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Amwnorauisi. [IpoBoanThCsA DOCTIIKEHHS INHAMIKT KOJEKTUBHUX KOJIV-
BaHb JIOKAJIbHO aHIrapMOHIYHOI Mogesii. OnHOlOHHA 331248 PO3B A3y €ETh-
Cs YUCJIOBUM METOJIOM, MiXKIOHHA B3a€MO]Iis BPAXOBYETHCHA IIPU PO3pa-
xyHKy ¢oronuux ¢pyukuiii I'pina y nabiuxkenni xaoruanux dasz. Orpu-
MaHa TYCTWHA KOJMBHUX CTAHIB MPU Pi3HUX 3HAUYEHHAX TeMIepaTypH,
TIOJIA ACUMETPil OTHOIOHHOTO MOTEHIaTy Ta XBUJILOBOTO BeKTOpa. Bera-
HOBJIGHO ICHYBAaHHS B CHOEKTPI M ATKOI TiJIKM KOJIMBAHDL, €HEPTisd AKOI
pAMY€E 110 HyJIdA B KpUTUIHIN To4ni. Bussieno mepeposmnomis iHTencus-
HOCTEeW MiXK PI3HMMHU I'iJIKAMU B CIIEKTPI IpU 3MiHi 3HAYE€Hb XBUJILOBOI'O
BEKTOpPA.

Soft Mode in Locally Anharmonic ”¢? + ¢*” Model.
I.V.Stasyuk, K.O.Trachenko

Abstract. The dynamics of collective vibrations in the locally anhar-
monic model is studied. The single ion problem is treated by numerical
calculation while interaction between ions in different cells is accounred
for in the random phase approximation. The density of vibrational states
is obtained at various values of the temperature, single ion asymmetry
field and wave vector. The existence in the spectrum of the soft mode
which energy comes to zero at the critical point is verified. The redistri-
bution of intensities among various energy branches as the wave vector
varies is studied.
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1. Introduction

Using the concept of the local normal coordinate denoted below g; (see,
for example, [1]), the model Hamiltonian

2
_ Pi 1
H= El (2M +Vi(g)) — 2 %j 0ij Qi (1)

which describes a certain mode of the lattice vibrations, active at the
phase transition, is applied to studies of the mechanism of the struc-
tural phase transitions in crystals. The issue of choosing the type of the
local potential V(q) is raised. In the harmonic approximation (V(q) =
%qz, a = Mwd), the crystal lattice may become unstable in case of the
negative value of a. As is mentioned in a number of papers, including
[1], the simplest stabilizing interaction may be chosen in the form

_ _leld | Ba
Vig) =~ 4 B 2
In this case the system undergoes the structural phase transition which
can be displacive or order-disorder in character, depending on the values
of parameters in the initial Hamiltonian. Such a model is often applied
to description of the phase transition in ferroelectrics.

A large number of papers was dedicated to studies of thermody-
namics and dynamics of the model described by the Hamiltonian (1),
(2). Along with application of the analytical methods of various degrees
of approximation, including the method of self-consistent phonons, the
method of renormalized group, etc., the attempts to take into account
the effects caused by the local anharmonicity of the model by using nu-
merical methods were made. Particularly, in [2] the energy spectrum of
single-ion system described by (2) was calculated, while the interaction
of the ions in different cells was taken into account in the mean field ap-
proximation; the comparison with results obtained in the self-consistent
phonons approximation was made. This approach is justified in the case
of long-range interaction ¢;;; the obtained results can be improved by
including of the higher order corrections when the expansion in powers
of the inverse radius of interaction is used.

In addition to the description of ion motion in ferroelectrics, the mod-
el local anharmonic concept is applied to the description of the lattice
anharmonicity in the high temperature superconductors. As is pointed
out in [3], such an anharmonicity is inherent to the motion of the apex
oxygen ions in Y BaCuO and other superconductive compounds. To take
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into consideration such an anharmonicity in the case of local double-well
potential, the approach which introduces pseudospin variables describing
the vibrational degrees of freedom was used. The pseudospin - electron
model derived in this way, describing also the interaction of the conduct-
ing electrons with local anharmonic mode, was the subject of intensive
study in the last years [4-6]. The asymmetry of the anharmonic poten-
tial which is characteristic for the systems of this kind was taken into
account by including into the Hamiltonian the term which described the
interaction with some internal field h;, depending on the occupancy of
electronic states (h; = h + gn;). Structural phase transitions in HTSC
systems, including H g-based superconductors have been recently of wide
consideration, in the context of reported connection between the lat-
tice softening in these compounds and transition to the superconducting
state. Particularly, in [7] it was mentioned that near the transition point
an anomalous abrupt mode softening was observed. Peculiarities related
to the presence of the lattice anharmonicity were observed in Y BaCuO
series on the temperature dependencies of the lattice constant ¢, coeffi-
cients of thermal expansion in the direction of anharmonic vibrations of
oxygen ions, as well as specific heat, thermoconductivity and velocity of
ultrasonic waves in the form of jump-like and hysteresis behaviour (see
).

