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T.G.SokolovskaPHASE DIAGRAM IN A CONTINUUM MODEL OF THECLASSICAL HEISENBERG FERROMAGNET: MEANSPHERICAL APPROXIMATION
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1 ðÒÅÐÒÉÎÔ1. IntroductionSince the late 1960s there have been reports on the existence of liq-uid ferromagnetic materials, such as Au-Co alloy [1], the problem ofthe passing from magnetic lattice models to continuum disordered sys-tems has arisen. In these materials many physical properties are con-nected to the lack of translational order. For example, these are thee�ects associated with gas-liquid transitions that can only be strictlyaccounted for in the context of liquid state theory. Therefore, continu-ous systems with interparticle spin interactions of classical Heisenbergsymmetry have been studied in the past within the framework of clas-sical statistical mechanics, in particular, by means of integral equationapproaches. For an isotropic (orientationally disordered) phase the solu-tions of the Ornstein-Zernike (OZ) equation for some models were ob-tained in the mean spherical approximation (MSA) [2{4] and within thereference hypernetted chain closure [5]. These methods allow to deter-mine the Curie point. But in ferrouids the gas-liquid transition cannotbe analyzed by the traditional integral equation methods since it involvesthe anisotropic phase. In other words we have to investigate the regionwhere the isotropic OZ equation does not have any physical sense andmust be replaced by the anisotropic OZ equation.The anisotropic (ferromagnetic) phase of a continuum Heisenbergmagnet is an object of special interest. The ordered n-dimensional mag-net (for n � 2) is a system with spontaneously broken symmetry, wherewithout the presence of an external �eld, the direction of the magneti-zation is not predetermined. The spontaneous magnetization breaks theisotropic symmetry (the complete rotational invariance) of the systemand leads to spin wave excitations (Goldstone modes), which rotate thedirection of the magnetization without any energy cost. It can be shownthat the anisotropic OZ-equation together with the Triezenberg-Lovett-Mou-Bu�-Wertheim (Lovett) equation [6] ensure a correct treatment forthe Goldstone modes in uniaxial uids, such as nematics, polar liquidsor magnetic uids. But there are great di�culties in the obtaining ofa self-consistent solution for the integral OZ-equation and the integro-di�erential Lovett equation.Therefore, current theoretical results for phase diagrams (that in-clude the �rst order phase transitions) are obtained with the modi�edmean �eld (MMF) theory [7{9] or with the generalized van der Waalsapproaches [10,11]. The MMF approach gives a pretty good agreementwith the simulation results [7,9]. But there exists one qualitative di�er-ence in predictions of these theories and Monte Carlo simulations. The
ICMP{98{05E 2theories suggest a phase diagram of the Heisenberg uid to have thetricritical point whereas the simulations predict instead the existenceof the magnetic critical point [5,9]. Considering this contradiction oneshould understand that the simulation in the vicinity of the critical (ortricritical) point is a process very complicated by �nite size e�ects andthe critical slowing down. On the other hand, the mean-�eld-like meth-ods use approximations that neglect the correlations between spatial andspin variables. Furthermore, all these methods make crude assumptionsabout the density-density and spin-spin correlations. For example, theMMF theory use the zero-density approximation for the pair correlationfunction that does not depend neither on the density nor on orientationalorder parameters. Therefore, the question about the nature of criticalityin the Heisenberg uid remains open. This problem is addressed both byre�ning the simulation