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®asoBa mgiarpaMa KOHTHHYaJIbHOI MO/l KJIaCHYHOro rel-
3eHOepriBcbKoro ¢pepomMarHeTuka: cepemHbocdepuuHe HabJIH-
KEHHA

T.I".Coxko/10BCbKa

Amnoranisi. Posmisinaerbcs KoHTuHyasibHa [eiizenbepriBcbKa MOeb
crinosBoro ¢uitoiny. Ilapui kopessiuiiini GyHKLii i ogHOYacTUHKOBA (Y H-
KIisa posmonity dpepoMartitaol ¢has3u OTpUMAaHI MIIAXOM CAMOY3TOHLKe-
HOTO po3B’a3anu#A piBHaHb Opumreitna-llepnike ta JloBerra y cepen-
HbochepraHoMy Hab ukeHHI. Ha 0CHOBI 0OTpUMaHOTr0O aHAJIITHIHOTO PO-
3B’313Ky po3paxoBana ¢Ga30Ba giarpamMa. Y3roiKeHHs MiXK Teopi€o i Ha-
ABHAM KOMII'IOTEPHUM EKCIIEPUMEHTOM € 30BCiM Ho0pe, 0COOIUBO /s
Jinii coiBicHyBanusa ras-pigumua. Cepemubocdepuyne HaOJIMKEHHA TIe-
penbadae, mo i pigwHHA, i TazoBa Ga3u € BIOPAIKOBAHUMU MO0/
KPUTAYHOI TOYKW Mepexony rasz-pinmaa. lleit pesynbrar minTBepmKye
nependadents miaxomy Morre-Kapsio mpo icHyBaHHA MArHiTHOI KpUTH Y-
HOI TOYKU.

Phase diagram in a continuum model of the classical Heisen-
berg ferromagnet: mean spherical approximation

T.G.Sokolovska

Abstract. The continuum Heisenberg model of spin fluid is considered.
The pair correlation functions and the single-particle distribution func-
tion of ferromagnetic state are obtained by the self-consistent solution
of the Ornstein-Zernike and the Lovett equations in the mean spherical
approximation. On the basis of the analytical solution the phase diagram
is calculated and compared with the available Monte Carlo results for
the same model. The agreement between theory and simulation is quite
satisfactory, especially for the liquid-gas coexistence line. The MSA sug-
gests that only ordered states are involved in the gas-liquid transition
near the gas-liquid critical point. This result confirms the Monte Carlo
prediction about the existence of a magnetic critical point.
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1. Introduction

Since the late 1960s there have been reports on the existence of lig-
uid ferromagnetic materials, such as Au-Co alloy [1], the problem of
the passing from magnetic lattice models to continuum disordered sys-
tems has arisen. In these materials many physical properties are con-
nected to the lack of translational order. For example, these are the
effects associated with gas-liquid transitions that can only be strictly
accounted for in the context of liquid state theory. Therefore, continu-
ous systems with interparticle spin interactions of classical Heisenberg
symmetry have been studied in the past within the framework of clas-
sical statistical mechanics, in particular, by means of integral equation
approaches. For an isotropic (orientationally disordered) phase the solu-
tions of the Ornstein-Zernike (OZ) equation for some models were ob-
tained in the mean spherical approximation (MSA) [2-4] and within the
reference hypernetted chain closure [5]. These methods allow to deter-
mine the Curie point. But in ferrofluids the gas-liquid transition cannot
be analyzed by the traditional integral equation methods since it involves
the anisotropic phase. In other words we have to investigate the region
where the isotropic OZ equation does not have any physical sense and
must be replaced by the anisotropic OZ equation.

The anisotropic (ferromagnetic) phase of a continuum Heisenberg
magnet is an object of special interest. The ordered n-dimensional mag-
net (for n > 2) is a system with spontaneously broken symmetry, where
without the presence of an external field, the direction of the magneti-
zation is not predetermined. The spontaneous magnetization breaks the
isotropic symmetry (the complete rotational invariance) of the system
and leads to spin wave excitations (Goldstone modes), which rotate the
direction of the magnetization without any energy cost. It can be shown
that the anisotropic OZ-equation together with the Triezenberg-Lovett-
Mou-Buff-Wertheim (Lovett) equation [6] ensure a correct treatment for
the Goldstone modes in uniaxial fluids, such as nematics, polar liquids
or magnetic fluids. But there are great difficulties in the obtaining of
a self-consistent solution for the integral OZ-equation and the integro-
differential Lovett equation.

Therefore, current theoretical results for phase diagrams (that in-
clude the first order phase transitions) are obtained with the modified
mean field (MMF) theory [7-9] or with the generalized van der Waals
approaches [10,11]. The MMF approach gives a pretty good agreement
with the simulation results [7,9]. But there exists one qualitative differ-
ence in predictions of these theories and Monte Carlo simulations. The
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theories suggest a phase diagram of the Heisenberg fluid to have the
tricritical point whereas the simulations predict instead the existence
of the magnetic critical point [5,9]. Considering this contradiction one
should understand that the simulation in the vicinity of the critical (or
tricritical) point is a process very complicated by finite size effects and
the critical slowing down. On the other hand, the mean-field-like meth-
ods use approximations that neglect the correlations between spatial and
spin variables. Furthermore, all these methods make crude assumptions
about the density-density and spin-spin correlations. For example, the
MMEF theory use the zero-density approximation for the pair correlation
function that does not depend neither on the density nor on orientational
order parameters. Therefore, the question about the nature of criticality
in the Heisenberg fluid remains open. This problem is addressed both by
refining the simulation results and by using more sophisticated theories.

In the presented paper we propose a method for the calculation of
correlation functions in anisotropic phases with the analytical solution of
the anisotropic OZ equation and the Lovett one. The suggested approach
stands on a higher level with respect to the mean-field-like theories and
does not impose any additional approximations other than a closure for
the OZ equation. This approach was used for nematic systems [12,13] and
made it possible to calculate analytically the Frank elastic constants by
the expressions from the density functional theory [14] and the expres-
sions [15] obtained in the theory of hydrodynamic fluctuations. Both the
approaches give the same result that proves the self-consistency of our
method.

The paper is organized as follows. In the next section we review the
algebraic representation of the Lovett equation for an uniaxial fluid in
the form of exact relations. It will be shown that the representation
correctly treats the Goldstone modes. In Sec.3 we solve analytically the
anisotropic OZ equation for the classical ferromagnetic fluid. This model
was considered in [5]. On the basis of the obtained solution we calculate
the phase diagram and compare it with the Monte Carlo [5] and the
MMEF [7] results in Sec.4. Sec.5 is a summary.

2. Exact algebraic representation of the Lovett equa-
tion for anisotropic fluids

The main idea of our method is a principal rejection of the complete
rotational invariance form for anisotropic pair correlation functions that
is usual in isotropic systems. We use the general expansion in terms of
spherical harmonics for the direct correlation function (the form of the
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pair correlation function h(R,w;,ws) is similar):

A(R,wi,w) = Y (R (@)Y, (@)Y (wg),  (2.1)

monl v A

R is a separation-vector of molecules mass centers, w; = (0;, ¢i) being
an orientation of the linear molecule i. For uniaxial fluids ¢(R,w;,ws)
is invariant under a rotation along the ordering direction (z axis). This
condition leads to the relation p+ A = v. We stress that a complete rota-
tional invariance is broken in anisotropic fluids, and correlation functions
can not be represented by rotationally invariant series of Wigner and
Blum [16]. The use of such rotationally invariant correlation functions
in anisotropic systems is an approximation like the use of a transla-
tional invariant form fo(|By — R,|) in crystalline solids. For example,
the expansion (2.1) contains the terms ¢)vg(R) Ym0 (w1) Yoo (w2)Yoo (W),
which are excluded in the rotationally invariant series represented by
Egs. (2.8)—(2.10) of Ref. [20]. One can find another differences.

The second principal point is the use of the exact Lovett [6] equation
in order to obtain the single-particle distribution function f(w) of an
anisotropic fluid:

Ve, Inplw) = /c(ff, w1, w2)V gy plws)d Rdws, (2.2)

where p(w) = pf(w), p denotes a number density of the system, V,, is
the angular gradient operator for a linear particle. It should be noted
that the substitution of the Lovett equation (2.2) by the “simplified” one
(see [17])

Inp(wy) = /c(ﬁ, wi,ws)p(ws)dRdw, + const

is a noncontrollable approximation in anisotropic systems. Therefore, we
insist on the solution of the exact equation (2.2).

In uniaxial fluids the orientational distribution function f(w) is ax-
ially symmetric around a preferred direction (z axis) and depends only
on the angle 6 between the molecular orientation w and z axis. It allows
to write f(w) in the form

flw)= %GXP{ZAlYlo(w)}, (2.3)

>0
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where the constant Z can be found from the normalization condition
J f(w)dw = 1. Spherical harmonics Y, (w) satisfy the standard Condon
and Shortley phase convention [18] and are normalized in such manner
that (|Y2,,|*)w = 1 in the isotropic phase, where

(o :/f(w)(...)dw. (2.4)

The orientational ordering is defined by the parameters

S; = (P(cos b)), = /dwf(w)Pl(cos0), (2.5)

where P;(cos 6) are the Legendre polynomials. The space-fixed X, Y and
Z components of the angular gradient operator are given by V,, = il,
where [ is the angular momentum operator. Using the expressions (2.1),
(2.3) and the relations [18]
- I, -1
(), = 25—, (26)

LaYimu(@) = [(m +1) = p(p+ D] Ypsr @) (27)

we obtained the y-component of (2.2) in the explicit form:

Z VMM +1)Ap [Ymr(w1) = Yr—1(w1)] =

M>0
= > [ B (R)Yoo(wp)Vinp (wi) Yo, (w2) X (2.8)
M'>0m,n,un

x/M'(M" + 1) App [Yar (W) — Yagr 1 (w3)] plws)dwd R,

where Ygpo(wj) = 1. Taking into account that only independent of az-
imuthal angle ¢ quantities yield nonzero average values and using the
orthogonality of Y;,,s one gets the following matrix equation

L=CYL, (2.9)

where L is a column matrix consisting of Ly = /M (M + 1)Ays, C and
V" are matrices of order (N x N) with elements

Conn = / dRc! 10 (R) (2.10)

and
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Yo = [ df ()Y (@)Y, (2.11)

where Y;,,,, can be expressed via S;, N is a number of values of index m
(or n) such that Cy,, # 0.

On the other hand we can integrate by parts the equation (2.2) and
write

Ve, Inplw) = —/ [ﬁwzc(ﬁ, wl,wg)] pws)dwsdR. (2.12)

In the similar manner from (2.12) we can obtain a matrix equation for
the coefficients of the function f(w)

L=CP, (2.13)

where P contains the order parameters of the system:

P =p/I(+1)20+ 1)S,. (2.14)

Thus, the symmetries of the pair potential and of the uniaxial system in
whole yield two matrix relations (2.9) and (2.13) which connect the sys-
tem order parameters, zero Fourier transforms of the direct correlation
function harmonics and coefficients A; of the single-particle distribution
function of the system.

Joint use of (2.9) and (2.13) allows to express f(w) via the order
parameters only:

L=Y"'P. (2.15)

It follows from the OZ equation [19,17] that an existence of a unit
eigenvalue of the integral operator C(k = 0,w;,ws) = p/2(w;)c(k =
0,wr, wg)pl/g(wg) corresponds to an appearance of the Goldstone modes
in anisotropic fluids: hy (lg — 0, w1, ws) — 00. One can see that the Lovett
equation (2.2) is an eigenequation for the operator C with the eigenvector
Yi(k = 0,w) = p~Y2(w)V,p(w) and unit eigenvalue. Therefore, the
direct correlation function and the single-particle distribution function
complying with (2.2) and the OZ equation treat correctly the Goldstone
modes in the system.

In order to examine the exact relations (2.9) and (2.13) we consider
the OZ equation for anisotropic fluids:
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h(1,2) = e(1,2) + /p(3)c(1,3)h(3,2)d(3), (2.16)

where ¢(1,2) and h(1,2) are the direct correlation function and the pair
correlation function respectively; d3 = ngdeg, where R denotes mass
center coordinates of the particle, w = (6,¢) is the orientation of the
molecule. As p(3) does not depend on R then the Fourier-component
(k = 0) of (2.16) can be rewritten in the form of the matrix equations:

H® = ¢W 4 Gy frim (2.17)
where
H® = / dRRAS (R) Yoo (w ), (2.18)
oW = / AR5 (R) Yoo (wp), (2.19)
Y = / dw f (W) Vi (@) Vs, (w). (2.20)

One can verify (2.17) taking into account that the uniaxial fluid is in-
variant with respect to rotations around z axis.
Equation (2.17) can be presented in the form :

~ ~ —1
\/ ) f () \/Y(u = {1 — \/Y(u)é(ﬂ)\/Y(u)}
x VY WA\ y (), (2.21)

The matrix H® is singular, if
det (1 VY WEM Y ) =0.

The last condition is satisfied for g = 1 in uniaxial fluids due to the
obtained relation (2.9). Thus, the Goldstone modes are connected with

the corresponding harmonics of the pair correlation function (h}ﬁgo(k =

0)). Since these harmonics are coupled with the transverse correlations

of spins in magnets, the divergences h!!%, (E = 0) — oo are responsible

for a long-range character of the above-mentioned correlations in the
ordered phase.
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3. Solution of the anisotropic OZ equation in the
MSA for the classical Heisenberg ferromagnet

We consider the model that was proposed in [5]. This is the fluid of hard
spheres of diameter o with embedded Heisenberg spins, whose coupling
constant is given by a Yukawa interaction:

o0, R<o
v(l,2) = { J(R)§ x5, R>0o (3.1)
with
,exp(—zR)
R/o

where K > 0 (ferromagnetic case), §; being the unit vector describing
the orientation of the spin in particle i. In other words §; * §5 = coswys,
w12 being the relative spin orientation. Let we note that in [5] J(R) is
chosen in a slightly different form (J(R) = —3K exp(—z(R — 0))/R).

For this model we shall solve the anisotropic OZ equation (2.16) with
the MSA closure:

J(R) = —K(20) (3.2)

h(1,2) = -1 foor R<o ,
e(1,2) =-pv(1,2) for R>o

For the closure (3.3) the general form (2.1) is reduced [12] to the form:

(3.3)

c2(R,wi,w2) = cooo(R) + cro0(R)(Yio(w1) + Yio(w2)) +

+ Y i (B)Yim (@)Y, (w2). (3.4)
Im|<1

The expression for ho(R,ws,ws) is analogous. It should be noted that
the structure of (3.4) is different from the one for the isotropic phase. In
particular, in (3.4) there are the terms with c¢99(R)-

For the expansion (3.4) the exact relations (2.9) and (2.13) can be
written in a simple form:

-

1= p(|Vi (@) ) / e (R)AF, (3.5)

A1 = pYio(@))e / i (R)AR. (3.6)

On the other hand due to uniaxial symmetry of the ferromagnetic
phase the equation (2.16) separates into the independent integral equa-
tions with different values of m. For |m| =1 we get:
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hiim(Ri2) = ciim(Ri2)

+P(|Y1m(w)|2>w/Cllm(Rla‘)hum(RBz)dﬁa‘;
hiim(Riz) = 0, R <o (3.7)
ctim(Biy) = BE (o2 SRR p o,

3R12/U

The equations (3.7) and (3.5) constitute a complete system now. It allows
to obtain (|Y11(w)|?), as a function of the model parameters 3K, zo
and n = mpo> /6. The solution (3.7) under the condition (3.5) means the
calculation of the single-particle distribution function in the MSA. By
the factorization method of Baxter (see [20,12,21]) the equation (3.7) for
m = 1 results in the system of algebraic equations:

SBK = D[1 - Q)] (39

2rg111(2)[1 — Q(2)] = %exp(—Zza)[l - 271'@111(2)]ﬁ, (3.9)
—C =[1-27g111(2)]D, (3.10)

where 7j = 1(|Y11 (w)[*)w, D and C are dimensionless coefficients of the
factor correlation function:

z

Q(R) = m[QO(R) + D exp(—zR)] (3.11)

with the short-range part
Qo(R) = Clexp(—zR) — exp(—z0)], R< & (3.12)
Qo(R) =0, R > o. (3.13)

Q(2), §111(2) are the dimensionless Laplace transforms of Q(R) and the
harmonic of the pair correlation function hq11(R):

0(2) = p(¥is (@)D / T e tQuar,
V@),

glll(z) - f/ eizthlll(t)tdt. (314)
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From the definition of the factor correlation function it follows that

1 - p{[¥i (@)[2)s / cn(RAR = [QUk=0)2,  (3.15)
where (k) is defined by the expression:
Q) =1 TP [ AR Q(R). (3.16)

The joint use of (3.15) and (3.5) gives us the additional equation to
determine (Y11 (w)]?)w:

Qk=0)=0, (3.17)

and in the explicit form

1=D+kC, (3.18)

where k = e *9A;(z0). Here and below we use the symbols

n
1
Ap(z) = exp(z) — ﬁml. (3.19)
=0 "~
The formulae (3.18) and (3.9), (3.10) yield the expression for D:
bt Vb2 -4
D = u) (3.20)

2a
where

a=—kexp(—2z0) — (k— 1) (k — A§(—z0)),
b= (k—1)c—k+ Ai(—z0) + kexp(—220). (3.21)
c=2k — A%(-z0),

Now from the equation (3.8) we can obtain the dependence between the

ordering parameter (|Y1;(w)|?), and the system parameters 7, 3K and
zo:

D Q—M—DO—@)]. (3.22)

Substituting in (3.22) {|Y11(w)|?), = 1 we determine the loci of the Curie
points in the temperature-density plane for the fixed zo.
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It follows from the (3.6) that the self-consistent f(w) in the MSA has
the form:

f(w) = constexp ((Yio(w))wYi0(w) /(Y11 (w)[*)o) - (3.23)

Using (3.23), (3.22) and definition (2.4) one can calculate all order pa-

rameters. For the order parameter s; = \/Lg(yw (w))w Eq. (2.4) is rewrit-

ten as the well-known self-consistency equation:

S1 = COth(MSl) — (324)

MSl,

where M = —2 .
(M1 ()% )
For the equation with m = 0 that follows from (2.16) we obtain a
more complicated expression. In the Fourier space it may be presented
in matrix form:

H(k) = C(k) + C(k)pH (k), (3.25)

where

2 _ hooo(k) h010(k) A _ Cooo(k) 0010(k)
H(k) - <h100(k) hllO(k)) ’ C(k) - <0100(k) Cllo(k)> ’
A 1 (Yw(w)>w
pr <(Y10(w)>w (|Y10(w)|2>w> | (3.26)

The closures of the correlation functions in the R—space are as follows:

R<o: hooo(R) = —1, the other harmonics are equal to 0;
K 2 -
R>o: ci0(R) = p (za) 7 exp(R ZR), the others equal 0.

Since the elements of the matrix p are calculated from (2.4) one can solve
Eq. (3.25) now with the Baxter factorization technique in the usual way.
A detailed discussion of the factorization method can be found elsewhere
and therefore we omit any details and refer the reader to the previous
publications [12,20,21].
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Figure 1. Pressure-volume isotherms of the Heisenberg fluid with zo = 1,
in reduced units, as obtained by the virial theorem at % = 0.8, 0.767,
0.725 and 0.65. Both isotropic (I) and ferromagnetic (F) branches are
shown. Solid lines are the theoretical results, the thin line is a spline.
The break points of the isotherms correspond to the Curie points. The
crosses are the points of the gas-liquid coexistence obtained with the
Maxwell construction. On the inset the isotherm % = 0.767 is shown
(detail).
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4. Phase diagram of the Heisenberg fluid

In order to determine the gas-liquid equilibrium we should have thermo-
dynamically consistent expressions for the pressure and chemical poten-
tial. For the MSA in the isotropic phase there are three thermodynami-
cally consistent approaches obtained via: 1) the compressibility relation,
2) the virial theorem, 3) the internal energy [22]. But the results of
the remarkable paper of Hgye and Stell are not applicable for the case
of anisotropic phases. A derivation of the thermodynamically consistent
pressure and chemical potential for the anisotropic MSA is a problem for
a special serious investigation. In this paper we shall avoid this problem
using the generally known Maxwell construction.

