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õäë: 537.226.33, 537.312.62PACS: 64.60.Cn, 63.20.Ry, 74.25.Kcí'ÑÇË¦ ÍÏÄÉ × ÌÏËÁÌØÎÏ ÁÎÇÁÒÍÏÎ¦ÞÎ¦Ê ÍÏÄÅÌ¦ "'3 + '4"¶.÷.óÔÁÓÀË, ë.ï.ôÒÁÞÅÎËÏáÎÏÔÁÃ¦Ñ. ðÒÏ×ÏÄÉÔØÓÑ ÄÏÓÌ¦ÄÖÅÎÎÑ ÄÉÎÁÍ¦ËÉ ËÏÌÅËÔÉ×ÎÉÈ ËÏÌÉ-×ÁÎØ ÌÏËÁÌØÎÏ ÁÎÇÁÒÍÏÎ¦ÞÎÏ§ ÍÏÄÅÌ¦. ïÄÎÏ¦ÏÎÎÁ ÚÁÄÁÞÁ ÒÏÚ×'ÑÚÕ¤ÔØ-ÓÑ ÞÉÓÌÏ×ÉÍ ÍÅÔÏÄÏÍ, Í¦Ö¦ÏÎÎÁ ×ÚÁ¤ÍÏÄ¦Ñ ×ÒÁÈÏ×Õ¤ÔØÓÑ ÐÒÉ ÒÏÚÒÁ-ÈÕÎËÕ ÆÏÎÏÎÎÉÈ ÆÕÎËÃ¦Ê çÒ¦ÎÁ Õ ÎÁÂÌÉÖÅÎÎ¦ ÈÁÏÔÉÞÎÉÈ ÆÁÚ. ïÔÒÉ-ÍÁÎÁ ÇÕÓÔÉÎÁ ËÏÌÉ×ÎÉÈ ÓÔÁÎ¦× ÐÒÉ Ò¦ÚÎÉÈ ÚÎÁÞÅÎÎÑÈ ÔÅÍÐÅÒÁÔÕÒÉ,ÐÏÌÑ ÁÓÉÍÅÔÒ¦§ ÏÄÎÏ¦ÏÎÎÏÇÏ ÐÏÔÅÎÃ¦ÁÌÕ ÔÁ È×ÉÌØÏ×ÏÇÏ ×ÅËÔÏÒÁ. ÷ÓÔÁ-ÎÏ×ÌÅÎÏ ¦ÓÎÕ×ÁÎÎÑ × ÓÐÅËÔÒ¦ Í'ÑÇËÏ§ Ç¦ÌËÉ ËÏÌÉ×ÁÎØ, ÅÎÅÒÇ¦Ñ ÑËÏ§ÐÒÑÍÕ¤ ÄÏ ÎÕÌÑ × ËÒÉÔÉÞÎ¦Ê ÔÏÞÃ¦. ÷ÉÑ×ÌÅÎÏ ÐÅÒÅÒÏÚÐÏÄ¦Ì ¦ÎÔÅÎÓÉ×-ÎÏÓÔÅÊ Í¦Ö Ò¦ÚÎÉÍÉ Ç¦ÌËÁÍÉ × ÓÐÅËÔÒ¦ ÐÒÉ ÚÍ¦Î¦ ÚÎÁÞÅÎØ È×ÉÌØÏ×ÏÇÏ×ÅËÔÏÒÁ.Soft Mode in Locally Anharmonic "'3 + '4" Model.I.V.Stasyuk, K.O.TrachenkoAbstract. The dynamics of collective vibrations in the locally anhar-monic model is studied. The single ion problem is treated by numericalcalculation while interaction between ions in di�erent cells is accounredfor in the random phase approximation. The density of vibrational statesis obtained at various values of the temperature, single ion asymmetry�eld and wave vector. The existence in the spectrum of the soft modewhich energy comes to zero at the critical point is veri�ed. The redistri-bution of intensities among various energy branches as the wave vectorvaries is studied.
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1 ðÒÅÐÒÉÎÔ1. IntroductionUsing the concept of the local normal coordinate denoted below qi (see,for example, [1]), the model HamiltonianH =Xi ( p2i2M + V (qi))� 12Xij 'ijqiqj ; (1)which describes a certain mode of the lattice vibrations, active at thephase transition, is applied to studies of the mechanism of the struc-tural phase transitions in crystals. The issue of choosing the type of thelocal potential V (q) is raised. In the harmonic approximation (V (q) =�2 q2; � = M!20), the crystal lattice may become unstable in case of thenegative value of �. As is mentioned in a number of papers, including[1], the simplest stabilizing interaction may be chosen in the formV (qi) = �j � j q2i2 + �q4i4 : (2)In this case the system undergoes the structural phase transition whichcan be displacive or order-disorder in character, depending on the valuesof parameters in the initial Hamiltonian. Such a model is often appliedto description of the phase transition in ferroelectrics.A large number of papers was dedicated to studies of thermody-namics and dynamics of the model described by the Hamiltonian (1),(2). Along with application of the analytical methods of various degreesof approximation, including the method of self-consistent phonons, themethod of renormalized group, etc., the attempts to take into accountthe e�ects caused by the local anharmonicity of the model by using nu-merical methods were made. Particularly, in [2] the energy spectrum ofsingle-ion system described by (2) was calculated, while the interactionof the ions in di�erent cells was taken into account in the mean �eld ap-proximation; the comparison with results obtained in the self-consistentphonons approximation was made. This approach is justi�ed in the caseof long-range interaction 'ij ; the obtained results can be improved byincluding of the higher order corrections when the expansion in powersof the inverse radius of interaction is used.In addition to the description of ion motion in ferroelectrics, the mod-el local anharmonic concept is applied to the description of the latticeanharmonicity in the high temperature superconductors. As is pointedout in [3], such an anharmonicity is inherent to the motion of the apexoxygen ions in Y BaCuO and other superconductive compounds. To take
ICMP{97{14E 2into consideration such an anharmonicity in the case of local double-wellpotential, the approach which introduces pseudospin variables describingthe vibrational degrees of freedom was used. The pseudospin - electronmodel derived in this way, describing also the interaction of the conduct-ing electrons with local anharmonic mode, was the subject of intensivestudy in the last years [4-6]. The asymmetry of the anharmonic poten-tial which is characteristic for the systems of this kind was taken intoaccount by including into the Hamiltonian the term which described theinteraction with some internal �eld ~hi, depending on the occupancy ofelectronic states ( ~hi = h + gni). Structural phase transitions in HTSCsystems, including Hg-based superconductors have been recently of wideconsideration, in the context of reported connection between the lat-tice softening in these compounds and transition to the superconductingstate. Particularly, in [7] it was mentioned that near the transition pointan anomalous abrupt mode softening was observed. Peculiarities relatedto the presence of the lattice anharmonicity were observed in Y BaCuOseries on the temperature dependencies of the lattice constant c, coe�-cients of thermal expansion in the direction of anharmonic vibrations ofoxygen ions, as well as speci�c heat, thermoconductivity and velocity ofultrasonic waves in the form of jump-like and hysteresis behaviour (see[8]).For the description of such situations, the model potential possessingmore general non-symmetrical shape due to the presence of the cubicterm, was considered in [8-9]:V (qi) = �q2i2 � �q3i3 + q4i4 ; � > 0 (3)(so called "'3 + '4" model 1). Basing on (3) and applying the methodof self-consistent phonons it was shown that the behaviour of the apexoxygen in Y Ba2Cu3O7�� compound is bistable. The dependence of theorder parameter on the temperature was shown to be of a hysteresischaracter. However, the question of the applicability of the method ofself-consistent phonons to the description of the phase transition in thesystems described by (3), including critical areas arises (see [1]).Basing on these considerations, we tried to develop further the nu-merical approaches mentioned above. In [11] we modeled the potentialacting on the ion in the form (3) and took into account the anharmon-ic character of the ion motion by the numerical diagonalization of theHamiltonian matrix. In [11] we also considered the Gaussian barrier po-1The potential of the form (3) occurs also as the e�ective one in the free energyfunctional at the description of liquid-gas transition [10], and in other similar cases.



3 ðÒÅÐÒÉÎÔtential in the form VG(qi) = �q2i2 + Ce�Bq2i which was applied to modelthe double well local potential in [12-14] (see also Section 3 of this paper).The interaction between ions in di�erent cells we took into account inthe mean-�eld approximation, assuming the long-range character of theintercell interaction. Basing on this approach, we derived the dependen-cies of the order parameter, free energy and dielectric susceptibility onthe externally applied �eld and the order parameter and free energy onthe temperature in both models for various model parameters. Analysingthese dependencies we investigated the phase transition as the external�eld varies as well as the temperature, which in the case of potential inform (3) is of the �rst order; we also considered the behaviour of thedielectric susceptibility near the phase transition point. In addition tothat, we constructed the phase diagrams (external �eld, temperature)and studied the inuence of the anharmonicity of potential on the formof the phase diagrams and the location of the critical points. The resultsobtained in the case of the problem with non-symmetrical potential (3)regarding the character of the phase transitions generally complied withthe conclusions of [6], and [15], in which the similar investigations wererelated to the pseudospin-electron model of HTSC systems. Both in thosecases, and in the model (3), the potential asymmetry led to the deviationof the phase coexistence curve from the vertical line on the plane (tem-perature, �eld) and to appearance of the �rst order phase transitions asthe temperature varies, in the certain range of the parameters de�ning-mentioned asymmetry; existence of this phase transition correspondedto the bistability of the system with the local potential (3) mentioned in[8-9].In this paper the dynamical properties of the anharmonic model withpotential (3) are studied. We will investigate behavior of the spectrumof collective vibrations near the phase transition line, particularly ad-dressing the lowest branches in the spectrum and highlighting the socalled soft mode. The phonon density of states de�ned by the imaginarypart of the Green function hhqijqkii will be calculated. Accounting forthe anharmonic motion of the ions will be made, as in [11] by numericaldigonalization of the single-ion matrix. The interaction between vibra-tions of the ions in di�erent cells will be allowed for in the mean �eldapproximation.

ICMP{97{14E 42. