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Analytic and numerical study of a hierarchical spin model
Yu.Kozitsky, M.Kozlovskii, T.Krokhmalskii

Abstract. A simple hierarchical scalar spin model is studied analyti-
cally and numerically in the vicinity of its critical point. The dependence
of the finite size (i.e. calculated for large but finite number of spins) sus-
ceptibility and the location of zeros of the model partition function, on
the number of spins at the critical point i1s described analytically. It is
shown, also analytically, that the finite size correlation length in such a
model diverges at the critical point slowly than it is supposed in the fi-
nite size scaling theory. Certain numerical information about the critical
point and ordered phase is given. In particular, the critical temperature
of the model and the critical index describing the order parameter are
calculated for various values of the interaction parameter.
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1. Introduction

Hierarchical models have played a significant role in modern classical
statistical physics. First such a model was introduced by F.Dyson [6]
in 1969 as a tool in the study of one dimensional Ising-like spin models
with long-range interaction potentials. Since that time these models have
been studied and utilized. An excellent survey of ideas and results in this
domain can be found in [3].

The main 1dea of F.Dyson was to substitute the one dimensional
Ising-like spin model with the translation invariant interaction potential
which decays as a power of the spin-spin distance by a model with the
interaction decaying as the same power but of the distance defined by
special non-Euclidean metric and possessing some other symmetry in-
stead of the translation invariance. This new symmetry was designed to
allow more detailed and deep mathematically strict description which
would yield also some information about properties of the initial trans-
lation invariant model.

At the other hand, during the seventieths I.R.Yukhnovskii with the
collaborators have developed an approach to the study of the three di-
mensional Ising model based on the collective variables method (see e.g.
[21],[22]). The main tool of this approach was a step—by—step integration
scheme, which allowed to obtain the model partition function, free en-
ergy, other thermodynamic functions in the vicinity of the critical point
[17]. The peculiarity of this scheme lies in the fact that the partition
function is calculated as a product of the partial partition functions de-
scribing a sequence of growing boxes of spins. It was considered as a
realization of known heuristic Kadanoff’s block—spin construction which
was intended to describe the critical points of such spin models. This
construction was based on the idea that the ensembles of properly renor-
malized total spins of cubic blocks of various linear sizes are distributed
identically whenever the model is taken at its critical point. Such a prop-
erty is known as a critical point self—similarity [20] or as a critical point
scale invariance. The latter is considered as the main symmetry appear-
ing at the critical point.

In fact, the level of strictness of the Yukhnovskii’s approach is rather
physical which means that certain approximations with no quantitatively
controlled consequences were employed. Later it was understood [13] that
the qualitative result of these approximations lies in the replacement of
the translation invariance of the model considered by the self—similarity
symmetry which was embodied in the Kadanoff’s construction. More-
over, it was shown in the paper [13] (see also [14] and [10]) that the
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step—by—step integration scheme being applied to a translation invariant
spin model transforms it into the model identical to the Dyson’s hierar-
chical model. In what follows, one can consider the Dyson’s model as a
realization of the Yukhnovskii’s scheme of study of translation invariant
Ising—like spin models.

Since early seventieths, the Dyson’s hierarchical model was being
studied mainly analytically. At the same time, the investigations of the
three dimensional Ising model within the collective variables method by
I.R.Yukhnovskii and his collaborators (including also numerical ones)
were performed. As a result, universal and nonuniversal aspects of the
specific heat behaviour in the vicinity of the critical point were analyzed
[22], [15]. The equation of state was derived, its analytic solution describ-
ing the order parameter dependence on temperature, external magnetic
field, and microscopic model parameters in the vicinity of the critical
point was found [5], [16]. It should be noted that a number of additional
approximations was used to obtain these results.

The aim of our work is to study — analytically and numerically — a
simple hierarchical model, considering it also as an emanation from the
Yukhnovskii’s scheme, in the vicinity of its critical point without addi-
tional approximations just mentioned. The main question here 1s how do
the quantities, which describe the behaviour of the model in the vicinity
of the critical point (such as susceptibility, order parameter, correlation
length, location of zeros of the partition function, and so on), calculated
for the fixed large but finite number of spins, depend on thermodynamic
variables, or how do they depend on the number of spins if the thermo-
dynamic variables are fixed at their critical values. Our analytic study
is performed by means of rigorous methods. We discuss the asymptotic
behaviour of the mentioned quantities, calculated at the critical point,
when the number of spins tends to infinity. For this aim the facts which
were already known are taken from the corresponding papers, whereas
a number of new ones are proven here. As a result, we have suggested
how to calculate numerically the order parameter for zero values of the
external magnetic field, how to find corresponding critical index, how to
calculate the critical temperature. Such an approach is partially inspired
by the works on the finite size scaling, [8] and [9] in particular. We sup-
pose to apply the finite size scaling methods to describe our model on
the base of the data obtained here — it will be done in our next work. To
prepare it we check the basic assumption of this method concerning the
critical point correlation length asymptotics, with the size of the model
tending to infinity, and find that it should be changed in the case of our
model.
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As tools we use the methods developed earlier [14], [10], [11]. as well as
direct numerical calculations of corresponding quantities for sufficiently
large number of spins, based on the analysis mentioned before. Such cal-
culations became possible also due to the special (hierarchical) structure
of the model considered.

2. The Model

Here we deliver the description of the models and the facts from their
theory which are related to our investigation. Some of these facts are
proven here, another ones are taken from the papers where they have
been published earlier.

Let us consider a countable set of one-dimensional spins {o; € R, s €
N} which we choose to be indexed simply by positive integers. The
formal Hamiltonians of the translation invariant and hierarchical models

HY = —% Z Jt o0, —hZO’s; (2.1)

are

s,8'€N sEN
1
H:—§ Z Jss'O'sO's'—hZO's; (2.2)
s,s'€N seEN

where K 1s an external magnetic field, and

J=—J(s=s|+1)717* T >0. (2.3)
Here | a | stands for the absolute value of @ € Z. The function | s — s |
can be considered as the Euclidean distance on N, it is invariant with
respect to the shifts (translations) along N. The parameter A describes
the decay of the potential JI,, it is a priori set being positive. As for
the potential J;s in the Hamiltonian (2.2), it is put to be of the form
(2.3) but with the ”hierarchical distance” between s and s instead of
| s — s’ |. This new distance can be set by means of the hierarchical
structure on N. The latter is the sequence £ = {L,,n € Z,} of families

Lrn={An,, 7€ N}, where
Apr,={seN | 2"r-1)+1<s< 2"} (2.4)
These subsets of IN obey the following recursive rule

Anp= | Aacis (2.5)
SEAL,
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Definition 2.1 Lel n, s, s’ be chosen in N. The points s and s’ are said
to be separated on the hierarchy level n if they belong to different subsets
A from L.

Proposition 2.1 For arbitrary noncoinsiding pair of points s, s' € N,
there exits n € N such that these points are separated on the hierarchy
level n — 1 and are not separated on the levels n, n+1, ....

This number is denoted as n(s, s’), that is
n(s,s’) =min{n € N | (A € L£,,)(s € A)&(s' € A)} (2.6)

For example, n(1,2) = 1; n(2,3) = 2; n(4,5) = 3. By means of n(s, s'),
we can define the hierarchical distance on N:

dist(s,s') = 27(#) — 1, (2.7)

Then the interaction potential in the Hamiltonian (2.2) is written as
follows:

Jssr = —J(dist(s, s") + 1)717A (2.8)

where A and J are the same as in (2.3). In order to relate such a model
to the d-dimensional translation invariant model considered within the
Yukhnovskii’s scheme, one should put A = 2/d (see [13], [14], [10]).

The following assertion can be proven directly from the definition.

Proposition 2.2 For arbitrary pair of points s, s' € N,
| s — 5" |> dist(s, s'), (2.9)

that yields
JE > T (2.10)

ss!

Thermodynamic properties of the model can be described by passing to
the limit A~ N for the expectations < .. >4, computed at finite subset
A with the help of Gibbs measures uA’h. They are defined as probability
measures on the configuration spaces RA by means of local Hamilto-
nians Hy(oys), where oo = {o5,s € A}. The local Hamiltonians are
constructed accordingly to the formal ones (2.1), (2.2) that is described
just below. Here we consider only the Gibbs measures which correspond
to zero boundary conditions. Thus

A (0a) = —g expl(-Btaton) [T ax(e, (21)
A sEA
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where Zﬁ’h is the normalizing constant which provides for /Ji’h to be
probabilistic, and the measure y describes the single-spin (even) prob-
ability distribution. The simplest case of the latter 1s the measure con-
centrated at points £1 that corresponds to the Ising-like spins.

