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õäë: 538.9PACS: 75.10H, 75.50íÅÔÏÄ ÌÏËÁÌØÎÏÇÏ ÐÏÌÑ ÄÌÑ ÍÏÄÅÌ¦ ¶Ú¦ÎÇÁ Ú ÄÏ×¦ÌØÎÏÀ×ÚÁ¤ÍÏÄ¦¤Àó.¶.óÏÒÏËÏ×, ò.ò.ìÅ×ÉÃØËÉÊ, ô.í.÷ÅÒÈÏÌÑËáÎÏÔÁÃ¦Ñ. ÷ ÄÁÎ¦Ê ÒÏÂÏÔ¦ ÎÁÂÌÉÖÅÎÎÑ ÌÏËÁÌØÎÏÇÏ ÐÏÌÑ, ÑËÅ ÇÒÕÎ-ÔÕ¤ÔØÓÑ ÎÁ ×ÉËÏÒÉÓÔÁÎÎ¦ ÔÏÔÏÖÎÏÓÔ¦ ëÁÌÅÎÁ, ÚÁÓÔÏÓÏ×ÁÎo ÄÏ ÍÏÄÅÌ¦¶Ú¦ÎÇÁ Ú ÄÏ×¦ÌØÎÉÍ ÔÉÐÏÍ ×ÚÁ¤ÍÏÄ¦§. îÁ ÏÓÎÏ×¦ ÏÔÒÉÍÁÎÉÈ ÒÅÚÕÌØ-ÔÁÔ¦× ÐÒÏÁÎÁÌ¦ÚÏ×ÁÎÏ, ÑË ÈÁÒÁËÔÅÒ ×ÚÁ¤ÍÏÄ¦§ ×ÐÌÉ×Á¤ ÎÁ ÔÅÒÍÏÄÉ-ÎÁÍ¦ÞÎ¦ ×ÌÁÓÔÉ×ÏÓÔ¦ ÍÏÄÅÌ¦. äÌÑ ÆÕÎËÃ¦§ ÒÏÚÐÏÄ¦ÌÕ ÌÏËÁÌØÎÉÈ ÐÏÌ¦×,ÑËÁ ÐÏ×'ÑÚÁÎÁ Ú ÐÏÐÅÒÅÞÎÉÍ ÐÅÒÅÒ¦ÚÏÍ ÎÅÐÒÕÖÎÏÇÏ ÒÏÚÓ¦ÑÎÎÑ ÎÅÊ-ÔÒÏÎ¦×, ÏÔÒÉÍÁÎÁ ÓË¦ÎÞÅÎÁ ÛÉÒÉÎÁ Ì¦Î¦Ê, ÝÏ ÚÕÍÏ×ÌÅÎÏ ÄÁÌÅËÏÓÑÖ-Î¦ÓÔÀ ×ÚÁ¤ÍÏÄ¦§.Local �eld method for Ising model with arbitrary interactionS.I.Sorokov, R.R.Levitskii, T.M.VerkholyakAbstract. In present work local �eld approximation, based on Callenidentities, is applied to the Ising model with arbitrary interaction. Onthe bases of obtained results it was analysed how the type of interac-tion changed the thermodynamic properties of the model. For the local�eld distribution function connected to inelastic-neutron-scattering crosssection "Gaussian"-width of peaks has been observed.
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1 ðÒÅÐÒÉÎÔ1. IntroductionCallen identity, derived in 1963 [1], proved to be very fruitful for theinvestigation of Ising model with the nearest neighbour interaction [2-5].The main equation for magnetization, which follows from Callen iden-tity, contains spin correlation functions up to (z � 1) order, where z isthe number of the nearest neighbours (see, for example, [4]). The sim-plest approximation, which had been done by Honmura and Kaneyoshi,consists in neglecting of correlation between spin operators on di�erentsites [2]. In paper [3] authors omitted in equation for magnetization allcorrelations higher than the triplet correlations and decoupled the last.Another way was chosen in [4,5]. Correlation of magnetization uctua-tions were taken into account by introduction of correlation parameter�. � was determined from Callen identity for correlation function in [5],and from inverse Callen identity in [4]. It can be noted that results formagnetization obtained by Honmura [5] coincide with Bethe approxima-tion. In general, phase transition temperature for Ising model with thenearest neighbour interaction calculated in methods [5,4] is very close(up to 10%) to the exact result for square lattice and the result of hightemperature expansions for cubic lattice.It is also to the advantage of all these methods that they do not haveany non-physical solutions in the region T � Tc such as for example �rstorder phase transition, which appear in diagrammatic technique [6].It should be stressed that in last years some versions of this correlat-ed e�ective theory are widely used for investigation of disordered Isingsystems [7,8]Mentioned above methods allow to calculate not only all thermo-dynamical properties but also some dynamical quantities. Thomsen etal obtained exactly inelastic-neutron-scattering cross section for honey-comb and square lattice [9].In present work local �eld method is used to investigate Ising modelwith arbitrary form of interaction. We aim to analyse the inuence ofthe interaction range on the local �eld distribution function and ther-modynamic properties of the model.