results and by using more sophisticated theories.In the presented paper we propose a method for the calculation ofcorrelation functions in anisotropic phases with the analytical solution ofthe anisotropic OZ equation and the Lovett one. The suggested approachstands on a higher level with respect to the mean-�eld-like theories anddoes not impose any additional approximations other than a closure forthe OZ equation. This approach was used for nematic systems [12,13] andmade it possible to calculate analytically the Frank elastic constants bythe expressions from the density functional theory [14] and the expres-sions [15] obtained in the theory of hydrodynamic uctuations. Both theapproaches give the same result that proves the self-consistency of ourmethod.The paper is organized as follows. In the next section we review thealgebraic representation of the Lovett equation for an uniaxial uid inthe form of exact relations. It will be shown that the representationcorrectly treats the Goldstone modes. In Sec.3 we solve analytically theanisotropic OZ equation for the classical ferromagnetic uid. This modelwas considered in [5]. On the basis of the obtained solution we calculatethe phase diagram and compare it with the Monte Carlo [5] and theMMF [7] results in Sec.4. Sec.5 is a summary.2. Exact algebraic representation of the Lovett equa-tion for anisotropic uidsThe main idea of our method is a principal rejection of the completerotational invariance form for anisotropic pair correlation functions thatis usual in isotropic systems. We use the general expansion in terms ofspherical harmonics for the direct correlation function (the form of the



3 ðÒÅÐÒÉÎÔpair correlation function h(~R; !1; !2) is similar):c(~R; !1; !2) = Xm;n;l;�;�;� c���mnl(R)Ym�(!1)Y �n�(!2)Yl�(!~R); (2.1)~R is a separation-vector of molecules mass centers, !i = (�i; �i) beingan orientation of the linear molecule i. For uniaxial uids c(~R; !1; !2)is invariant under a rotation along the ordering direction (z axis). Thiscondition leads to the relation �+� = �. We stress that a complete rota-tional invariance is broken in anisotropic uids, and correlation functionscan not be represented by rotationally invariant series of Wigner andBlum [16]. The use of such rotationally invariant correlation functionsin anisotropic systems is an approximation like the use of a transla-tional invariant form f2(j~R2 � ~R1j) in crystalline solids. For example,the expansion (2.1) contains the terms c000m00(R)Ym0(!1)Y �00(!2)Y00(!~R),which are excluded in the rotationally invariant series represented byEqs. (2.8){(2.10) of Ref. [20]. One can �nd another di�erences.The second principal point is the use of the exact Lovett [6] equationin order to obtain the single-particle distribution function f(!) of ananisotropic uid:~r!1 ln �(!1) = Z c(~R; !1; !2)~r!2�(!2)d~Rd!2; (2.2)where �(!) = �f(!), � denotes a number density of the system, ~r! isthe angular gradient operator for a linear particle. It should be notedthat the substitution of the Lovett equation (2.2) by the \simpli�ed" one(see [17]) ln �(!1) = Z c(~R; !1; !2)�(!2)d~Rd!2 + constis a noncontrollable approximation in anisotropic systems. Therefore, weinsist on the solution of the exact equation (2.2).In uniaxial uids the orientational distribution function f(!) is ax-ially symmetric around a preferred direction (z axis) and depends onlyon the angle � between the molecular orientation ! and z axis. It allowsto write f(!) in the formf(!) = 1Z exp(Xl>0 AlYl0(!)) ; (2.3)