For the hierarchical models, the thermodynamic limit is naturally be
achieved within the hierarchical structure, that is by choosing A € £,
and putting n — oo. Hence we may set the hierarchical local Hamiltoni-
ans only for such A. Thus we use the relation (2.5) and define the family
of local Hamiltonians {H4, . | n € Z4,r € N} recursively by putting

1
Hy, (o4,.,.)= —52_71(1“)(1 — 27" Mo (An )+

> Hay(oa,,)) (2.12)

SEAL,
with )
Hp, (0s) = —5(1—2—14)%3 — hoy, (2.13)
where
=> o, (2.14)
SEA

Clearly, these Hamiltonians are invariant with respect to those permuta-
tions of N which preserve the hierarchical structure. Such permutations
form a group which is the symmetry group of the model. In particu-
lar, all Hamiltonians with the same n and different » € N are identical,
therefore, can be represented by one of them, Hy,, | for example. The re-
lationship between the Hamiltonians (2.2) and (2.12) can be established
as follows. We rewrite Hy, | given by (2.12)

Z Js(:,)asas/—h Z os; (2.15)

5,5'€An 1 SEAR 1

HAn,l(UAn,l) = -

that can be used as a definition of Js(s,) Having in mind that A,, ;1 absorbs
N when n — oo and using the relations (2.12)—(2.14), one can prove such

a statement.
Proposition 2.3

lim J7) = —9—n(s:sN1+A) ;.
n—oo %
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Along with the Hamiltonians (2.15) we also will consider the local Hamil-
tonian defined by the Hamiltonian (2.1)

HY ( 0'):—% Y Jhewoe—h > oy, (2.16)

5,8'€An,r SEAL -

where J!T, is given by (2.3).
Consider the Gibbs measures (2.11) of the hierarchical model with
A = A, ». The relation (2.12) yields the following recursion formula

d/’LAnr( nr) — Ynﬁ,h exp{g(l_2—1—)\)2—774(14-)\){]0.2(/\”77‘)}
I dek!, (oani.)- (2.17)
SEAL,
where
(A2e,)
YﬁVh _ An 1,1
n  — Z@ h :

Here we have taken into account that Zﬁ ho— Zﬁ " for all r € Z. Due to
the hierarchical symmetry of the model all sums O'(Any,«) with the same
n and different r are distributed identically. Denote

PY" (A) = Prob(a(Ay,,) € A)
for every Borel subset A C R.. Then

dPil ()
T :/RAn)ré(a(An,r)—g)dﬂAnr( A, (2.18)

where 6(...) is the Dirac § — function. Thus the relation (2.17) yields for
such Pf;hr:

dPit () = v (2.19)

exp {22—71(14')\)(1 _ 2_1_>\)J€2} An r(g)dg’

ECEY KD TN ) (RN T

SEA1 SEAL -

In the case where the initial measure Pﬁ’hs is absolutely continuous with

respect to the Lebesgue measure on R, all Pﬁ’ _ bossess this property.
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It means that the tempered distribution introduced by (2.18) now is a
suitable function. We denote it as

Py’ (€)
dé

and remark that the so called ”small” partition function F?"*(z) studied
in the papers [1], [2] is related to our 79" as follows

=TPh(¢), (2.21)

PP () = / 52" 0(Any) — )l (on, )

n,1

= TPM2"z), =x€R. (2.22)

The recursive relation given by (2.19), (2.20) now takes the form

TME) = ﬁ exp(§2—”<1+*>(1 — 97N (2.23)
/R 120 (S 4 (S —
where
KPh = /R exp(§2_”(1+>‘)(l — 2717 ¢ (2.24)
122 (St (€~ nydedn

Here we have taken into account that all Ay, consist of two points, and
all 0(Ay, ;) with the same n and different r are distributed identically.

Now let us describe in more details the family of measures which are
to be chosen in this research as initial single—spin measures y. The first
condition imposed on these measures is the existence of their Laplace
transforms

fx(Z)Z/ReXp(w)dx(o), z€C, (2.25)

as entire functions. Let F be a family of entire functions of one complex
variable possessing the following canonical representation

(1 +;2%), (2.26)

—

f(z) = exp(@zz)

J

(o)
0>0, >0, > % <00, % > %t
i=1
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In other words, the family F consists of entire functions with the order
of growth at most two which either have purely imaginary zeros or have
them none.

Definition 2.2 A probability measure x is said to possess the Lee—Yang
property if its Laplace transform (2.25) belongs to the family F.