ICMP{97{20E 22. A local �eld method for the model with arbitraryinteractionIn order to develop the method we shall follow [9]. Let us consider theHamiltonian of Ising model with arbitrary interactionH = �12Xi 6=j J(Rij)SiSj �Xi �iSi; (2.1)where �i is external �eld (�B = 1), J(Rij) is exchange interaction, Si =�1 is z-component of spin operator.One can single out the part in the Hamiltonian, which contains allthe terms with the operator on site k:H = �hkSk +H 0; (2.2)hk =Xj 6=k J(Rkj)Sj + �k: (2.3)Here H 0 does not include operators on site k. Then average of operatorASk (A { does not contain any operator on site k) can be easily calculatedhASki = hA tanh(�hk)i = hA tanh[�(Xj J(Rkj)Sj + �k)]i: (2.4)If A = 1, we shall get a selfconsistent equation for the magnetizationhSki = htanh[�(Xj J(Rkj)Sj + �k)]i; (2.5)obtained by Callen [1].One can introduce a distribution function Pk(h) for local magnetic�eld on site k: Pk(h) = h�(h� hk)i: (2.6)The equation (2.5) can be rewritten in an integral form:hSki = Z 1�1 tanh(�h)Pk(h)dh (2.7)When we take A = 12 (hk +�k), we shall obtain internal energy fromthe identity (2.4)Ek = �12h(hk + �k)Ski = �12 Z 1�1 h tanh(�h)Pk(h)dh� 12�khSki (2.8)



3 ðÒÅÐÒÉÎÔFurther we shall consider only ferromagnetic case J(Rij) > 0 and uni-form external �eld �i = �. Thus the local �eld distribution function willbe uniform too (P (h) = Pk(h)). Therefore, magnetization m and inter-nal energy E averaged over the whole lattice can be determined by (2.7)and (2.8).Formulae (2.6) - (2.8) show that P (h) determines completely all thethermodynamic functions of the model. Moreover, some dynamic prop-erties can be obtained with the help of P (h), for example, inelastic-neutron-scattering cross section [9]:S(k; w) = 12� 1Z�1 e�iwtXi;j exp[ikRij ]hSxi Sxj (t)i= N2 P (!=2) + P (�!=2)1 + exp(��!) : (2.9)3. Calculation of the local �eld distribution functionAlthough we have obtained exact expressions (2.7)-(2.8), the functionP (h) is unknown. It may be calculated by using Fourier representationof �-function:P (h) = Pk(h) = h�(h� hk)i = h 12� Z 1�1 d�ei�(h�hk)i= 12� Z 1�1 d� ei�hM�(�): (3.1)whereM�(�)=he�i�hk i=e�i��M(�)=e�i�� exp8<:lnhYj e�i�J(Rkj)Sj i9=; : (3.2)The simplest approximation hQj e�i�J(Rkj)Sj i � Qjhe�i�J(Rkj )Sii givesthe following result for M(�):M(�) = expfXj ln[cos(�J(Rkj ))� ihSji sin(�J(Rkj))]g (3.3)= Yj [cos(�J(Rkj)) � ihSji sin(�J(Rkj ))]:
ICMP{97{20E 4For the numerical investigation in case of isotropic interaction it is worthdoing sum over coordination spheres:M(�) = expf 1Xn=1 zn ln[cos(�J(Rn))� ihSji sin(�J(Rn))]g (3.4)= 1Yn=1[cos(�J(Rkj ))� ihSji sin(�J(Rn))]zn ;where zn is a number of sites in n-th coordination sphere and Rn is itsradius.The analytical result for the local �eld distribution function is knownonly for one-dimensional model with interaction 2�r and T !1 (whenm = 0, and < SiSk >= 0) [10]. In this case we can use the famousformula for product 1Yn=1 cos(�J2�n) = sin(�J)�J :Then, if we take into account that each coordination sphere has two sites,we shall get the following result for M(�) = h sin(�J)�J i2. After inverseFourier transformation the expression for local �eld distribution densityis P (h) = � 2J � jhj ; jhj < 2J0 ; jhj > 2JFor the approximate calculation M(�) we single out the terms in(3.4), which correspond to the nearest-neighbour interaction and otherexpand in the vicinity of � up to second order of �. After inverse Fouriertransformation one obtains the following result:P (h) = 12� Z +1�1 d�ei�(h��k)M(�) = 12zq2�J 02(0)(1�m2)� zXn=0Cnz (1�m)n(1+m)z�n exp�� (h�hn0)22J 02(0)(1�m2)� ; (3.5)where hn0 = � + J1(z � 2n) + mJ 0(0), PR6=Rn:n: J(R) = J 0(0),PR6=Rn:n: J2(R) = J 02(0).Formula (3.9) shows that P (h) has (z+1) peaks in the points h = hn0with the width J 02(0)(1 �m2). In case of the large dispersion peaks at