For the description of such situations, the model potential possessing
more general non-symmetrical shape due to the presence of the cubic
term, was considered in [8-9]:

ag; _ 04} | 24
2 3 4
(so called ”¢? + ¢*” model !). Basing on (3) and applying the method
of self-consistent phonons it was shown that the behaviour of the apex
oxygen in Y BasCu3z07_s compound is bistable. The dependence of the
order parameter on the temperature was shown to be of a hysteresis
character. However, the question of the applicability of the method of
self-consistent phonons to the description of the phase transition in the
systems described by (3), including critical areas arises (see [1]).

Basing on these considerations, we tried to develop further the nu-
merical approaches mentioned above. In [11] we modeled the potential
acting on the ion in the form (3) and took into account the anharmon-
ic character of the ion motion by the numerical diagonalization of the
Hamiltonian matrix. In [11] we also considered the Gaussian barrier po-

Vig) =

49

,a>0 (3)

! The potential of the form (3) occurs also as the effective one in the free energy
functional at the description of liquid-gas transition [10], and in other similar cases.
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tential in the form Vg(q;) = QS? + Ce~B% which was applied to model
the double well local potential in [12-14] (see also Section 3 of this paper).
The interaction between ions in different cells we took into account in
the mean-field approximation, assuming the long-range character of the
intercell interaction. Basing on this approach, we derived the dependen-
cies of the order parameter, free energy and dielectric susceptibility on
the externally applied field and the order parameter and free energy on
the temperature in both models for various model parameters. Analysing
these dependencies we investigated the phase transition as the external
field varies as well as the temperature, which in the case of potential in
form (3) is of the first order; we also considered the behaviour of the
dielectric susceptibility near the phase transition point. In addition to
that, we constructed the phase diagrams (external field, temperature)
and studied the influence of the anharmonicity of potential on the form
of the phase diagrams and the location of the critical points. The results
obtained in the case of the problem with non-symmetrical potential (3)
regarding the character of the phase transitions generally complied with
the conclusions of [6], and [15], in which the similar investigations were
related to the pseudospin-electron model of HTSC systems. Both in those
cases, and in the model (3), the potential asymmetry led to the deviation
of the phase coexistence curve from the vertical line on the plane (tem-
perature, field) and to appearance of the first order phase transitions as
the temperature varies, in the certain range of the parameters defining-
mentioned asymmetry; existence of this phase transition corresponded
to the bistability of the system with the local potential (3) mentioned in
[8-9].

In this paper the dynamical properties of the anharmonic model with
potential (3) are studied. We will investigate behavior of the spectrum
of collective vibrations near the phase transition line, particularly ad-
dressing the lowest branches in the spectrum and highlighting the so
called soft mode. The phonon density of states defined by the imaginary
part of the Green function ((g;|gr)) will be calculated. Accounting for
the anharmonic motion of the ions will be made, as in [11] by numerical
digonalization of the single-ion matrix. The interaction between vibra-
tions of the ions in different cells will be allowed for in the mean field
approximation.
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2. Numerical treatment of single ion problem in the
mean field approximation

In this section we consider the case of local anharmonic potential in non-
symmetric form (3), where @« = Mw3 > 0. Transformation of the last
term in (1) in accordance with the mean-field approximation leads to

1 1
—5 2wt — plog— 590’ (4)
ij
Y= Z Pij-
i
This results in the following form of H:

Hy = ZHz‘,
:

i, ngq‘f _Ba
oM T2 3 4

1.
H; +dg; + ¢(q)q; — §<p<q>z-

()
Here the asymmetry field described by parameter d is introduced. On

the basis of eigenfunctions of harmonic oscillator operators p and ¢ have
the form of the following infinite-dimensional matrices:

/| R -
qrj = m(5(k+1)j\/g+5k(j+l)\/3_)> (6)

. [ Mhw -
Pkj = Z\/To(a(k-t-l)j\/%_ék(j-i-l)\/})-

After substituting ¢ and p in (6) according to (7), the Hamiltonian
matrix has the following form (all terms are divided by fiwp):