It can be shown that the measures

1
dx (o) = 2 {0(c =1)+d(c+1)}do, (2.27)
and
exp(—%ua2 - %va‘l)da
d = R 0 2.28
x(o) Jr exp(—%ua2 - %va‘l)do" veR vl ( )

possess the Lee—Yang property. Further details can be found in the paper
[12]. Here we discuss only the properties of these measures which are
relevant to our research. As can be seen from the definition (2.25), the
moments of each such a measure can be computed as corresponding
derivatives at zero of its Laplace transform f, . The following derivatives

d
u?) = (D*log £,)(0), k€N, D = o (2.29)

are known as semiinvariants or cumulants of y. Directly from the defini-
tion (2.26) one obtains the following representations for these parameters

u? = 200+ 1),
ul™ = (=1)FT12(2k — )Ty, k> 2 (2.30)

Iy

> 4f keN.
j=1

The only one measure possessing the Lee-Yang property, the Laplace
transform of which has no zeros, is the Gaussian measure. All other ones
can be characterized by the location of its zeros which are nearest to the

/2

origin of the imaginary axis. These are at points +z; = :I:i'yl_1 (see

(2.26)).

Proposition 2.4 Let for a non-Gaussian measure x possessing the Lee—
Yang property, the semiinvariants be defined by (2.29). Then the location
of the nearest zeros of its Laplace transform obeys the following two sided

estimate )
(4) B (2) 172
l40% <) < 6%] (2.31)
Uy " Ux luy |
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The proof of this statement can be done by showing the validity of such
two sided estimate for ~;:

I (0 +T1)T3
< < -_
o+m =T =TT

(2.32)

which in turn immediately implies (2.31). To prove (2.32) one can use
the following form of the Cauchy inequality

2
oo

(o) (o)
1/2 3/2
r3= (S0 < 1wl D042
j=1 j=1

j=1

which yields I'2 < T F3 (0 +T1)T5. The latter estimate together with
the obvious relatlon v2 g Ty gives the upper bound for v; in (2.32).
The lower bound is the simple consequence of the following estimate
Ly <yl <y (0+1).
For a measure y, we set
(4)
Ux
AT o

By means of methods of the paper [12] one can prove

Proposition 2.5 Let the measure x possess the Lee—Yang property.
Then
0<a, <2

Moreover, a,, = 0 if and only if x 15 Gaussian; a,, = 2 if and only if x s
concentrated at points ta, i.e. is of the type of (2.27) with some a > 0
wmnstead of 1.

The following statement is a base for the application of the Lee— Yang
property in the theory of hierarchical models. It was proven in [10] and
applied in [11].

Proposition 2.6 Let the initial single—spin measure x possess the Lee—
Yang property. Then all Pﬁo defined by (2.11), (2.18), (2.19), (2.20)

possess this property provzded they exist as measures.

It was shown [11] that all Pf; _ exist as measures for all values of 3 if the
initial measure x is such that f, possesses the representation (2.26) with

# = 0. Only such initial measures are considered below, the measures
(2.27), (2.28) obey this restriction.
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3. Critical Point and Ordered Phase

We start with the description of the ordered phase. For this purpose we
will need an order parameter. In the spin models it should be a magni-
tization per spin in zero external field. It can be computed by means of
corresponding Gibbs measures. Consider the following expectations:

MPEH) = < (o) >a,,=
/)wm>memm=

RAn,1
/ €laPge (¢
7mw=/ joaldpl? (o) (3.3)
RAn.1 ’
~ (2) _ R
i (9) m/Rdﬂ 2 (T8): (34

Having in mind that each A, , consists of 2” points we introduce the
following parameters

mi(8) = lim lim 27" MV (8, h); (3.5)

h—04 n—0c0

ma(8) = lim /220 M,7(8,0); (36)
ms(3) = nh_}n(}o 2_"Mn(ﬁ), (3.7)
ma(B) = lim m,(5); (3:8)

ms () = lim /i (5). (3.9)

Let also m{*(3), | = 1,2 be defined by the expressions (2.11), (3.1)
with HY (o) instead of HAn,r( o). In fact, only my(8) and mi*(3) are
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the order parameters in the hierarchical and translation invariant models
respectively. The other parameters introduced above are being used to
prove the positivity of the order parameters for given values of 3. In
what follows, Propositions 2.2, 2.3 and the Griffiths inequality, which
holds for all types of measures x considered in this work, imply

ma(8) < my'(B). (3.10)

At the other hand, in the case of classical (nonquantum) spin models

one has [7]
mz(8) <mi(B)  my () < mi'(B) (3.11)

Employing these estimates F.Dyson has proven the existence of the long—
range order in both models — hierarchical and translation invariant.