The virial theorem provides the most convenient way to calculate
pressure on the basis of the MSA results obtained in the previous section:

ov(1,2)
ORy»

2
Pv = pk‘BT — % /délgdwldWQng f(wl)(l + h/(].,?))f(WQ)

In Fig. 1 we present pressure-density isotherms of the model with zo =1
at different temperatures (% = 0.8,0.767,0.725,0.65). I marks the
isotropic branch, F denotes the ferromagnetic one. At % = 0.8 the
orientational (ferromagnetic) phase transition of the second order takes
place in the system. The break point of the isotherm is a locus of the
Curie point. At % = 0.725 the orientational phase transition is coupled
with a condensation. The crosses are the points of the gas-liquid coexis-
tence obtained with the Maxwell rule of areas. The coexisting densities
are ny = 0.130, ng = 0.259. In the range between these densities there
is the two-phase region. We note that one should not expect a physical
solution of the anisotropic OZ equation (2.16) in the whole two-phase
region, because Eq. (2.16) describes spatially uniform systems. Indeed,
at low temperatures (e. g. % = 0.65) the nonsolution domain appears,
and we interpolate the isotherm behaviour in this domain with splines.
In Fig. 1 the spline for the isotherm at % = 0.65 is depicted by a
thin line. At this temperature the coexisting densities are ny = 0.099,
nr = 0.339.

The isotherm at % = 0.767 is of special interest. It allows us to
determine the type of criticality in this model. In Fig. 1 the inset allows
to discern the sequence of phase transitions at this temperature. At the
lower 1 the order-disorder transition of the second order occurs. The
break between I and F branches is its manifestation. At the greater n
the phase transition ferrogas-ferroliquid of the first order takes place
(coexisting densities are nrgas = 0.149 and 7giiq = 0.168). Thus, the
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Figure 2. Phase diagram for the Heisenberg fluid in reduced temperature-
density units, with parameter zo = 1. I and F mean isotropic and fer-
romagnetic phases. The gas-liquid coexistence and the Curie points ob-
tained in the MSA are given as thick and thin lines respectively. On the
inset the vicinity of the magnetic critical point is depicted (the MSA re-
sults). The dashed lines are results of the MMF theory [7]. It should be
noted that % equals g—; from Ref. [5] (or T* /e from Ref. [7]). The dia-
monds correspond to the Monte-Carlo results of Lomba et. al. [5] for the
Curie points. Gibbs ensemble simulations for the gas-liquid coexistence
[5] are represented by solid circles.
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MSA with virial route to thermodynamics suggests the existence of the
magnetic critical point. Now let us consider the compressibility route
to thermodynamics. In the isotropic MSA the orientational and spatial
contributions to the pair correlations are decoupled to the point that
the structure factor of our model reduces to that of the hard sphere
fluid. Therefore, within this route the compressibility of the model is
finite in the whole isotropic phase including its boundary (the Curie
line). In the MSA for an anisotropic phase the spatial distribution (the
structure factor) depends on the order parameter and does not coincide
with that of the hard sphere fluid [23]. Therefore, a gas-liquid critical
point can be located only in an anisotropic phase in principle. Thus, the
compressibility route also excludes the existence of the tricritical point.
One can see that the MSA is in marked disagreement with the mean field
and the MMF theories and supports available simulation results [5,9] on
the criticality of the system.