Hy . A . ) )

oo =a—C1f+ CoF + C30(d + ¢(q) — Cula)”, (7)
where (7 — Cy are defined through the initial model parameters, and
matrices @ — & are the infinite-dimensional matrices which elements may
be defined using the following relations (see [11] for more detail):

2i—-1
Q5 = 5@';’7:
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Bii = Sijr1)3iVI + 041 3iVi+ 8ia Vil + 1) +2) +
SirnVili +1)(i +2), (8)
Yij = 632+ (i —1)%) + 61222 + DV + 1) +

Oji2)2(20 + 1)\/i(i + 1) + 03(j44) ViG+1D)G+2)(+3)+
dj(ita) Vi(i +1)(i +2)(i + 3),
oij = S Vit digan Vi

For the purpose of numerical treatment of the Hamiltonian matrix (7)
we limit the dimension of this matrix to some finite size. As the calcula-
tion of dependencies of thermodynamical functions on model parameters
shows, limitation of the size of Hamiltonian matrix (this corresponds to
allowing for the finite number of harmonic oscillator levels, starting from
the lowest one) to N = 25 is sufficient when % < 5. All calculations in
Section 2 are made within this approximation.

For calculation of the mean value of coordinate ¢; which has a mean-
ing of the order parameter we use the expression

e*ﬁHo
0 =22, ©

After the unitary transformation is made
Hy;=V~'H,V, (10)
which diagonalizes the Hamiltonian matrix (7), we get

Sp(ge” ") -1
() = “Spe—ris » 1= V=gV, (11)
Note that {(¢) is contained in the Hamiltonian (7). Denoting f = d+¢{q),
we derive the self-consistent system of equations:

(@) (o (f,T),
{ [ = d+¢{qg. (12)

Numerical solution of this system allows to obtain the dependence
(¢) = {q)(d) (Fig.1a) for various values of % (in all calculations here,
C1=0.157, C2=0.025, and C3¢p=-20; these values of parameters corre-
spond to the ones used in [5]). Substituting this function in the Hamil-
tonian (7), we can calculate the dependence of the free energy on the
external field, according to the expression below:
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Figure 1: Dependencies of the order parameter and free energy on the
external field, rf—j;:O.l?.

1
F(d,T) = —TlnSp e PHs _ 5(,0((1)2. (13)

Fig. 1b represents the obtained result for F' = F(d).

The dependencies shown on Fig. 1 are typical for the first order phase
transition. The abscissa of the self-crossing of the curve F' corresponds
to the value d* at which the phase transition occurs, causing a jump-like
change of the order parameter on Fig. la. Raising the temperature leads
to vanishing of the hysteresis-type of this dependence, i.e., to vanishing
of the phase transition.

Temperature increase also results in decrease of d*. Finding numeri-
cally d* for each value of the temperature and different values of C, we
construct the phase diagrams (d*,T) which are shown on Fig. 2.

The left end of the phase coexistence curve corresponds to values of
d* and ,.f—g; at which the phase transition vanishes, having a meaning of

the critical point (XL ~ 3.9, d* = 1.293 at C; = 0.157). As was shown

Aw
n [11], the presenceoof the anharmonicity of third order significantly

increases the value of the critical temperature.

3. Phonon spectrum in the random phase approxi-
mation

In the case of investigated above one-particle problem

p?
(2M + V(Qi))wia = Wytia, (14)
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Figure 2: Phase diagram for different values of cubic anharmonicity:
C; =0.157 (a) and C; = 0.197 (b).

we introduce Hubbard operators X#* = |i,a){(i,b| on the basis of 1);,
which describe transitions between the states of this basis (see [16]).
Operator X 2% is the matrix which has only one non-zero element equal 1
located at the intersection of row a and column b. Displacement ¢; may
be therefore written as

g =Y dap X", (15)
ab
where d,; is the matrix element of displacement ¢
dab = /%/Jz‘*aQi@/deT (16)

After introducing Hubbard operators the Hamiltonian (1) may be rewrit-
ten as

aa ]'
H = ZWGXZ- — 5 Zgoijqiqj (17)
ia ij

Let us consider now ions vibrations relatively to their average displace-
ments g;. Separating terms which correspond to the mean field approxi-
mation, Hamiltonian (17) may be rewritten in the form

1 /
H= —§N<p(q)2 +Hy+H , (18)
where

Hy = Z[Z WaXz{m + <q>90qi]7 (19)

i
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and

H =3 3" Visla — (@) a; — (@) (20)
]