Proposition 3.1 (Dyson’s theorem) Let A € (0,1) and the measure
x be of the form (2.27) Then there exists f. such that for 3 > p.,

Applying standard arguments (see e.g. [19]) one can extend the va-
lidity of this assertion also for the single-spin measures of the type of
(2.28). Much more information about the long-range order in such mod-
els has been obtained by P.Bleher in his works [1], [2] (see also [3]). In
particular, one can deduce from these papers the following facts.

Proposition 3.2 Let the single-spin measure x be of the form (2.28).
Then there exists B > 0 such that for § > p,

ma(B) = ms(8) :=m(8) > 0. (3.12)
For B = B«+, holds m(5) — 0 in such a way that
logm(3)

@—1?3+ Tog(5 — /.) =0>0 (3.13)

This property is preserved with the same value of the critical index b for
small perturbations of the single—spin measure x.

Directly from the definitions (3.1) — (3.9) one gets

m3(B) <ma(B), ms(B) < ma(B).
Combining these estimates with (3.10), (3.11), and (3.13), one obtains

(8) <my(8) <mi(9),
(B) <ma(B) < mi(B). (3.14)

—_— ~—

<m
<m
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For our model, the most convenient parameter, for the numerical calcu-
lation, is

m{" () == 27" M, (5), (3.15)

it may be taken as an approximate (finite size) value of mg(3). The
fact, that the latter parameter is a lower bound for the genuine order
parameter, shows that it may be used to describe the ordering phase
transition in the model considered.

It should be noted here that the considerable description of the or-
dered phase in such hierarchical models was performed in the papers
[1] and [2] where the asymptotics (for n — oo) of the "small” partition
function (2.22) was obtained. In particular, Theorem A of the paper [1]
and Theorem 2.1 of the paper [2] imply the following assertion.

Proposition 3.3 For any A € (0, 1), there exist positive B, a function
é(5), and a sequence of functions {m,(7), n € N}, such that

lim mn(ﬁ) = m(ﬁ), mn(ﬁ) >0, V8> p.,

n—od

lim ¢(8) = +o0, #(8) >0, V8> p., (3.16)

BB+

where m(B) was introduced in (3.12). For these functions and for the
density (2.21), the following convergence takes place:

Jim sup 7020 2€) = B(&; 2" *ma(8), 6(8))| = 0, (3.17)
where
Blemd) = S(GE+mo)+G(E—mo)),
G(& o) = <2w¢>>—”2exp<—%).

Let a,(3) be defined as a, by (2.33) with x = Pf;ol. Then the assertion
just formulated implies ’

lim a, =2, V3> .. (3.18)

Now let us describe the critical point behaviour of the hierarchical

model. One can deduce from (3.7) and (3.14)

M2 (5,0) = 027, for > f.. (3.19)
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At the other hand, for the disordered phase, only bulk divergences should
appear

M2 (8,0) = O(2"), for B < B.. (3.20)

As for the critical point itself, the intermediate type of divergences is
expected

M (8,,0) = 0(271+0)y, (3.21)

with some p € (0,1). In order to prove this conjecture and to find p, we
proceed as follows. Define the sequence of random variables {7£,n € N},
where

0 =275+ (A, ), p>0. (3.22)

n

The probability distribution of each 7£ can be described by means of the
measure (2.18), where we put h = 0. If the sequence {r!} is asymptoti-
cally normal, the dependence between the spins is weak or absent as in
the case described by the standard central limit theorem. It corresponds
to the asymptotics (3.20). In the case of positive p in (3.22), one has
the abnormal normalization of the sums o(A). For weakly dependent
spins, the sequence {72} is asymptotically normal, then the sequences
{7£, p > 0} are asymptotically degenerate at zero. Therefore, the conver-
gence of such a sequence to some nondegenerate random variable would
correspond to the appearance of a strong dependence between the spins.
The latter is assumed to occur at the critical point of the model. Such
critical point convergences were proven.

Proposition 3.4 ( [11] ) Let A € (0,1) and the measure y possess the
Lee — Yang property. Then there exists B > 0 such that: (1) for = B,
the sequence {T}} is asymptotically normal; (ii) for B < B« the sequence
{70} is asymptotically normal,

Proposition 3.5 ( [4] ) Let the initial measure x be chosen of the form
(2.28) with w = 1. Then there exist € > 0, vg > 0, and B. such that for
A€ (%, % +¢), v €(0,v0), B = B, the sequence {1} converges to some
non-Gaussian random variable.

