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1 ðÒÅÐÒÉÎÔ1. IntroductionHierarchical models have played a signi�cant role in modern classicalstatistical physics. First such a model was introduced by F.Dyson [6]in 1969 as a tool in the study of one dimensional Ising{like spin modelswith long{range interaction potentials. Since that time these models havebeen studied and utilized. An excellent survey of ideas and results in thisdomain can be found in [3].The main idea of F.Dyson was to substitute the one dimensionalIsing-like spin model with the translation invariant interaction potentialwhich decays as a power of the spin-spin distance by a model with theinteraction decaying as the same power but of the distance de�ned byspecial non{Euclidean metric and possessing some other symmetry in-stead of the translation invariance. This new symmetry was designed toallow more detailed and deep mathematically strict description whichwould yield also some information about properties of the initial trans-lation invariant model.At the other hand, during the seventieths I.R.Yukhnovskii with thecollaborators have developed an approach to the study of the three di-mensional Ising model based on the collective variables method (see e.g.[21], [22]). The main tool of this approach was a step{by{step integrationscheme, which allowed to obtain the model partition function, free en-ergy, other thermodynamic functions in the vicinity of the critical point[17]. The peculiarity of this scheme lies in the fact that the partitionfunction is calculated as a product of the partial partition functions de-scribing a sequence of growing boxes of spins. It was considered as arealization of known heuristic Kadano�'s block{spin construction whichwas intended to describe the critical points of such spin models. Thisconstruction was based on the idea that the ensembles of properly renor-malized total spins of cubic blocks of various linear sizes are distributedidentically whenever the model is taken at its critical point. Such a prop-erty is known as a critical point self{similarity [20] or as a critical pointscale invariance. The latter is considered as the main symmetry appear-ing at the critical point.In fact, the level of strictness of the Yukhnovskii's approach is ratherphysical which means that certain approximationswith no quantitativelycontrolled consequences were employed. Later it was understood [13] thatthe qualitative result of these approximations lies in the replacement ofthe translation invariance of the model considered by the self{similaritysymmetry which was embodied in the Kadano�'s construction. More-over, it was shown in the paper [13] (see also [14] and [10]) that the
ICMP{97{27E 2step{by{step integration scheme being applied to a translation invariantspin model transforms it into the model identical to the Dyson's hierar-chical model. In what follows, one can consider the Dyson's model as arealization of the Yukhnovskii's scheme of study of translation invariantIsing{like spin models.Since early seventieths, the Dyson's hierarchical model was beingstudied mainly analytically. At the same time, the investigations of thethree dimensional Ising model within the collective variables method byI.R.Yukhnovskii and his collaborators (including also numerical ones)were performed. As a result, universal and nonuniversal aspects of thespeci�c heat behaviour in the vicinity of the critical point were analyzed[22], [15]. The equation of state was derived, its analytic solution describ-ing the order parameter dependence on temperature, external magnetic�eld, and microscopic model parameters in the vicinity of the criticalpoint was found [5], [16]. It should be noted that a number of additionalapproximations was used to obtain these results.The aim of our work is to study { analytically and numerically { asimple hierarchical model, considering it also as an emanation from theYukhnovskii's scheme, in the vicinity of its critical point without addi-tional approximations just mentioned. The main question here is how dothe quantities, which describe the behaviour of the model in the vicinityof the critical point (such as susceptibility, order parameter, correlationlength, location of zeros of the partition function, and so on), calculatedfor the �xed large but �nite number of spins, depend on thermodynamicvariables, or how do they depend on the number of spins if the thermo-dynamic variables are �xed at their critical values. Our analytic studyis performed by means of rigorous methods. We discuss the asymptoticbehaviour of the mentioned quantities, calculated at the critical point,when the number of spins tends to in�nity. For this aim the facts whichwere already known are taken from the corresponding papers, whereasa number of new ones are proven here. As a result, we have suggestedhow to calculate numerically the order parameter for zero values of theexternal magnetic �eld, how to �nd corresponding critical index, how tocalculate the critical temperature. Such an approach is partially inspiredby the works on the �nite size scaling, [8] and [9] in particular. We sup-pose to apply the �nite size scaling methods to describe our model onthe base of the data obtained here { it will be done in our next work. Toprepare it we check the basic assumption of this method concerning thecritical point correlation length asymptotics, with the size of the modeltending to in�nity, and �nd that it should be changed in the case of ourmodel.