Diagonalization of Hamiltonian Hy by means of unitary transforma-
tion (10) is accompanied by the following transformation of Hubbard
operators:

X0 =g qe X" (21)
oy

where g, are eigenfunctions of the one-site Hamiltonian matrix

Z(Waéab - <q>Jdab)Qbu = Eu‘]au; (22)
b
here ~
duu’ = Z dabq;HQbu’: (23)
ab
so that .
i =Y dyn X! (24)
'
Then Hg is written in the form
Hy=Y E,X!", (25)
i

Having transformed the Hamiltonian (17) this way, we construct the
Green function

(ailar)) = =0t — t ){[a:(t)ar(t ]), (26)

where operators are written in Heisenberg representaion, and statistical
averaging is performed with Hamiltonian H.

After writing equation of motion for operators X £ performing nec-
essary linearization in the random field approximation, the Fourier image
of the Green function can be written in the form:

1 1
G(g,E) = ﬁm; (27)
where o,
Z(E)=Y d,, 7E<(ju; ) ’ (28)

i
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Here

i = (dy X! = dyy X! ");Ey, = E, — E, (29)

G(q,E) in form (27-29) was derived in [16]. We need to transform
G(q, E) to the form convenient for further treatment and investigation.

Denoting A, = Juu’ (C’““I ), we rewrite (27) in the form
1 P(E)

OB = e ME-B,) + ¢ @P(B) e

where
P(E)=Y Ay [[ (E-Ew) (31)
pp! vv'Epp
Assuming that we are able to solve equation

[[(E-E,)+e@Pr=0, (32)

pp

or find roots of the polinomial in the denominator of (30), we write this
denominator as

Q= H(E—E}-), (33)

where E; are the roots of equation (32).

This gives a possibility to expand (30), using a well-known formula,
into the sum of simple fractions in a way that each fraction’s denominator
contains F — E~Z-:

g B) = 5= Y g(gj) o (34)

i
From (33) it follows that
Q (B =[] - E)). (35)
i#j
Form (34) immediately allows to write the phonon density of states

p(E) = 2Im(G(q, E — ie€)). After making the analytical continuation
to the complex plane and applying a well-known formula we derive:

P(E:) §(E — E;). (36)

2Im(G(q, E — i€)) = Z o)
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Now we can interpret (36) as a set of peaks which heights are equal to

P(E;) ——
B (see Fig.5- 7).

After making simple transformations, (C*# ) may be written as

’ eiﬁEH . eBE#’

Do e

(o) = Ay

In calculating G(q), values E,, d, are derived according to the proce-
dure described in (15) - (25) and using the method outlined in Section 1.
We assume that the double-well potential has the form of that in ¢ + ¢*
model, and use the model parameters mentioned in Chapter 1. Values
E;, or spectrum of phonon vibrations is obtained by numerical solving
of equation (32). Values of roots E; = E;(q) are between values E; and
E;1 and depend on ¢(q) (if ¢(q) = 0, E; = E;). The number of roots
corresponds to the number of differencies E;; 11 and is equal to N(N —1).

The smallest value of Ey(g) is the peculiar mode referred as the soft
mode, as it will be shown below. Its value becomes small near the center
of the Brillouen zone and comes to zero at ¢ = 0, or ¢(q)/p(0) = 1 at
the critical point. Before discussing behavior of this mode, we comment
on the results related to this matter found previously in [16]. Particu-
larly, it was pointed out that the existence of a barrier and two minima
in the local potential leads to grouping of the lower energy levels into
pairs. Two lowest energy levels pair at the beginning, while pairing of
other levels is much less significant and quickly disappears with energy
increase. Such an effect was proved in [11] for the model with Gaussian
barrier potential by the numerical approach mentioned above, i.e., by the
diagonalization of the single-ion Hamiltonian: the existence of two parts
of the spectrum of different character was found, with quasidoublet (at
the lower values of energy) and quasi equally distanced (at the higher
values of energy) structures. The crossover from one part to another is
relatively sharp and takes place in the range of energies which are of the
height of potential barrier by the order of magnitude. Thus, assuming
that only two lowest levels are paired while all others stay equally dis-
tanced (”low anharmonicity double well”) and applying random phase
approximation, behavior of the soft modes was studied in [16]. Three
modes were found in the energy spectrum and analysis of their statisti-
cal weights showed that there is effectively one soft mode which seemed
to consist of three parts. The energy of this mode tends to come to zero
near T'=1T, at ¢ = 0.