For some Borel subset A C R, we denote
PP(A) = Prob(r) € A). (3.23)

n

In the case where the initial measure y is absolutely continuous with
respect to the Lebesgue measure on R, these are all P?. Denote

=T, (€). (3.24)
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Making use of the definition (3.22), one obtains from the recursion rela-

tions (2.19), (2.20)

T.(€) = = ep(oa?) (3.25)

\n

/T”n_1<2—%5+n>fn_1<2—%€—n)dn,
R

where
K, = 2 3.26
{ /RQ exp(Bq€?) (3.26)
T 1 (277 4 )Ty (2777 € — m)dédn,
and ]
=51~ 271N (3.27)

Thus, the direct corollary of Propositions 3.4 | 3.5 is the following asser-
tion

Proposition 3.6 (i) Let the conditions of Proposition 3.4 be satisfied.
Then there erists (3, such that for B = f., the sequence {P? n € N}
weakly converges to some Gaussian measure.

(i) Let the conditions of Proposition 3.5 be satisfied. Then there erists
B« such that for 8 = ., the sequence {]5,?, n € N} weakly converges to
some non-Gaussian measure.

(iii) In both cases described above the following asymptotics holds true

M (B.,0) = 023, (3.28)

Remark 3.1 The restriction for A to be in the small interval (%,% +
g), mentioned in Proposition 3.5, seems to be purely technical. One can
expect that the convergence stated there holds for all A € (%, 1). It s
confirmed by the numerical resulls given in the paper [4]

Hence having in mind (3.18) one can deduce

Proposition 3.7 Let A be chosen in the interval (1/2,1) and a,(3) be
as in (3.18), then

lim a,(5) =0, for § < Bu;

n—r 00

h_}m an(Be) = a € (0,2); (3.29)
lim a,(5) =2, for § > B..

n—r 00
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Now let us consider some consequences of the critical point asymp-
totics (3.28), just established. First we find how does the correlation
length &,, which describes the decay of the spin—spin correlations in
A, 1 in such a model, diverge when n — oo and § = .. It may be used
to check the assumptions of the finite size scaling method [8], [9]. We
follow the latter paper where the main assumption of this method is for-
mulated as a rule for a thermodynamic quantity Ag(t), calculated on a
finite lattice of linear size L, to depend on this size and on t = (8. —5) /5«
as

Ap(t) = LY fa(s(L, 1)),  s(L,t) = LJE(t). (3.30)

Here a power—law critical singularity for a bulk (i.e. obtained in the
thermodynamic limit L — o0) quantity A = O(t~°) is assumed, and
£(t) = O(t™") stands for the bulk value of €. Let us choose A = &, which
means p = v, and put § = S, that is ¢ = 0. Then one has in (3.30)
s(L,0) = 0, which yields in turn

£2(0) = Lfe(0). (3.31)
To check this assumption we use the definition (3.1) and obtain
MPB0)= 3 <owe>a,, - (3.32)
s,8'€AL

The correlation function < o504 >4, . depends on the hierarchical dis-
tance between s and s’. We set

< 0300 >4, = Pp(dist(s,s")) (3.33)

Tt is known (see [3]) that the so called "small” critical exponent 5 equals
to zero for one-dimensional and hierarchical models (see also the footnote
[11] in the paper [9]). Then we can substitute in (3.32) ®,(x) in its
asymptotic form

®,(z) = g exp(—knt), kn >0, (3.34)

where f,, stands for the inverse correlation length, i.e. k4, , = £, = &1
In what follows, the &, critical point asymptotics prescribed by the finite
size scaling assumption (3.31) reads as

&n = 0O(27). (3.35)
To check whether it really holds, we put

Kn = kg2 "7, (3.36)

and find the value of p which corresponds to the critical point asymp-

totics of M,(f)(ﬁ*,o) (3.28). Denote

n

Sn(A p) = ZQk_"Aexp(—ffoQk_"p), ko > 0. (3.37)
k=0

Proposition 3.8 Let the correlation function (3.33) have the form
(3.34) with &y, obeying (3.36). Then

P
2~ (M A2 (8, 0) = 70(2‘“ + exp(kn)Sn (A, p)). (3.38)

Proof. One has:

M (3,0) —hp (2755 1)} (3.39)

I
(]
&
D
=
—

= Pyexp(ky) Z A, (k) exp(—kp 2’“). (3.40)