3 ðÒÅÐÒÉÎÔAs tools we use the methods developed earlier [14], [10], [11]. as well asdirect numerical calculations of corresponding quantities for su�cientlylarge number of spins, based on the analysis mentioned before. Such cal-culations became possible also due to the special (hierarchical) structureof the model considered.2. The ModelHere we deliver the description of the models and the facts from theirtheory which are related to our investigation. Some of these facts areproven here, another ones are taken from the papers where they havebeen published earlier.Let us consider a countable set of one-dimensional spins f�s 2 R; s 2Ng which we choose to be indexed simply by positive integers. Theformal Hamiltonians of the translation invariant and hierarchical modelsare Htr = �12 Xs;s02N J trss0�s�s0 � hXs2N�s; (2.1)H = �12 Xs;s02N Jss0�s�s0 � hXs2N�s; (2.2)where h is an external magnetic �eld, andJ trss0 = �J(j s � s0 j +1)�1��; J > 0: (2.3)Here j a j stands for the absolute value of a 2 Z. The function j s � s0 jcan be considered as the Euclidean distance on N, it is invariant withrespect to the shifts (translations) along N. The parameter � describesthe decay of the potential J trss0 , it is a priori set being positive. As forthe potential Jss0 in the Hamiltonian (2.2), it is put to be of the form(2.3) but with the "hierarchical distance" between s and s0 instead ofj s � s0 j. This new distance can be set by means of the hierarchicalstructure on N. The latter is the sequence L = fLn; n 2 Z+g of familiesLn = f�n;r; r 2Ng, where�n;r = fs 2N j 2n(r � 1) + 1 � s � 2nrg: (2.4)These subsets of N obey the following recursive rule�n;r = [s2�1;r �n�1;s: (2.5)
ICMP{97{27E 4De�nition 2.1 Let n, s, s0 be chosen in N. The points s and s0 are saidto be separated on the hierarchy level n if they belong to di�erent subsets� from Ln.Proposition 2.1 For arbitrary noncoinsiding pair of points s; s0 2 N,there exits n 2 N such that these points are separated on the hierarchylevel n� 1 and are not separated on the levels n, n + 1, : : : .This number is denoted as n(s; s0), that isn(s; s0) = minfn 2N j (9� 2 Ln)(s 2 �)&(s0 2 �)g (2.6)For example, n(1; 2) = 1; n(2; 3) = 2; n(4; 5) = 3. By means of n(s; s0),we can de�ne the hierarchical distance on N:dist(s; s0) = 2n(s;s0) � 1: (2.7)Then the interaction potential in the Hamiltonian (2.2) is written asfollows: Jss0 = �J(dist(s; s0) + 1)�1��; (2.8)where � and J are the same as in (2.3). In order to relate such a modelto the d-dimensional translation invariant model considered within theYukhnovskii's scheme, one should put � = 2=d (see [13], [14], [10]).The following assertion can be proven directly from the de�nition.Proposition 2.2 For arbitrary pair of points s, s0 2N,j s � s0 j� dist(s; s0); (2.9)that yields J trss0 � Jss0 : (2.10)Thermodynamic properties of the model can be described by passing tothe limit �%N for the expectations < :: >�, computed at �nite subset� with the help of Gibbs measures ��;h� . They are de�ned as probabilitymeasures on the con�guration spaces R� by means of local Hamilto-nians H�(��), where �� = f�s; s 2 �g. The local Hamiltonians areconstructed accordingly to the formal ones (2.1), (2.2) that is describedjust below. Here we consider only the Gibbs measures which correspondto zero boundary conditions. Thusd��;h� (��) = 1Z�;h� exp(��H�(��))Ys2� d�(�s); (2.11)



5 ðÒÅÐÒÉÎÔwhere Z�;h� is the normalizing constant which provides for ��;h� to beprobabilistic, and the measure � describes the single-spin (even) prob-ability distribution. The simplest case of the latter is the measure con-centrated at points �1 that corresponds to the Ising{like spins.For the hierarchical models, the thermodynamic limit is naturally beachieved within the hierarchical structure, that is by choosing � 2 Lnand putting n!1. Hence we may set the hierarchical local Hamiltoni-ans only for such �. Thus we use the relation (2.5) and de�ne the familyof local Hamiltonians fH�n;r j n 2 Z+; r 2Ng recursively by puttingH�n;r(��n;r) = �122�n(1+�)(1 � 2�1��)J�2(�n;r)+Xs2�1;rH�n�1;s(��n�1;s) (2.12)with H�0;s(�s) = �12(1� 2�1��)J�2s � h�s; (2.13)where �(�) =Xs2��s: (2.14)Clearly, these Hamiltonians are invariant with respect to those permuta-tions of N which preserve the hierarchical structure. Such permutationsform a group which is the symmetry group of the model. In particu-lar, all Hamiltonians with the same n and di�erent r 2 N are identical,therefore, can be represented by one of them,H�n;1 for example. The re-lationship between the Hamiltonians (2.2) and (2.12) can be establishedas follows. We rewrite H�n;1 given by (2.12)H�n;1(��n;1) = �12 Xs;s02�n;1 J (n)ss0 �s�s0 � h Xs2�n;1 �s; (2.15)that can be used as a de�nition of J (n)ss0 . Having in mind that �n;1 absorbsN when n!1 and using the relations (2.12){(2.14), one can prove sucha statement.Proposition 2.3 limn!1 J (n)ss0 = �2�n(s;s0)(1+�)J:
ICMP{97{27E 6Along with the Hamiltonians (2.15) we also will consider the local Hamil-tonian de�ned by the Hamiltonian (2.1)Htr�n;r(�) = �12 Xs;s02�n;r J trss0�s�s0 � h Xs2�n;r �s; (2.16)where J trss0 is given by (2.3).Consider the Gibbs measures (2.11) of the hierarchical model with� = �n;r. The relation (2.12) yields the following recursion formulad��;h�n;r(��n;r) = Y �;hn exp��2 (1� 2�1��)2�n(1+�)J�2(�n;r)�Ys2�1;r d��;h�n�1;s(��n�1;s): (2.17)where Y �;hn = �Z�;h�n�1;1�2Z�;h�n;1 :Here we have taken into account that Z�;h�n;r = Z�;h�n;1 for all r 2 Z. Due tothe hierarchical symmetry of the model all sums �(�n;r) with the samen and di�erent r are distributed identically. DenoteP �;h�n;r(A) = Prob(�(�n;r) 2 A)for every Borel subset A � R. ThendP �;h�n;r(�)d� = ZR�n;r �(�(�n;r)� �)d��;h�n;r(��n;r); (2.18)where �(: : :) is the Dirac � { function. Thus the relation (2.17) yields forsuch P �;h�n;r :dP �;h�n;r(�) = Y �;h�n;1 (2.19)exp��2 2�n(1+�)(1� 2�1��)J�2�Q�;h�n;r(�)d�;Q�;h�n;r(�) = ZR �( Xs2�1;r �s � �) Ys2�1;r dP �;h�n�1;s(�s): (2.20)In the case where the initial measure P �;h�0;s is absolutely continuous withrespect to the Lebesgue measure on R, all P �;h�n;r possess this property.



7 ðÒÅÐÒÉÎÔIt means that the tempered distribution introduced by (2.18) now is asuitable function. We denote it asdP �;h�n;r(�)d� = T �;hn (�); (2.21)and remark that the so called "small" partition function F �;hn (x) studiedin the papers [1], [2] is related to our T �;hn as followsF �;hn (x) := Z�n;1 �(2�n�(�n;1)� x)d��;h�n;1(��n;1)= T �;hn (2nx); x 2 R: (2.22)The recursive relation given by (2.19), (2.20) now takes the formT �;hn (�) = 1K�;hn exp(�2 2�n(1+�)(1� 2�1��)J�2) (2.23)ZR T �;hn�1(�2 + �)T �;hn�1(�2 � �)d�;where K�;hn = ZR2 exp(�2 2�n(1+�)(1� 2�1��)J�2) (2.24)T �;hn�1(�2 + �)T �;hn�1(�2 � �)d�d�:Here we have taken into account that all �1;r consist of two points, andall �(�n;r) with the same n and di�erent r are distributed identically.Now let us describe in more details the family of measures which areto be chosen in this research as initial single{spin measures �. The �rstcondition imposed on these measures is the existence of their Laplacetransforms f�(z) = ZR exp(z�)d�(�); z 2 C; (2.25)as entire functions. Let F be a family of entire functions of one complexvariable possessing the following canonical representationf(z) = exp(�z2) 1Yj=1(1 + jz2); (2.26)� � 0; j � 0; 1Xj=1 j <1; j � j+1:
ICMP{97{27E 8In other words, the family F consists of entire functions with the orderof growth at most two which either have purely imaginary zeros or havethem none.De�nition 2.2 A probability measure � is said to possess the Lee{Yangproperty if its Laplace transform (2.25) belongs to the family F .It can be shown that the measuresd�(�) = 12 f�(� � 1) + �(� + 1)g d�; (2.27)and d�(�) = exp(�12u�2 � 14v�4)d�RR exp(�12u�2 � 14v�4)d� ; u 2 R; v > 0; (2.28)possess the Lee{Yang property. Further details can be found in the paper[12]. Here we discuss only the properties of these measures which arerelevant to our research. As can be seen from the de�nition (2.25), themoments of each such a measure can be computed as correspondingderivatives at zero of its Laplace transform f�. The following derivativesu(2k)� = (D2k log f�)(0); k 2N; D = ddz ; (2.29)are known as semiinvariants or cumulants of �. Directly from the de�ni-tion (2.26) one obtains the following representations for these parametersu(2)� = 2(� + �1);u(2k)� = (�1)k�12(2k� 1)!