We plot three lowest energies E found as solutions of (32) as functions
of (q)/¢(0) on Fig. 3a (dependence of E on ¢ is shown on Fig.3b),

(37)
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Figure 3: Depéndenciés of the three lowest eﬁergy levels on <p(q) / <pt0)
(a), and on ¢ (b).

for values of d and { = % which correspond to the critical point on
the phase diagram shown on Fig.2. As it follows from Fig.3, the lowest
energy branch Ey goes to zero when ¢(q)/@(0) = 1. 2 As calculations
show, at other values of (d,#) this does not happen; energy E, decreases
as g comes to zero, but stays finite. This suggests that the lowest energy
branch is the soft mode which becomes zero at ¢ = 0 only at the critical
point.

In order to study the behavior of the lowest energy branch at
©(q)/p(0) = 1 near phase transition line, we also plot the dependen-
cies Ey = Eo(d) for two different values of t on Fig.4. The jump-like
change of the energy Ey at ¢ = 1.6 occurs at d ~ 1.301 (Fig.4a), i.e.
at the point which falls on the phase coexistence line on Fig.2. Such a
change is understood since E‘,L depends on E,, and in turn, as it follows
from (5), E, depends on (g). At the phase transition point (¢) changes
jump-like, thus causing jump-like change of Ey. As calculations show, the
height of this jump decreases as one moves to the critical point. At the
critical point (Fig.4b) no jump-like change occurs in (g) and therefore
Ey = Ey(d) has no abrupt changes going to zero at the critical point.

Fig.5 represents dependencies p(E) = 2Im(G(q, E — i€)) in the ener-
gy range 0 < E < 4 for different values ¢(q)/¢(0) = £0.8, £0.4 at values
(d,t) which correspond to the critical point. Comparing intensities which
are shown as height peaks on Fig.5 and Fig.6 of energy branches for those
values one concludes that moving to the lower values of ¢(q)/¢(0), or

2The energy Ey is not equal to zero exactly at the critical point on Fig.3 and
other further corresponding figures since we find this point with a certain degree
of accuracy. However, we can distinguish between the critical point and other (d, f)
points in terms of closiness of the lowest energy to zero well enough.

ICMP-97-14E

12

1.6 Eo

0.6

0.5

0.4

0.3

0.2

0.1

d

315 O 5R0TORE T200 T.295 T.300 T.305 T.310

Flgure 4: Dependen01es of the lowest energy level on d at t = 1.6 (a)
and at the critical point £ = 4 (b).
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Figure 7: Dependencies of p(E) on E at (der,ter/2 = 2) (a) and at
(ders ter/4=1) (b) at (g)/¢(0) = 0.8.

to the larger values of wave vector g leads to gradual redistribution of
intensities of phonon vibrations energy branches. At ¢ ~ 0 the major
branch with the maximum intensity is the lowest in the spectrum soft
mode (Fig.5a). As one moves from the center of the Brilloen zone this
maximum moves to the upper energies (Fig.5b, 6b). Such a redistribu-
tion of intensities was foreseen in [16], basing on approximation of ”low
anharmonicity double well”.

We also plot p(E) for values (d, ) where d corresponds to the critical
value of d = d., but £ = #.,/2 and f = t.,./4 on Fig.7. This figure illus-
trates how the soft mode increases as one moves away from the critical
point by temperature decrease; no substantial change of the spectrum
density is observed. This soft mode increase is consistent with the one
observed on Fig. 4b when we decrease parameter d starting from its
critical value.

4. Conclusions

In this paper the dynamics of collective vibrations in the locally anhar-
monic ”¢? 4+ p*” model is studied. The single ion problem is solved by
numerical method and the interaction between ions in different cells is
accounted for in the random phase approximation while calculating the
phonon Green function. The density of vibrational states at various val-
ues of temperature £, single ion asymmetry field d and wave vector g
is derived. The existence in the spectrum of the soft mode which en-
ergy comes to 0 at the critical point is verified. The redistribution of
intensities among various energy branches in the spectrum as the wave

vector changes is established. It can be interpreted as manifestation of

ICMP-97-14E 14

certain effective complex phonon vibration which energy and effective
width are functions of the wave vector and also vary as the temperature
and asymmetry field d are changed. More detailed study of this effect in
? 0% +p*” model as well as in related models and comparison with results
which may be obtained in approaches using various approximations (for
example, self-consistent phonon approximation) deserve attention and

may be the subject of further investigation.
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