Here A, (k) stands for the number of pairs {s,s’} in A, such that
n(s,s’) = k, where the latter is given by (2.6). This number depends on
the number #(A, ;) of elements in A, , and can easily be computed if
its following properties being utilized:

AL (0) = #(An ) =27 (3.41)
Ap(n) =2# N1 1)#(Aps12) =2 92n=1),
Ap(k) =2A,_1(k), k<n.
Thus one obtains
An(k)y =21k =12...n (3.42)
Inserting this into (3.39), one arrives at
(2) — n-1 o - n+k k
M #(3,0) = $y2 + 5 exp(kn) Z 27T exp(—kn27).
k=0
Now one uses (3.36) and (3.37) and obtains (3.38). QED

Proposition 3.9 There exist positive bounds ST such that

ST < Sa(AMA) < ST, ¥neN, Vie(0,1). (3.43)
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Proof. For given A, let [nA] denote an integer part of nA and v(n, A) =
nA — [nA]. Then one has from (3.37)

n—[nA]
SaMA) = D 2N exp(—kp2t ). (3.44)
k=—[nA]

For A € (0, 1), n—[nA] = 400 when n tends to infinity, thus the number
of summands in the right hand side of (3.44) will increase to infinity.
Let us consider the function

Uk(v) = 287V exp(—ko2F7Y), k€ Z, veE0,1]. (3.45)
It is not hard to show that for A € (0, 1),

k(1) < Pr(A) < (0) for k2" <1,
U (0) < Y (N) < (1) for ko2~ > 2. (3.46)

The parameter — log, £y may belong or not to the set of integer numbers.
In the first case we denote this integer number by ky and conclude that
the first line of the estimates (3.46) holds for & < kg whereas the second
one holds for k > ko4 1. If the mentioned parameter is not integer, there
exists an unique integer number k obeying the estimate

kyl <28 < 2k5t. (3.47)

We denote this number by ky and conclude that the first line of the
estimates (3.46) holds for k& < kg and the second one holds for & > kq.
For k = kg, one has the following estimates

L () < . (3.48)

Kge? Kge

Now we are able to construct the bounds S*. We put
S = min{yo(0), Yo(1), (koe®)™'}. (3.49)
If —log, kg := kg belongs to Z, we set

ko + o0
ST = wn(0)+ > w(1). (3.50)

ko+1
For noninteger log, ko, we put

ko—1

+o0
ST =" 4(0) + Hioe + > (1), (3.51)

ko+1
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where kg is the solution of the inequalities (3.47). Clearly, all series in
(3.50), (3.51) are convergent. Now we rewrite (3.44)

n—[nA]
SaMA) = D (v, \).
k=—[nA]

Making use of the estimates (3.46), (3.48) one can show that (3.43) holds.
QED
Consider also the asymptotics of S, (1,1). One has

0
Sp(1,1) = Z 2k eXp(—K?oQk)
k=—n
— Z 2 % exp(—k027%) < oo. (3.52)
k=0

The corollary of (3.43) and (3.52) can be formulated as the following
assertion.

Proposition 3.10 Let S, (A, p) be defined by (3.37) with A, p € (0,1].
Then for n — co:

Sn(A, p) = Foo, for A <p,
Sa(A, p) =0, for A>p. (3.53)

As a result, one may conclude that the finite scaling asumption (3.31)
should be revised.

Proposition 3.11 Let the inverse correlation length k, have the form

(3.36) with p £ A, then the asymptotics (3.28) does not hold.

The case of p = A in (3.36) is more subtle, it needs some modification
of this dependence that is probably caused by the hierarchical nature of
the model.

The last question which is to be discussed in this section is the Lee-
-Yang edge singularities at the critical point, similar discussion for the
case of exactly soluble models may be found in [18]. Due to Proposition
2.6 all Pf;or possess the Lee—Yang property and may be characterized
by the location of zeros of their Laplace transforms which are nearest
to the origin of the imaginary axis. Let f,(z) be the Laplace transform
(2.25) of Pf;or, then its derivatives define the moments of this measure.
In particular’

M (8,0) = (D' £)(0), l€N,
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where MT(Ll) are defined by (3.1). Let zgn) define the location of the nearest
zero of f,, and uﬁf’“) be the semiinvariants of Pf;or defined by (2.29). Then

(n)

for z; ’, Proposition 2.4 gives the estimate (2.31) with just mentioned
semiinvariants. In the cases described by Proposition 3.5 or by part (ii) of
Proposition 3.6, that is in the cases where the critical point convergence
of {P?} holds to a non-Gaussian limit, it is expected that |z£n)| tends
to zero. We describe this phenomenon as follows.