�k; k � 2 (2.30)�k = 1Xj=1 kj ; k 2N:The only one measure possessing the Lee{Yang property, the Laplacetransform of which has no zeros, is the Gaussian measure. All other onescan be characterized by the location of its zeros which are nearest to theorigin of the imaginary axis. These are at points �z1 = �i�1=21 (see(2.26)).Proposition 2.4 Let for a non-Gaussian measure � possessing the Lee{Yang property, the semiinvariants be de�ned by (2.29). Then the locationof the nearest zeros of its Laplace transform obeys the following two sidedestimate "40 ju(4)� ju(2)� u(6)� # 14 � jz1j � "6 u(2)�ju(4)� j# 12 (2.31)



9 ðÒÅÐÒÉÎÔThe proof of this statement can be done by showing the validity of suchtwo sided estimate for 1:�2� + �1 � 1 �s(� + �1)�3�2 ; (2.32)which in turn immediately implies (2.31). To prove (2.32) one can usethe following form of the Cauchy inequality�22 = 24 1Xj=1 1=2j 3=2j 352 � 24 1Xj=1 j3524 1Xj=1 3j35 ;which yields �22 � �1�3 � (�+�1)�3. The latter estimate together withthe obvious relation 21 � �2 gives the upper bound for 1 in (2.32).The lower bound is the simple consequence of the following estimate�2 � 1�1 � 1(� + �1).For a measure �, we set a� = � u(4)�(u(2)� )2 : (2.33)By means of methods of the paper [12] one can proveProposition 2.5 Let the measure � possess the Lee{Yang property.Then 0 � a� � 2Moreover, a� = 0 if and only if � is Gaussian; a� = 2 if and only if � isconcentrated at points �a, i.e. is of the type of (2.27) with some a > 0instead of 1.The following statement is a base for the application of the Lee{ Yangproperty in the theory of hierarchical models. It was proven in [10] andapplied in [11].Proposition 2.6 Let the initial single{spin measure � possess the Lee{Yang property. Then all P �;0�n;r de�ned by (2.11), (2.18), (2.19), (2.20)possess this property provided they exist as measures.It was shown [11] that all P �;h�n;r exist as measures for all values of � if theinitial measure � is such that f� possesses the representation (2.26) with� = 0. Only such initial measures are considered below, the measures(2.27), (2.28) obey this restriction.
ICMP{97{27E 103. Critical Point and Ordered PhaseWe start with the description of the ordered phase. For this purpose wewill need an order parameter. In the spin models it should be a magni-tization per spin in zero external �eld. It can be computed by means ofcorresponding Gibbs measures. Consider the following expectations:M (l)n (�; h) = < (�(�n;1))l >�n;1=ZR�n;1 (�(�n;1))ld��;h�n;1(��n;1) =ZR �ldP �;h�n;1(�); l 2N; (3.1)�Mn(�) = ZR�n;1 j�(�n;1)jd��;0�n;1(��n;1) = (3.2)ZR j�jdP �;0�n;1(�);�mn(�) = ZR�n:1 j�1jd��;0�n;1(��n;1); (3.3)~m(2)n (�) = minr;s2�n;1 ZR�n;1 �r�sd��;0�n;1(��n;1): (3.4)Having in mind that each �n;r consists of 2n points we introduce thefollowing parametersm1(�) = limh!0+ limn!1 2�nM (1)n (�; h); (3.5)m2(�) = limn!1q2�2nM (2)n (�; 0); (3.6)m3(�) = limn!12�n �Mn(�); (3.7)m4(�) = limn!1 �mn(�); (3.8)m5(�) = limn!1q ~m(2)n (�): (3.9)Let also mtrl (�), l = 1; 2 be de�ned by the expressions (2.11), (3.1)with Htr�n;r(�) instead of H�n;r(�). In fact, only m1(�) and mtr1 (�) are



11 ðÒÅÐÒÉÎÔthe order parameters in the hierarchical and translation invariant modelsrespectively. The other parameters introduced above are being used toprove the positivity of the order parameters for given values of �. Inwhat follows, Propositions 2.2, 2.3 and the Gri�ths inequality, whichholds for all types of measures � considered in this work, implym2(�) � mtr2 (�): (3.10)At the other hand, in the case of classical (nonquantum) spin modelsone has [7] m2(�) � m1(�) mtr2 (�) � mtr1 (�) (3.11)Employing these estimates F.Dyson has proven the existence of the long{range order in both models { hierarchical and translation invariant.Proposition 3.1 (Dyson's theorem) Let � 2 (0; 1) and the measure� be of the form (2.27) Then there exists �� such that for � > ��,m2(�) > 0.Applying standard arguments (see e.g. [19]) one can extend the va-lidity of this assertion also for the single{spin measures of the type of(2.28). Much more information about the long-range order in such mod-els has been obtained by P.Bleher in his works [1], [2] (see also [3]). Inparticular, one can deduce from these papers the following facts.Proposition 3.2 Let the single{spin measure � be of the form (2.28).Then there exists �� > 0 such that for � > ��m4(�) = m5(�) := m(�) > 0: (3.12)For � ! ��+, holds m(�) ! 