ICMP{98{05E 4where the constant Z can be found from the normalization conditionR f(!)d! = 1. Spherical harmonics Ylm(!) satisfy the standard Condonand Shortley phase convention [18] and are normalized in such mannerthat hjY2mj2i! = 1 in the isotropic phase, whereh:::i! = Z f(!)(:::)d!: (2.4)The orientational ordering is de�ned by the parametersSl = hPl(cos �)i! = Z d!f(!)Pl(cos �); (2.5)where Pl(cos �) are the Legendre polynomials. The space-�xed X , Y andZ components of the angular gradient operator are given by ~r! = i~l,where ~l is the angular momentum operator. Using the expressions (2.1),(2.3) and the relations [18] (~r!)y = ^l+ � ^l�2 ; (2.6)^l�Ym�(!) = [m(m+ 1)� �(�+ 1)]1=2Ym��1(!) (2.7)we obtained the y-component of (2.2) in the explicit form:XM>0pM(M + 1)AM [YM1(!1)� YM�1(!1)] == XM 0>0 Xm;n;� Z c��0mn0(R)Y00(!~R)Ym�(!1)Y �n�(!2)� (2.8)�pM 0(M 0 + 1)AM 0 [YM 01(!2)� YM 0�1(!2)] �(!2)d!2d~R;where Y00(!~R) = 1. Taking into account that only independent of az-imuthal angle ' quantities yield nonzero average values and using theorthogonality of Ylms one gets the following matrix equation~L = ^C ^Y ~L; (2.9)where ~L is a column matrix consisting of LM =pM(M + 1)AM , ^C and^Y are matrices of order (N �N) with elementsCmn = Z d~Rc110mn0(R) (2.10)and



5 ðÒÅÐÒÉÎÔYmn = � Z d!f(!)Ym1(!)Y �n1(!); (2.11)where Ymn can be expressed via Sl, N is a number of values of index m(or n) such that Cmn 6= 0.On the other hand we can integrate by parts the equation (2.2) andwrite ~r!1 ln �(!1) = � Z h~r!2c(~R; !1; !2)i �(!2)d!2d~R: (2.12)In the similar manner from (2.12) we can obtain a matrix equation forthe coe�cients of the function f(!)~L = ^C ~P; (2.13)where ~P contains the order parameters of the system:Pl = �pl(l + 1)(2l+ 1)Sl: (2.14)Thus, the symmetries of the pair potential and of the uniaxial system inwhole yield two matrix relations (2.9) and (2.13) which connect the sys-tem order parameters, zero Fourier transforms of the direct correlationfunction harmonics and coe�cients Al of the single-particle distributionfunction of the system.Joint use of (2.9) and (2.13) allows to express f(!) via the orderparameters only: ~L = ^Y �1 ~P : (2.15)It follows from the OZ equation [19,17] that an existence of a uniteigenvalue of the integral operator ~C(~k = 0; !1; !2) = �1=2(!1)c(~k =0; !1; !2)�1=2(!2) corresponds to an appearance of the Goldstone modesin anisotropic uids: h2(~k ! 0; !1; !2)!1. One can see that the Lovettequation (2.2) is an eigenequation for the operator ~C with the eigenvector i(~k = 0; !) = ��1=2(!)~r!�(!) and unit eigenvalue. Therefore, thedirect correlation function and the single-particle distribution functioncomplying with (2.2) and the OZ equation treat correctly the Goldstonemodes in the system.In order to examine the exact relations (2.9) and (2.13) we considerthe OZ equation for anisotropic uids:

ICMP{98{05E 6h(1; 2) = c(1; 2) + Z �(3)c(1; 3)h(3; 2)d(3); (2.16)where c(1; 2) and h(1; 2) are the direct correlation function and the paircorrelation function respectively; d3 = d~R3d!3, where ~R denotes masscenter coordinates of the particle, ! = (�; ') is the orientation of themolecule. As �(3) does not depend on ~R3 then the Fourier-component(~k = 0) of (2.16) can be rewritten in the form of the matrix equations:^H(�) = ^C(�) + ^C(�) ^Y (�) ^H(�); (2.17)where H(�)mn = Z d~Rh��0mn0(R)Y00(!~R); (2.18)C(�)mn = Z d~Rc��0mn0(R)Y00(!~R); (2.19)Y (�)mn = Z d!f(!)Ym�(!)Y �n�(!): (2.20)One can verify (2.17) taking into account that the uniaxial uid is in-variant with respect to rotations around z axis.Equation (2.17) can be presented in the form :^pY (�) ^H(�) ^pY (�) = �1� ^pY (�) ^C(�) ^pY (�)��1� ^pY (�) ^C(�) ^pY (�): (2.21)The matrix ^H(�) is singular, ifdet�1� ^pY (�) ^C(�) ^pY (�)� = 0:The last condition is satis�ed for � = 1 in uniaxial uids due to theobtained relation (2.9). Thus, the Goldstone modes are connected withthe corresponding harmonics of the pair correlation function (h110mn0(~k =0)). Since these harmonics are coupled with the transverse correlationsof spins in magnets, the divergences h110mn0(~k = 0) ! 1 are responsiblefor a long-range character of the above-mentioned correlations in theordered phase.