(n)

Proposition 3.12 For z;/, the following ecritical point asymptotics

holds true
|Z£n)| — 0(2—n(1+>\)/2).

To prove this statement one employs the estimate (2.31) provided the
asymptotics of the semiinvariants are known. Here part (ii) of Proposi-
tion 3.6 implies

u(Zh) = 020+ (3.54)

n

In particular ud = M,(f)(ﬁ*,o) has the asymptotics (3.28). By means
of (3.54) one simply gets the proof.

4. Numerical Results

The main advantage of hierarchical models is that they are very suitable
for direct numerical calculations. By means of relatively weak computer,
one can calculate recursively from (2.23), (2.24) the Radon-Nikodym
derivatives T,, = 7Y starting from some suitable measure (e.g. of the
type of (2.28) ) up to sufficiently high values of n. In this section, we
present the results of such calculations. We choose the initial measure
Pffr = ]500 = x to be of the form given by (2.28) with v = 1 and
u = 0.1. This is the simplest non-Gaussian measure possessing the Lee—
Yang property. Another choice of v would change only the scale of 3.
The dependence of the results on the choice of u will be considered in
a separate work, we expect it has only quantitative character. The scale

of 3 is defined also by the choice of J in (3.27). We have put

that gives
g=1-27" (4.1)

The first our object is the Radon-Nikodym derivative T, (&) defined re-
cursively by (2.23), (2.24) with Ty(&) = dx(€)/dé. For w = 0.1, this
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function has only one maximum at £ = 0. For g = 0, all these 7}, will
have such a property. Therefore, for small 3, one may expect that this
property of T, will hold. The appearance of the long-range order in turn,
one may connect with the appearance — at some ng — of maxima of 7,
at £ = +yp,. The number ng must tend to infinity with 3 approaching
O, from above. Such a picture was proven by means of large deviation
method [1], [2]. We have obtained it numerically. For the value of the pa-
rameter A, we have been often choosing 2/3 which corresponds to d = 3 if
the hierarchical model is used to describe the Yukhnovskii’s approach to
the d-dimensional Ising model. Fig.1 shows the evolution of T,, (&) with
n for A = 2/3 and =1 = 0.50. Here ng = 4. Fig.2 shows further evolu-
tion of T, with the same values of the parameters. It can be seen that
new maximum transforms subsequently into a sharp peak, that shows
the corresponding F,, becomes more and more close to the distribution
concentrated at two point +m,(8) in full agreement with Proposition
3.3. Fig.3 and Fig.4 show the same behaviour of T,, for A = 2/3 and
571 = 0.61. This behaviour is similar to that of the previous case but
here ny = 12. Therefore, these two values of 5 are greater than g,. The
behaviour of T,, between the peaks +my(3) is shown on Fig.5. Here
the dependence of —logT, on x := &/my(3) is plotted for A = 0.65,
B~1 = 0.624, and subsequently n = 15,20, 23,25 (the highest curve cor-
responds to n = 25). This picture has been theoretically predicted by
P.Bleher in his research [1]. To calculate the values of the critical tem-
perature T, = g7 ! for A € (%, 1), we use the parameter a, (/) described
by Proposition 3.7. Hence we study evolution of a,(8) with n for differ-
ent fixed values of 3, and A € (%, 1). Fig.6 shows such an evolution for
A = 2/3 and eight values of T' = #71. It is as described by (3.29), and
one may evaluate T, = 7 = 0.61868.

The following object of our investigation is the order parameter. In
fact, it is very hard to study the genuine order parameter given by (3.5)
directly. Instead of this, we have studied the lowest one mg(53) (see (3.7),
(3.14)). Fig.7 shows the T := S~!-dependence of this order parameter
for A = 2/3 and three values of n = 10; 15; 20. Having this dependence,
one may compute the value of critical index b, given by (3.13). Fig.8
shows the dependence of b and T¢, evaluated from (3.13) on the values
of A from the interval (%, 1).
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Figure 1. T,,(¢) via & for n = 2,3,...,6 and A = 2/3, =1 = 0.50. Figure 3. T,,(¢) via& forn = 9,...,13 and A = 2/3, 371 = 0.61.
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Figure 2. The same as Fig.1 for n = 6,7,8,9. Figure 4. The same as Fig.3 for n = 13,...,18.
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