0 in such a way thatlim�!��+ logm(�)log(� � ��) := b > 0 (3.13)This property is preserved with the same value of the critical index b forsmall perturbations of the single{spin measure �.Directly from the de�nitions (3.1) { (3.9) one getsm3(�) � m4(�); m5(�) � m2(�):Combining these estimates with (3.10), (3.11), and (3.13), one obtainsm3(�) � m(�) � mtr2 (�) � mtr1 (�);m3(�) � m(�) � m2(�) � m1(�): (3.14)
ICMP{97{27E 12For our model, the most convenient parameter, for the numerical calcu-lation, is m(n)3 (�) := 2�n �Mn(�); (3.15)it may be taken as an approximate (�nite size) value of m3(�). Thefact, that the latter parameter is a lower bound for the genuine orderparameter, shows that it may be used to describe the ordering phasetransition in the model considered.It should be noted here that the considerable description of the or-dered phase in such hierarchical models was performed in the papers[1] and [2] where the asymptotics (for n !1) of the "small" partitionfunction (2.22) was obtained. In particular, Theorem A of the paper [1]and Theorem 2.1 of the paper [2] imply the following assertion.Proposition 3.3 For any � 2 (0; 1), there exist positive ��, a function�(�), and a sequence of functions fmn(�); n 2Ng, such thatlimn!1mn(�) = m(�); mn(�) > 0; 8� > ��;lim�!��+�(�) = +1; �(�) > 0; 8� > ��; (3.16)where m(�) was introduced in (3.12). For these functions and for thedensity (2.21), the following convergence takes place:limn!1 sup�2R jT �;0n (2n=2�)� B(�; 2n=2mn(�); �(�))j = 0; (3.17)where B(�;m;�) = 12(G(� +m;�) +G(� �m;�));G(�;�) = (2��)�1=2 exp(� �22� ):Let an(�) be de�ned as a� by (2.33) with � = P �;0�n;1. Then the assertionjust formulated implies limn!1 an = 2; 8� > ��: (3.18)Now let us describe the critical point behaviour of the hierarchicalmodel. One can deduce from (3.7) and (3.14)M (2)n (�; 0) = O(22n); for � > ��: (3.19)



13 ðÒÅÐÒÉÎÔAt the other hand, for the disordered phase, only bulk divergences shouldappear M (2)n (�; 0) = O(2n); for � < ��: (3.20)As for the critical point itself, the intermediate type of divergences isexpected M (2)n (��; 0) = O(2n(1+�)); (3.21)with some � 2 (0; 1). In order to prove this conjecture and to �nd �, weproceed as follows. De�ne the sequence of random variables f��n; n 2Ng,where ��n = 2�n2 (1+�)�(�n;r); � � 0: (3.22)The probability distribution of each ��n can be described by means of themeasure (2.18), where we put h = 0. If the sequence f�0ng is asymptoti-cally normal, the dependence between the spins is weak or absent as inthe case described by the standard central limit theorem. It correspondsto the asymptotics (3.20). In the case of positive � in (3.22), one hasthe abnormal normalization of the sums �(�). For weakly dependentspins, the sequence f�0ng is asymptotically normal, then the sequencesf��n; � > 0g are asymptotically degenerate at zero. Therefore, the conver-gence of such a sequence to some nondegenerate random variable wouldcorrespond to the appearance of a strong dependence between the spins.The latter is assumed to occur at the critical point of the model. Suchcritical point convergences were proven.Proposition 3.4 ( [11] ) Let � 2 (0; 12 ) and the measure � possess theLee { Yang property. Then there exists �� > 0 such that: (i) for � = ��,the sequence f��ng is asymptotically normal; (ii) for � < �� the sequencef�0ng is asymptotically normal,Proposition 3.5 ( [4] ) Let the initial measure � be chosen of the form(2.28) with u = 1. Then there exist " > 0, v0 > 0, and �� such that for� 2 (12 ; 12 + "), v 2 (0; v0), � = ��, the sequence f��ng converges to somenon-Gaussian random variable.For some Borel subset A � R, we denote~P �n (A) = Prob(��n 2 A): (3.23)In the case where the initial measure � is absolutely continuous withrespect to the Lebesgue measure on R, these are all ~P �n . Denoted ~P �n (�)d� = ~Tn(�): (3.24)
