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Awnoranisi. [ocmimKyOTbCA BJIACTUBOCTI MEPETUHIB 31POK BUIAIKOBUAX
OsyKaHb Ta OJyKaHb i3 CAMOYHHKAHHAM. MM MOKa3yeMo, AK BimIOBiI-
Hi MacmTabHI MOKA3HUKN OMUCYIOTh CKEMTIHT KOIMOJIMEPHUX CITOK Yy
pozunni. IIi mokasHUKU OOYUC/TIOIOTHCA HA MACTABI PEHOPMIPYIIOBOTO
aHaJ I3y Bimmosimuoro ramijgbroniany Ensapmaca. Orpumanuii 3a mormo-
MOTOI0 TEOPETUKO-TIOTHOBOI PEHOPMAJIi3allil y TPeTbOMY MOPAOKY Teopii
30ypeHb CIIEKTP MOKA3HUKIB Ma€ I[iKaBy BJIACTUBICTH: BCi MOKA3HUKHU €
CKeJIIHI'OBUMK BUMIPHOCTSAMU KOMO3UTHUX IIOJIbOBUX OIEPATOPIB, OILy-
KJICTb CIIEKTPY HO03BOJIAE HOro My ibTU(dPaKTa/JbHYy IHTEPIPETALiio a
rpanuna 2D He omucyeTbCcsa mpocToo (hopMysI00, TOaiOHOI0 10 (hopmy-
au Kama.

Copolymer networks: the spectrum of scaling dimensions
Ch. von Ferber, Yu. Holovatch

Abstract. We explore the intersection properties of stars of random
and self-avoiding walks. We show how the corresponding scaling expo-
nents govern the scaling behavior of copolymer networks in solution.
We derive and calculate these exponents from a renormaization group
analysis of a corresponding Edwards Hamiltonian. Our 3rd order spec-
trum of exponents calculated by field theoretic renormalization shows
remarkable features: All exponents are scaling dimensions of composite
power of field operators, convexity of the spectrum allows for a multi-
fractal interpretation, and the 2D limit has no simple Kac formula like
structure.
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1. Introduction

Considerable effort is brought towards the understanding of copolymers
in various contributions to this conference. Here we focus on the stat-
ic scaling properties of copolymer networks in solution, as governed by
scaling exponents. Recently there has been much interest in the rela-
tion of field theory and multifractals [1] and the associated multifractal
dimension spectra [2,3] as well as non-intersecting random walks and
their 2D conformal theory [4]. Our model of multicomponent polymer
networks shows a common core of these topics and allows for a study
of the interrelations. For polymer networks consisting of polymer chains
of one species it has been shown, that the basic scaling exponents are
connected with ’stars’, polymer chains tied together at one core [5-7].
The number of configurations Z,; of a polymer star with f arms of NV
monomers (see below) will scale for large N like

Zup e N (RO ®

The second part shows scaling with the size R ~ N” of the isolated coil
of N monomers on some scale £. The exponents v = 3/4,0.58(8) and
=72 =7 =43/32,1.16(0) for space dimensions d = 2,3 are known in
polymer theory [8]. The exponents v, have been calculated analytically
in perturbation theory [6,7,9], and by exact methods in two dimensions
[5].

At short distance two polymer stars will repel each other. In view of the
language of field theory this is described in terms of a short distance
expansion. One finds the following relation for the probability P(r) to
find the cores of two stars of f; and f> at short distance r [6]

P(T)Nre 76:77f1 +77f2—77f1+fz>0- (2)

This is compatible with the result, that the spectrum of polymer star
exponents 7y is convex from below as function of f with n; = 0.

On the other hand a multifractal (MF) measure p, defined on the sites
z of scale £ on some object of size R is characterized by the scaling of
its moments averaged over all sites:

Z pz ~ (R/0)? (3)

From general inequalities for the moments of a probabitity distribution
one may deduce that the spectrum of exponents y; has to be convex
from above.
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2. Theory

We model the copolymer network by a fixed number f of polymer chains
of different species linked at their endpoints. For each chaina =1, ..., f
the configuration may be given by a path r%(s),0 < s < S, in d-
dimensional space with a length parameter S,. Then, the statistics of
the f polymers in solution with self and mutual excluded volume inter-
actions ugyp is described by an Edwards-Hamiltonian:

f Sa a 2
/ dsa <dT (Sa)>
Z 0 ds,
a=1

' Sa S
Z Tab/O dSa/O dsbtsd(ra(sa) _rb(sb))' (4)

a,b=1

Let us explicitely give the partition sum for a ‘star’-network, f chains
constrained to have one common endpoint in terms of a path integral:

z.y = [ D) exsl- Ha (0)) (5)

For more general networks additional products of J-functions are intro-
duced to fix the topology of the network. For Z,; we expect scaling
analogous to (1) but with new exponents when allowing for more then
one polymer species. To make the perturbation theory in uq, of Z.; well
defined, a cut-off sg may be introduced, such that all simultaneous inte-
grals [ ds,ds!, will be cut off by the condition |s, —s},| > so. This in turn
allows to give a meaning to the above introduced number of monomes
N as N, = S,/s, in this model.

