perturbation theory that is com-
parable to what has been achieved for the bulk exponents [2,20-22,85]
and investigated by the same sophisticated techniques based on Borel
summation and large-order analysis, it should yield similarly precise nu-
merical estimates. We have applied the same kind of numerical analysis
as above, to the second-order series expansions of a number of the bulk
critical exponents. The results of this example calculation are given in
the Table 12. The sequences of approximate estimates for each critical
exponent tend to the ”standard” values quoted in the last column.

One motivation for the present study was to see whether the field-
theory results might be reconciled with the small values of ~ 0.5 found
in recent Monte Carlo simulations [41,42] for the crossover exponents
®(d=3,n) with n = 0 and n = 1. Our present best estimates ®(3,n =
0) ~ 0.52 and ®(3,n=1) ~ 0.54 (cf. Tables 3 and 4) are indeed much
lower than the original ones based on the € expansion (which were ~ 0.67
and ~ 0.68, respectively [15,17]), and as we have seen, a Padé-Borel
analysis of the e expansion to order € yields comparatively low d = 3
estimates. That the original e-expansion estimates for ® were ~ 20%
greater than our present ones seems to be due to the unusual largeness
of its O(e?) terms, which entails that the value of the truncated power
series at € = 1 gives a rather poor approximation for ®(d = 3). This
problem exist, of course, also for the other surface exponents that derive
from the same RG function 7 as ® (such as o}, cf. Tables 3 and 4). For
the remaining surface exponents of both transitions, the O(e?) terms are
much smaller, so the values of the truncated series at d = 3 turn out to
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be much closer to our best estimates.

In those cases in which there is little difference between the e-expansion

values given in Ref. [17] and our best estimates here, one may say that
these field-theory values have been put on a more reliable basis by our
present analysis because of our use of better extrapolation procedures
based on Padé-Borel summation techniques.

To give error bars for our estimates of surface critical exponent is
a rather delicate matter. If we took as a measure of uncertainty for
the value of any given one of them the spread of values of the various
extrapolations of the O(u?) series expansion, then a reasonable guess
might be a typical accuracy of a few, say, 5%. What appears to be
needed most for an improvement of the accuracy and more reliable error
bars is the computation of the series coefficients of the surface exponents
to a higher order in perturbation theory.

There is an additional problem one is faced with in massive field-
theory approaches to systems with boundaries that should be mentioned:
the appearance of further mass scales such as the renormalized surface
enhancement c. Having to deal with more than one mass parameter,
namely with m and the ratio ¢/m, makes calculations rather cumber-
some. Fortunately, we have found ways to study directly the asymptotic
cases ¢/m = 0 and ¢/m — oo corresponding to the special and ordinary
transitions, respectively. Hence one gets back to single-mass problems.
Nevertheless the technical problems that must be overcome to extend the
calculations to higher orders of the loop expansion require considerably
more effort than in the bulk case.

It is our hope that the present work might serve as a useful basis
and starting point for further analyses that ultimately could lead to
quantitiative field-theory results for surface critical exponents and other
universal quantities of a precision as good as in the bulk case. Finally,
we would also like to express our hope that our work might spur further
experimental work as well as simulations, the latter especially for higher
spin dimensionalities.
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