ICMP{97{27E 14Making use of the de�nition (3.22), one obtains from the recursion rela-tions (2.19), (2.20)~Tn(�) = 1~Kn exp(�q�2) (3.25)ZR ~Tn�1(2� 1��2 � + �) ~Tn�1(2� 1��2 � � �)d�;where ~Kn = ZR2 exp(�q�2) (3.26)~Tn�1(2� 1��2 � + �) ~Tn�1(2�1��2 � � �)d�d�;and q = 12(1� 2�1��)J (3.27)Thus, the direct corollary of Propositions 3.4 , 3.5 is the following asser-tionProposition 3.6 (i) Let the conditions of Proposition 3.4 be satis�ed.Then there exists �� such that for � = ��, the sequence f ~P �n ; n 2 Ngweakly converges to some Gaussian measure.(ii) Let the conditions of Proposition 3.5 be satis�ed. Then there exists�� such that for � = ��, the sequence f ~P �n ; n 2 Ng weakly converges tosome non-Gaussian measure.(iii) In both cases described above the following asymptotics holds trueM (2)n (��; 0) = O(2n(1+�)): (3.28)Remark 3.1 The restriction for � to be in the small interval (12 ; 12 +"), mentioned in Proposition 3.5, seems to be purely technical. One canexpect that the convergence stated there holds for all � 2 (12 ; 1). It iscon�rmed by the numerical results given in the paper [4]Hence having in mind (3.18) one can deduceProposition 3.7 Let � be chosen in the interval (1=2; 1) and an(�) beas in (3.18), then limn!1 an(�) = 0; for � < ��;limn!1 an(��) = a 2 (0; 2); (3.29)limn!1 an(�) = 2; for � > ��:



15 ðÒÅÐÒÉÎÔNow let us consider some consequences of the critical point asymp-totics (3.28), just established. First we �nd how does the correlationlength �n, which describes the decay of the spin{spin correlations in�n:1 in such a model, diverge when n!1 and � = ��. It may be usedto check the assumptions of the �nite size scaling method [8], [9]. Wefollow the latter paper where the main assumption of this method is for-mulated as a rule for a thermodynamic quantity AL(t), calculated on a�nite lattice of linear size L, to depend on this size and on t = (����)=��as AL(t) = L�=�fA(s(L; t)); s(L; t) = L=�(t): (3.30)Here a power{law critical singularity for a bulk (i.e. obtained in thethermodynamic limit L ! 1) quantity A = O(t��) is assumed, and�(t) = O(t��) stands for the bulk value of �. Let us choose A = �, whichmeans � = �, and put � = ��, that is t = 0. Then one has in (3.30)s(L; 0) = 0, which yields in turn�L(0) = Lf�(0): (3.31)To check this assumption we use the de�nition (3.1) and obtainM (2)n (�; 0) = Xs;s02�n;r < �s�s0 >�n;r : (3.32)The correlation function < �s�s0 >�n;r depends on the hierarchical dis-tance between s and s0. We set< �s�s0 >�n;1= �n(dist(s; s0)) (3.33)It is known (see [3]) that the so called "small" critical exponent � equalsto zero for one-dimensional and hierarchical models (see also the footnote[11] in the paper [9]). Then we can substitute in (3.32) �n(x) in itsasymptotic form �n(x) = �0 exp(��nx); �n > 0; (3.34)where �n stands for the inverse correlation length, i.e. ��n;1 := �n = ��1n .In what follows, the �n critical point asymptotics prescribed by the �nitesize scaling assumption (3.31) reads as�n = O(2n): (3.35)To check whether it really holds, we put�n = �02�n�; (3.36)
ICMP{97{27E 16and �nd the value of � which corresponds to the critical point asymp-totics of M (2)n (��; 0) (3.28). DenoteSn(�; �) = nXk=0 2k�n� exp(��02k�n�); �0 > 0: (3.37)Proposition 3.8 Let the correlation function (3.33) have the form(3.34) with �n obeying (3.36). Then2�n(1+�)M (2)n (��; 0) = �02 (2�n� + exp(�n)Sn(�; �)): (3.38)Proof. One has:M (2)n (�; 0) = Xs;s02�n;1�0 expn��n(2n(s;s0) � 1)o (3.39)= �0 exp(�n) nXk=0�n(k) exp(��n2k): (3.40)Here �n(k) stands for the number of pairs fs; s0g in �n;1 such thatn(s; s0) = k, where the latter is given by (2.6). This number depends onthe number #(�n;r) of elements in �n;r and can easily be computed ifits following properties being utilized:�n(0) = #(�n;r) = 2n; (3.41)�n(n) = 2#(�n�1;1)#(�n�1;2) = 2 � 22(n�1);�n(k) = 2�n�1(k); k < n:Thus one obtains �n(k) = 2n+k�1; k = 1; 2 : : :n: (3.42)Inserting this into (3.39), one arrives atM (2)n (�; 0) = �02n�1 + �02 exp(�n) nXk=02n+k exp(��n2k):Now one uses (3.36) and (3.37) and obtains (3.38). QEDProposition 3.9 There exist positive bounds S� such thatS� � Sn(�; �) � S+ ; 8n 2N; 8� 2 (0; 1): (3.43)