We apply RG theory to make use of the scaling symmetry of the systems
in the asymptotic limit to extract the universal content and at the same
time remove divergences which occur for the evaluation of the bare func-
tions in this limit [11]. We pass from the theory in terms of the initial bare
variables to a renormalized theory. Then, for instance the bare couplings
Ugp are given in terms of their renormalized dimensionless counterparts

Jab by

Ugp = "'347dZabgab . (6)
The renormalized couplings g.; depend on the scale parameter x. Thus
the renormalization Z - factors also depend implicitly on k. This depen-
dence defines the RG functions:

d
Yaa = ﬁaa(gaa); Kf&gab = ﬁab(gaa:gbbagab)-

"k
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. In a study devoted to ternary polymer solutions the RG flow given by
the above defined g-functions has been calculated [10,12] to third loop
order. The equations for the fixed points of the -functions were found
to have the following nontrivial solutions: f4,(94) = 0 and for a # b:
Bas(0,0,9¢) = 0, Bap(95,0,95) = 0, Bap(0, 95, 95) = 0, Bas(95, 95, 93) =
0, corresponding to all combinations of interacting and non-interacting
chains.

Here, we evaluate the exponents for two general arrangements of the fixed
point matrix. We describe polymer stars made of f; chains of species 1
and fo = f — f1 chains of species 2. Either both species are non self-
interacting, case ‘G’, or species 1 self-interacts and species 2 does not,
case ‘U’

77?1)‘2 = Nuf(gas =0if a,b < fy or a,b > fi; else gup = 9¢) , (7)
WG pe = 1ep(9as = 95 i @b < friga = 0if a,0> fi (8)
else gap = 90)- ©)

For f, = 0 this includes the homo-polymer star with n; = 17;{0 in eq.(1).

3. Results

We give the results for the exponents in € = 4—d-expansion. We have also
performed a fixed d = 3 RG analysis. The corresponding more lengthy
expressions may be found in [12]:

inE) = —fibhg+fif(f=3+f)
2 3
(5 -(n+r+3¢3-3)5]) (10)

n@ = fi(1-fi=38)5+5 (25-33 +84° -

2
2y & _
91fs +42f; fo + 181 )256 +fi [577
969 f; + 456 f;2 — 64 f;° — 2463 fo + 2290 f; f»

—492 f,2f5 4+ 1050 fo2 — 504 f; f22 — 108 fo° +

(936 fi— 712 — 224 f,2 + 2652 f» —

e3

1188, fo — 540 £2%)¢(3)] 15

Here ((3) ~ 1.202 is the value of the Riemann (-function. With these
exponents we can describe the scaling behavior of polymer stars and

(11)
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networks of two components, generalizing the relation for single com-
ponent networks [6]. In the notation of (1) we find for the number of
configurations of a network G of F; and F5 chains of species 1 and 2

Zg ~ (R/g)ng—Fon—anw (12)

withng = —dL+ > Ny, pu0p, fos
fi+f22>1

where L is the number of Loops and Ny, s, the number of vertices with f;
and f, arms of species 1 and 2 in the network G. To receive an appropriate
scaling law we assume the network to be built of chains which for both
species will have a coil radius R when isolated.

4. Conclusions

Does the data answer the question of convexity? A close study of the
resummed values reveals, that for fixed fi both 5 ;, and 77, ;, are con-
vex from above as function of f>, thus yielding ‘MF statistics’ [12]. The
relation to a MF spectral function for f; = 1,2 has been pointed out in
[2], it is analysed in close detail in view of the new data and FT formu-
lation in a separate publication [12]. On the other hand also copolymer
stars repel each other, the corresponding convexity from below shows up
e.g. along the diagonal values 7 as function of f. The general relation
Nffs +Nf 55 2 Nfr+f1 f2+ 5, 18 always fulfilled. Thus we find no contra-
diction between the two features of our set of exponents.

The 2D exponents for polymer stars have been shown to belong to a Kac
series of exponents of conformal FT with v; — 1 = (4 + 27f — 9f?)/64
[5]. There are strong indications that this is the case also for stars of f
only mutually avoiding walks (MAW) with n}W = (1 —4/2)/12 [4]. In
view of our results though, such a simple 2nd order polynomial seems
not to describe the 2D limit of general copolymer star exponents. Thus,
the copolymer generalization of the MAW star adds another problem, for
which a rigorous formulation in terms of an exactly solvable 2D model
is yet to be found.
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