It should be noted, that in [7,9] the treatment of critical behaviour
was done by stability analysis of the free energy functional adopted in
the MMF approximation. For a pity, such general analysis of the free
energy functional on the MSA level is a much more complex problem, if
it is possible at all. The point is that the MSA pair correlation function is
sensitive to the density and the ordering in the system in opposite to any
mean field approach. Therefore, we are forced to calculate the correlation
functions in the MSA for each model individually, whereas in the MMF
one uses the simple Ansatz (namely a zero-density approximation) for
the pair correlation function:

h(1,2) = exp(—pv(1,2)) — 1

Figure 2 shows the temperature-density phase diagram of the model
(zo = 1). Also included for the sake of comparison are the MMF results
(dashed lines) as well as the Gibbs ensemble Monte-Carlo results of the
Lomba et al [5] for the gas-liquid coexistence (solid circles) and their
estimates of the Curie points by the canonical ensemble Monte Carlo
(diamonds). It follows from the figure that at high temperatures we
have the second order phase transition paramagnet-ferromagnet. The
Curie points of the MSA [2] are represented by the straight (thin) line
in Fig. 2. The agreement between theory and simulation (diamonds) is
satisfactory, though in [5] it is noted that the Monte Carlo estimates of
the Curie temperature are not accurate enough. A more precise Monte
Carlo location of the Curie line is possible for very short-range potentials,
e. g., for the Yukawa interaction truncated at 2.5 hard sphere diameters
[8,9].
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There is the first order phase transition at low temperatures. The
equilibrium between the paramagnetic gas and ferromagnetic liquid takes
place. But near the gas-liquid critical point only ordered states are in-
volved in the gas-liquid transition (see the inset to Fig. 2). The magnetic
critical point has coordinates % = 0.7674, n = 0.16. Thus within the
MSA the system will lack a tricritical point and the line of Curie points
will end up on the vapour side of the gas-liquid coexistence curve. This
result confirms available simulations. One can see in Fig. 2 that quanti-
tative agreement between the theory and simulation [5] (solid circles) is
quite perfect.

5. Summary

In this paper we have obtained the analytical solution for the fluid of
hard spheres with interparticle spin interactions of classical Heisenberg
symmetry (3.1). The analytical results in the MSA for the ferromagnetic
phase is represented by a system of algebraic equations.

Our method is based on the self-consistent solution of the anisotropic
Ornstein-Zernike and the Lovett equations. This approach does not im-
pose any approximations other than a closure for the OZ equation. It
correctly treats the Goldstone modes and can be used for any uniaxial
fluid. A principal difference of our approach from the early studies in the
anisotropic fluid theory [19,17] is the rejection of the complete rotational
invariance form [16] for the anisotropic (ferromagnetic) correlation func-
tions. This allows us to treat correctly a system symmetry and to get rid
of noncontrollable procedures like the rotational average of correlation
functions [17,19].

Using the pair correlation function (in the MSA) the phase dia-
gram of the considered model (zo = 1) has been obtained. The cal-
culation is based on the virial theorem and the Maxwell construction.
The temperature-density phase diagram shows that at high tempera-
tures the second order ferromagnetic phase transition takes place. At
low temperatures there is the gas-liquid transition. This transition could
not be analyzed by the integral equation methods before since it involves
anisotropic phases, where the isotropic OZ equation does not have any
physical sense. For the MSA the invalidity of the isotropic solution man-
ifests in the fact that the real solution of the isotropic OZ equation
disappear. But the anisotropic OZ equation does have real solution in
the anisotropic phase for any reasonable closure (including the MSA).
The anisotropic MSA provides the consistent treatment of correlations
in both the phases, and it is of great importance in the vicinity of critical
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points, where the fluctuations are large. Probably, due to this the MSA
phase diagram is in whole agreement with available [5] simulations: the
liquid phase is ferromagnetic and the gas phase is mainly paramagnetic,
except in the neighbourhood of the critical point, where the transition
ferroliquid-ferrogas takes place. The MSA via virial and compressibility
routes to thermodynamics demonstrate the lack of tricritical point for
the model (3.1) in opposite to the MMF theory [7]. We have compared
the calculated phase diagram with the Monte Carlo simulation [5] for
the same model. The agreement between our theory and the available
simulations is quite remarkable, especially for the liquid-gas coexistence
line.
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