17 ðÒÅÐÒÉÎÔProof. For given �, let [n�] denote an integer part of n� and �(n; �) =n�� [n�]. Then one has from (3.37)Sn(�; �) = n�[n�]Xk=�[n�] 2k��(n;�) exp(��02k��(n;�)): (3.44)For � 2 (0; 1), n� [n�]! +1 when n tends to in�nity, thus the numberof summands in the right hand side of (3.44) will increase to in�nity.Let us consider the function k(�) = 2k�� exp(��02k��); k 2 Z; � 2 [0; 1]: (3.45)It is not hard to show that for � 2 (0; 1), k(1) �  k(�) �  k(0) for �02k � 1; k(0) �  k(�) �  k(1) for �02k � 2: (3.46)The parameter � log2 �0 may belong or not to the set of integer numbers.In the �rst case we denote this integer number by k0 and conclude thatthe �rst line of the estimates (3.46) holds for k � k0 whereas the secondone holds for k � k0+1. If the mentioned parameter is not integer, thereexists an unique integer number k obeying the estimate��10 < 2k < 2��10 : (3.47)We denote this number by k0 and conclude that the �rst line of theestimates (3.46) holds for k < k0 and the second one holds for k > k0.For k = k0, one has the following estimates1�0e2 �  k0(�) � 1�0e : (3.48)Now we are able to construct the bounds S�. We putS� = minf 0(0);  0(1); (�0e2)�1g: (3.49)If � log2 �0 := k0 belongs to Z, we setS+ = k0X�1 k(0) + +1Xk0+1 k(1): (3.50)For noninteger log2 �0, we putS+ = k0�1X�1  k(0) + 1�0e + +1Xk0+1 k(1); (3.51)
ICMP{97{27E 18where k0 is the solution of the inequalities (3.47). Clearly, all series in(3.50), (3.51) are convergent. Now we rewrite (3.44)Sn(�; �) = n�[n�]Xk=�[n�] k(�(n; �)):Making use of the estimates (3.46), (3.48) one can show that (3.43) holds.QEDConsider also the asymptotics of Sn(1; 1). One hasSn(1; 1) = 0Xk=�n 2k exp(��02k)! 1Xk=02�k exp(��02�k) <1: (3.52)The corollary of (3.43) and (3.52) can be formulated as the followingassertion.Proposition 3.10 Let Sn(�; �) be de�ned by (3.37) with �; � 2 (0; 1].Then for n!1: Sn(�; �)! +1; for � < �;Sn(�; �)! 0; for � > �: (3.53)As a result, one may conclude that the �nite scaling asumption (3.31)should be revised.Proposition 3.11 Let the inverse correlation length �n have the form(3.36) with � 6= �, then the asymptotics (3.28) does not hold.The case of � = � in (3.36) is more subtle, it needs some modi�cationof this dependence that is probably caused by the hierarchical nature ofthe model.The last question which is to be discussed in this section is the Lee--Yang edge singularities at the critical point, similar discussion for thecase of exactly soluble models may be found in [18]. Due to Proposition2.6 all P �;0�n;r possess the Lee{Yang property and may be characterizedby the location of zeros of their Laplace transforms which are nearestto the origin of the imaginary axis. Let fn(z) be the Laplace transform(2.25) of P �;0�n;r , then its derivatives de�ne the moments of this measure.In particular M (l)n (�; 0) = (Dlfn)(0); l 2N;



19 ðÒÅÐÒÉÎÔwhereM (l)n are de�ned by (3.1). Let z(n)1 de�ne the location of the nearestzero of fn and u(2k)n be the semiinvariants of P �;0�n;r de�ned by (2.29). Thenfor z(n)1 , Proposition 2.4 gives the estimate (2.31) with just mentionedsemiinvariants. In the cases described by Proposition 3.5 or by part (ii) ofProposition 3.6, that is in the cases where the critical point convergenceof f ~P �n g holds to a non-Gaussian limit, it is expected that jz(n)1 j tendsto zero. We describe this phenomenon as follows.Proposition 3.12 For z(n)1 , the following critical point asymptoticsholds true jz(n)1 j = O(2�n(1+�)=2):To prove this statement one employs the estimate (2.31) provided theasymptotics of the semiinvariants are known. Here part (ii) of Proposi-tion 3.6 implies u(2k)n = O(2(1+�)kn): (3.54)In particular u(2)n = M (2)n (��; 0) has the asymptotics (3.28). By meansof (3.54) one simply gets the proof.4. Numerical ResultsThe main advantage of hierarchical models is that they are very suitablefor direct numerical calculations. By means of relatively weak computer,one can calculate recursively from (2.23), (2.24) the Radon-Nikodymderivatives Tn = T �;0n starting from some suitable