5 ðÒÅÐÒÉÎÔthe hn0 6= 0 become invisible. The increase of magnetization leads tothe shift of peaks on the magnitude mJ 0(0) as well as decreasing of thedispersion in (1 �m2) times, as it can be seen from (3.9). For m ! 1local �eld distribution function leads to the �(h� J(0)).The numerical investigations were performed for the system withseveral interactions: 1) J(R) = Je� (R�1)r0 ; (3.6)2) J(R) = JR3 ; (3.7)3) J(R) = JR6 : (3.8)On the Figs.1-3 local �eld distribution function P (h) is depicted forthe interaction (3.6). It is known that P (h) is the set of �-like peaks inpoints J(z � 2n) (z is the number of the nearest neighbours, n=0,...z)for the Ising model with the nearest neighbour interaction, and hasGaussian-like form for the long-range interaction. Figs.1-3 show thatthe change of the interaction type with the help of r0 in (3.6) inuencethe local �eld distribution function P (h) strongly. In Fig.4 the results ofthe estimation (3.5) are compared to the numerical computation (3.4)for the interaction (3.6). One can see that for the cubic lattice approx-imation (3.5) is almost good for all r0, but it does not reect the �nestructure near very small r0. Local �eld distribution function P (h) forthe interaction (3.7) and (3.8) is depicted in Fig.5. We tried to choosesuch values of r0 that the function P (h) for the interactions 1R3 andexp R�1r0 , 1R6 and exp R�1r0 were as close as possible to each other. Asthe result the local �eld distribution function for interaction 1R6 turnsround the same function for the interaction exp R�10:2014 . However, devia-tion between thermodynamic functions for these interactions will not benoticeable, because expressions for thermodynamics contain P (h) onlyin integrals. In Fig.6 the results for P (h) at T < Tc (when m 6= 0) aredepicted.4. Calculation of the thermodynamic functions with-in local �eld approximationAs it is emphasized in paragraph 2, the local �eld distribution functiondetermines completely thermodynamics properties of the system. Themagnetization and the internal energy can be calculated with the helpof (2.8)-(2.9).
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Figure 1: Local �eld distribution function P (h) for one-dimensional lat-tice and the interaction I(R) = exp R�1r0 for di�erent r0.
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Figure 2: Local �eld distribution function P (h) for a square lattice andthe interaction I(R) = exp R�1r0 for di�erent r0.



7 ðÒÅÐÒÉÎÔ
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Figure 3: Local �eld distribution function P (h) for a cubic lattice andthe interaction I(R) = exp R�1r0 for di�erent r0.
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Figure 4: Local �eld distribution function P (h) for a cubic lattice andthe interaction I(R) = exp R�1r0 for r0 = 0:2; 0:5 obtained by (3.4) (thinline) and by formula (3.5) (thick line).
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Figure 5: Local �eld distribution function P (h) for a cubic lattice andthe interactions: 1 - I(R) = 1R3 , 2 - I(R) = exp R�10:4475 , 3 - I(R) = 1R6 ,4 -I(R) = exp R�10:2014 .
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Figure 6: Local �eld distribution function P (h) for a cubic lattice and theexchange interaction I(R) = exp R�10:2 for di�erent temperatures: T > Tc(m = 0), T = 0:78I(0) (m = 0:4797), T = 0:64I(0) (m = 0:8175).