7 ðÒÅÐÒÉÎÔ3. Solution of the anisotropic OZ equation in theMSA for the classical Heisenberg ferromagnetWe consider the model that was proposed in [5]. This is the uid of hardspheres of diameter � with embedded Heisenberg spins, whose couplingconstant is given by a Yukawa interaction:v(1; 2) = � 1; R < �J(R)~s1 � ~s2; R > � (3.1)with J(R) = �K(z�)2 exp(�zR)R=� ; (3.2)where K > 0 (ferromagnetic case), ~si being the unit vector describingthe orientation of the spin in particle i. In other words ~s1 �~s2 = cos!12,!12 being the relative spin orientation. Let we note that in [5] J(R) ischosen in a slightly di�erent form (J(R) = �3K exp(�z(R� �))=R).For this model we shall solve the anisotropic OZ equation (2.16) withthe MSA closure:h(1; 2) = �1 for R < � ;c(1; 2) = ��v(1; 2) for R > � : (3.3)For the closure (3.3) the general form (2.1) is reduced [12] to the form:c2(R;!1; !2) = c000(R) + c100(R)(Y10(!1) + Y10(!2)) ++ Xjmj�1 c11m(R)Y1m(!1)Y �1m(!2): (3.4)The expression for h2(R;!1; !2) is analogous. It should be noted thatthe structure of (3.4) is di�erent from the one for the isotropic phase. Inparticular, in (3.4) there are the terms with c100(R).For the expansion (3.4) the exact relations (2.9) and (2.13) can bewritten in a simple form:1 = �hjY11(!)j2i! Z c111(R)d~R; (3.5)A1 = �hY10(!)i! Z c111(R)d~R: (3.6)On the other hand due to uniaxial symmetry of the ferromagneticphase the equation (2.16) separates into the independent integral equa-tions with di�erent values of m. For jmj = 1 we get:
ICMP{98{05E 8h11m(R12) = c11m(R12)+�hjY1m(!)j2i! Z c11m(R13)h11m(R32)d ~R3;h11m(R12) = 0; R12 < � (3.7)c11m(R12) = �K(z�)2 exp(�zR12)3R12=� ; R12 > �:The equations (3.7) and (3.5) constitute a complete system now. It allowsto obtain hjY11(!)j2i! as a function of the model parameters �K, z�and � = ���3=6: The solution (3.7) under the condition (3.5) means thecalculation of the single-particle distribution function in the MSA. Bythe factorization method of Baxter (see [20,12,21]) the equation (3.7) form = 1 results in the system of algebraic equations:123 ~��K = ~D[1� ~Q(z)]; (3.8)2�~g111(z)[1� ~Q(z)] = 12 exp(�2z�)[1� 2�~g111(z)] ~D; (3.9)� ~C = [1� 2�~g111(z)] ~D; (3.10)where ~� = �hjY11(!)j2i!, ~D and ~C are dimensionless coe�cients of thefactor correlation function:Q(R) = z�hjY11(!)j2i! [Q0(R) + ~D exp(�zR)] (3.11)with the short-range partQ0(R) = ~C[exp(�zR)� exp(�z�)]; R < � (3.12)Q0(R) = 0; R > �: (3.13)~Q(z), ~g111(z) are the dimensionless Laplace transforms of Q(R) and theharmonic of the pair correlation function h111(R):~Q(z) = �hjY11(!)j2i! Z 10 e�ztQ(t)dt;~g111(z) = �hjY11(!)j2i!z Z 1� e�zth111(t)tdt: (3.14)



9 ðÒÅÐÒÉÎÔFrom the de�nition of the factor correlation function it follows that1� �hjY11(!)j2i! Z c111(R)d~R = [Q(k = 0)]2; (3.15)where Q(k) is de�ned by the expression:Q(k) = 1� �hjY11(!)j2i! Z 10 dReikRQ(R): (3.16)The joint use of (3.15) and (3.5) gives us the additional equation todetermine hjY11(!)j2i!: Q(k = 0) = 0; (3.17)and in the explicit form 1 = ~D + k ~C; (3.18)where k = e�z��1(z�). Here and below we use the symbols�n(x) = exp(x)� nXl=0 1l!xl: (3.19)The formulae (3.18) and (3.9), (3.10) yield the expression for ~D:~D = �b�pb2 � 4ac2a ; (3.20)where a = �k exp(�2z�)� (k � 1) �k ��20(�z�)� ;b = (k � 1)c� k +�20(�z�) + k exp(�2z�): (3.21)c = 2k ��20(�z�);Now from the equation (3.8) we can obtain the dependence between theordering parameter hjY11(!)j2i! and the system parameters �, �K andz�:�K�hjY11(!)j2i! = 18 ~D �2� �20(�z�)k � ~D�1� �20(�z�)k �� : (3.22)Substituting in (3.22) hjY11(!)j2i! = 1 we determine the loci of the Curiepoints in the temperature-density plane for the �xed z�.
ICMP{98{05E 10It follows from the (3.6) that the self-consistent f(!) in the MSA hasthe form:f(!) = const exp �hY10(!)i!Y10(!)=hjY11(!)j2i!� : (3.23)Using (3.23), (3.22) and de�nition (2.4) one can calculate all order pa-rameters. For the order parameter s1 = 1p3 hY10(!)i! Eq. (2.4) is rewrit-ten as the well-known self-consistency equation:s1 = coth(Ms1)� 1Ms1 ; (3.24)where M = 3hjY11(!)j2i! .For the equation with m = 0 that follows from (2.16) we obtain amore complicated expression. In the Fourier space it may be presentedin matrix form: ^H(k) = ^C(k) + ^C(k)^� ^H(k); (3.25)where^H(k) = �h000(k) h010(k)h100(k) h110(k)� ; ^C(k) = � c000(k) c010(k)c100(k) c110(k)� ;^� = �� 1 hY10(!)i!hY10(!)i! hjY10(!)j2i! � : (3.26)The closures of the correlation functions in the ~R-space are as follows:R < � : h000(R) = �1, the other harmonics are equal to 0;R > � : c110(R) = �K(z�)2�3 exp(�zR)R , the others equal 0.Since the elements of the matrix ^� are calculated from (2.4) one can solveEq. (3.25) now with the Baxter factorization technique in the usual way.A detailed discussion of the factorization method can be found elsewhereand therefore we omit any details and refer the reader to the previouspublications [12,20,21].