measure (e.g. of thetype of (2.28) ) up to su�ciently high values of n. In this section, wepresent the results of such calculations. We choose the initial measureP �;0�0;r = ~P �0 = � to be of the form given by (2.28) with v = 1 andu = 0:1. This is the simplest non-Gaussian measure possessing the Lee{Yang property. Another choice of v would change only the scale of �.The dependence of the results on the choice of u will be considered ina separate work, we expect it has only quantitative character. The scaleof � is de�ned also by the choice of J in (3.27). We have putJ = 2 1� 2��1� 2�1�� ;that gives q = 1� 2��: (4.1)The �rst our object is the Radon-Nikodym derivative Tn(�) de�ned re-cursively by (2.23), (2.24) with T0(�) = d�(�)=d�. For u = 0:1, this
ICMP{97{27E 20function has only one maximum at � = 0. For � = 0, all these Tn willhave such a property. Therefore, for small �, one may expect that thisproperty of Tn will hold. The appearance of the long-range order in turn,one may connect with the appearance { at some n0 { of maxima of Tn0at � = �yn0 . The number n0 must tend to in�nity with � approaching�� from above. Such a picture was proven by means of large deviationmethod [1], [2]. We have obtained it numerically. For the value of the pa-rameter �, we have been often choosing 2=3 which corresponds to d = 3 ifthe hierarchical model is used to describe the Yukhnovskii's approach tothe d{dimensional Ising model. Fig.1 shows the evolution of Tn(�) withn for � = 2=3 and ��1 = 0:50. Here n0 = 4. Fig.2 shows further evolu-tion of Tn with the same values of the parameters. It can be seen thatnew maximum transforms subsequently into a sharp peak, that showsthe corresponding Pn becomes more and more close to the distributionconcentrated at two point �mn(�) in full agreement with Proposition3.3. Fig.3 and Fig.4 show the same behaviour of Tn for � = 2=3 and��1 = 0:61. This behaviour is similar to that of the previous case buthere n0 = 12. Therefore, these two values of � are greater than ��. Thebehaviour of Tn between the peaks �mn(�) is shown on Fig.5. Herethe dependence of � logTn on x := �=mn(�) is plotted for � = 0:65,��1 = 0:624, and subsequently n = 15; 20; 23; 25 (the highest curve cor-responds to n = 25). This picture has been theoretically predicted byP.Bleher in his research [1]. To calculate the values of the critical tem-perature Tc = ��1� for � 2 (12 ; 1), we use the parameter an(�) describedby Proposition 3.7. Hence we study evolution of an(�) with n for di�er-ent �xed values of �, and � 2 (12 ; 1). Fig.6 shows such an evolution for� = 2=3 and eight values of T = ��1. It is as described by (3.29), andone may evaluate Tcr = ��1� = 0:61868.The following object of our investigation is the order parameter. Infact, it is very hard to study the genuine order parameter given by (3.5)directly. Instead of this, we have studied the lowest one m3(�) (see (3.7),(3.14)). Fig.7 shows the T := ��1-dependence of this order parameterfor � = 2=3 and three values of n = 10; 15; 20. Having this dependence,one may compute the value of critical index b, given by (3.13). Fig.8shows the dependence of b and Tcr evaluated from (3.13) on the valuesof � from the interval (12 ; 1).5. AcknowledgmentsThis work was supported in part by the Fundamental Researches Fundof Ukraine (Grant No 2.4/173).
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Figure 1. Tn(�) via � for n = 2; 3; : : : ; 6 and � = 2=3; ��1 = 0:50.

Figure 2. The same as Fig.1 for n = 6; 7; 8; 9.
ICMP{97{27E 24

Figure 3. Tn(�) via � for n = 9; : : : ; 13 and � = 2=3; ��1 = 0:61.
Figure 4. The same as Fig.3 for n = 13; : : : ; 18.
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Figure 5. � logTn(x) via x = �=mn(�) for n = 15; 20; 23; 25 subse-quently, the lowest curve is for n = 15.
Figure 6. Evolution of an(�) with n for eight subsequent values of T =��1.

ICMP{97{27E 26

Figure 7. m(n)3 (�) given by (3.15) via T = ��1 for � = 2=3 and n =10; 15; 20 subsequently, the lowest curve is for n = 10.
Figure 8. Critical index b de�ned by m3(�) = A(Tcr � T=Tcr)b and Tcrvia � .
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