9 ðÒÅÐÒÉÎÔFor the numerical investigation it is more convenient to use M�(�)instead of P (h) in expressions (2.8)-(2.9). After some transformationsone can get the following formula for magnetization:m = Z +1�1 d�M�(�)�(�); (4.1)where �(�) is Fourier representation of tanh(�h):�(�) = 12� Z +1�1 dh tanh(�h)ei�h = iT2 sinh ��T2 : (4.2)Similarly, the expression (2.8) for internal energy can be rewritten asfollows: E = i2 Z +1�1 d��0(�)[M(�) �M(0)]: (4.3)When we take the derivative of (4.1) over external �eld �, we shall getthe equation for static susceptibility that has the following solution:� = @m@� = R +1�1 d�(�i�)�(�)M(�)1� R +1�1 d��(�)@M(�)@m : (4.4)Due to the de�nition (3.5), one can show that@M(�)@m = iM(�)Xj sin(�J(Rkj ))cos(�J(Rkj ))� im sin(�J(Rkj )) : (4.5)We see from (4.4) that static susceptibility diverges, whenZ +1�1 d��(�)@M(�)@m = 1: (4.6)It is equation for the phase transition temperature. Speci�c heat of thesystem is de�ned by thermodynamic relation c = dUdT :c = 12 Z +1�1 d� �� ddT i�0(�)� [M(� �M(0)]�+12 Z +1�1 d�i�0 @M(�)@m � @m@T (4.7)
ICMP{97{20E 10Unknown function @m@T can be obtained similarly to static susceptibility,when we take derivative of (4.1) over T :@m@T = R +1�1 d� � ddT �(�)�M(�)1� R +1�1 d��(�)@M(�)@m : (4.8)Since denominator of (4.8) turns into zero, when T ! Tc, speci�c heatdiverges at the critical temperature as well as static susceptibility.In Figs.7-9 the temperature dependence of magnetization in local�eld approximation is depicted for one-dimensional, square and cubiclattices. Fig.10 shows phase transition temperature Tc=I(0) as a functionof interaction range r0 for hypercubic lattices of di�erent dimensions. Incase of D = 1 the phase transition temperature leads to zero when r0 !0. Temperature dependence of inverse static susceptibility for square andcubic lattice one can see on Figs.11,12.5. ConclusionsIn this work local �eld method for the Ising model with arbitrary in-teraction has been developed and the local �eld distribution function,the magnetization and static susceptibility have been calculated for thelinear, square and cubic lattices.For interaction exp R�1r0 it has been found out how r0 and latticedimensionality inuence forming of �ne structure. It was shown thatchanging of interaction type from 1R6 to exp R�1r0 lead to appearance ofsatellite peaks.It should be emphasized that the approximation (3.3) neglects thedependence of local �eld distribution function on temperature (for T >Tc) and get exact results only at T !1. In forthcoming works we intendto take into account higher correlation e�ects similar to how it was donein [5] for the model with the nearest neighbour interaction.References[1] H.B.Callen, Phys.Lett. B, 4 (1963) p.161.[2] R.Honmura, T.Kaneyoshi, J.Phys. C, 12 (1979) p.3979.[3] T.Kaneyoshi, I.P.Fittipaldi, R.Honmura and T.Manabe Phys.Rev.B, 24 (1981) p.481.[4] G.B.Taggart, Physisa A, 10 (1982) p.535.[5] R.Honmura, Phys.Rev. B, 30 (1984) p.348.[6] D.A.Garanin and V.S.Lutovinov, Sol. State Com., 49 (1984) p.1049.
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Figure 7: The magnetization m of one-dimensional lattice vs. tempera-ture T=I(0) for the exchange interaction I(R) = exp R�1r0 .
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Figure 8: The magnetization m of the square lattice vs. temperatureT=I(0) for exchange interaction I(R) = exp R�1r0 (n.n.i means modelwith the nearest neighbour interaction).
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Figure 9: The magnetization m of a cubic lattice vs. temperature T=I(0)for the exchange interaction I(R) = exp R�1r0 (n.n.i means model withthe nearest neighbour interaction).
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Figure 11: The inverse static susceptibility I(0)=�zz of a square latticevs. temperature T=I(0) for the exchange interaction I(R) = exp R�1r0 .
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Figure 12: The inverse static susceptibility I(0)=�zz of a cubic lattice vs.temperature T=I(0) for the exchange interaction I(R) = exp R�1r0 .
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