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Figure 1. Pressure-volume isotherms of the Heisenberg uid with z� = 1,in reduced units, as obtained by the virial theorem at kBTK = 0:8, 0.767,0.725 and 0.65. Both isotropic (I) and ferromagnetic (F) branches areshown. Solid lines are the theoretical results, the thin line is a spline.The break points of the isotherms correspond to the Curie points. Thecrosses are the points of the gas-liquid coexistence obtained with theMaxwell construction. On the inset the isotherm kBTK = 0:767 is shown(detail).

ICMP{98{05E 124. Phase diagram of the Heisenberg uidIn order to determine the gas-liquid equilibrium we should have thermo-dynamically consistent expressions for the pressure and chemical poten-tial. For the MSA in the isotropic phase there are three thermodynami-cally consistent approaches obtained via: 1) the compressibility relation,2) the virial theorem, 3) the internal energy [22]. But the results ofthe remarkable paper of H�ye and Stell are not applicable for the caseof anisotropic phases. A derivation of the thermodynamically consistentpressure and chemical potential for the anisotropic MSA is a problem fora special serious investigation. In this paper we shall avoid this problemusing the generally known Maxwell construction.The virial theorem provides the most convenient way to calculatepressure on the basis of the MSA results obtained in the previous section:Pv = �kBT � �26 Z d~R12d!1d!2R12 @v(1; 2)@R12 f(!1)(1 + h(1; 2))f(!2):In Fig. 1 we present pressure-density isotherms of the model with z� = 1at di�erent temperatures (kBTK = 0:8; 0:767; 0:725; 0:65). I marks theisotropic branch, F denotes the ferromagnetic one. At kBTK = 0:8 theorientational (ferromagnetic) phase transition of the second order takesplace in the system. The break point of the isotherm is a locus of theCurie point. At kBTK = 0:725 the orientational phase transition is coupledwith a condensation. The crosses are the points of the gas-liquid coexis-tence obtained with the Maxwell rule of areas. The coexisting densitiesare �I = 0:130, �F = 0:259. In the range between these densities thereis the two-phase region. We note that one should not expect a physicalsolution of the anisotropic OZ equation (2.16) in the whole two-phaseregion, because Eq. (2.16) describes spatially uniform systems. Indeed,at low temperatures (e. g. kBTK = 0:65) the nonsolution domain appears,and we interpolate the isotherm behaviour in this domain with splines.In Fig. 1 the spline for the isotherm at kBTK = 0:65 is depicted by athin line. At this temperature the coexisting densities are �I = 0:099,�F = 0:339.The isotherm at kBTK = 0:767 is of special interest. It allows us todetermine the type of criticality in this model. In Fig. 1 the inset allowsto discern the sequence of phase transitions at this temperature. At thelower � the order-disorder transition of the second order occurs. Thebreak between I and F branches is its manifestation. At the greater �the phase transition ferrogas-ferroliquid of the �rst order takes place(coexisting densities are �Fgas = 0:149 and �Fliq = 0:168). Thus, the
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Figure 2. Phase diagram for the Heisenberg uid in reduced temperature-density units, with parameter z� = 1. I and F mean isotropic and fer-romagnetic phases. The gas-liquid coexistence and the Curie points ob-tained in the MSA are given as thick and thin lines respectively. On theinset the vicinity of the magnetic critical point is depicted (the MSA re-sults). The dashed lines are results of the MMF theory [7]. It should benoted that kBTK equals T�3e from Ref. [5] (or T �=e from Ref. [7]). The dia-monds correspond to the Monte-Carlo results of Lomba et. al. [5] for theCurie points. Gibbs ensemble simulations for the gas-liquid coexistence[5] are represented by solid circles.

ICMP{98{05E 14MSA with virial route to thermodynamics suggests the existence of themagnetic critical point. Now let us consider the compressibility routeto thermodynamics. In the isotropic MSA the orientational and spatialcontributions to the pair correlations are decoupled to the point thatthe structure factor of our model reduces to that of the hard sphereuid. Therefore, within this route the compressibility of the model is�nite in the whole isotropic phase including its boundary (the Curieline). In the MSA for an anisotropic phase the spatial distribution (thestructure factor) depends on the order parameter and does not coincidewith that of the hard sphere uid [23]. Therefore, a gas-liquid criticalpoint can be located only in an anisotropic phase in principle. Thus, thecompressibility route also excludes the existence of the tricritical point.One can see that the MSA is in marked disagreement with the mean �eldand the MMF theories and supports available simulation results [5,9] onthe criticality of the system.It should be noted, that in [7,9] the treatment of critical behaviourwas done by stability analysis of the free energy functional adopted inthe MMF approximation. For a pity, such general analysis of the freeenergy functional on the MSA level is a much more complex problem, ifit is possible at all. The point is that the MSA pair correlation function issensitive to the density and the ordering in the system in opposite to anymean �eld approach. Therefore, we are forced to calculate the correlationfunctions in the MSA for each model individually, whereas in the MMFone uses the simple Ansatz (namely a zero-density approximation) forthe pair correlation function:h(1; 2) = exp(��v(1; 2))� 1Figure 2 shows the temperature-density phase diagram of the model(z� = 1). Also included for the sake of comparison are the MMF results(dashed lines) as well as the Gibbs ensemble Monte-Carlo results of theLomba et al [5] for the gas-liquid coexistence (solid circles) and theirestimates of the Curie points by the canonical ensemble Monte Carlo(diamonds). It follows from the �gure that at high temperatures wehave the second order phase transition paramagnet-ferromagnet. TheCurie points of the MSA [2] are represented by the straight (thin) linein Fig. 2. The agreement between theory and simulation (diamonds) issatisfactory, though in [5] it is noted that the Monte Carlo estimates ofthe Curie temperature are not accurate enough. A more precise MonteCarlo location of the Curie line is possible for very short-range potentials,e. g., for the Yukawa interaction truncated at 2.5 hard sphere diameters[8,9].



15 ðÒÅÐÒÉÎÔThere is the �rst order phase transition at low temperatures. Theequilibrium between the paramagnetic gas and ferromagnetic liquid takesplace. But near the gas-liquid critical point only ordered states are in-volved in the gas-liquid transition (see the inset to Fig. 2). The magneticcritical point has coordinates kBTK = 0:7674, � = 0:16. Thus within theMSA the system will lack a tricritical point and the line of Curie pointswill end up on the vapour side of the gas-liquid coexistence curve. Thisresult con�rms available simulations. One can see in Fig. 2 that quanti-tative agreement between the theory and simulation [5] (solid circles) isquite perfect.5. SummaryIn this paper we have obtained the analytical solution for the uid ofhard spheres with interparticle spin interactions of classical Heisenbergsymmetry (3.1). The analytical results in the MSA for the ferromagneticphase is represented by a system of algebraic equations.Our method is based on the self-consistent solution of the anisotropicOrnstein-Zernike and the Lovett equations. This approach does not im-pose any approximations other than a closure for the OZ equation. Itcorrectly treats the Goldstone modes and can be used for any uniaxialuid. A principal di�erence of our approach from the early studies in theanisotropic uid theory [19,17] is the rejection of the complete rotationalinvariance form [16] for the anisotropic (ferromagnetic) correlation func-tions. This allows us to treat correctly a system symmetry and to get ridof noncontrollable procedures like the rotational average of correlationfunctions [17,19].Using the pair correlation function (in the MSA) the phase dia-gram of the considered model (z� = 1) has been obtained. The cal-culation is based on the virial theorem and the Maxwell construction.The temperature-density phase diagram shows that at high tempera-tures the second order ferromagnetic phase transition takes place. Atlow temperatures there is the gas-liquid transition. This transition couldnot be analyzed by the integral equation methods before since it involvesanisotropic phases, where the isotropic OZ equation does not have anyphysical sense. For the MSA the invalidity of the isotropic solution man-ifests in the fact that the real solution of the isotropic OZ equationdisappear. But the anisotropic OZ equation does have real solution inthe anisotropic phase for any reasonable closure (including the MSA).The anisotropic MSA provides the consistent treatment of correlationsin both the phases, and it is of great importance in the vicinity of critical
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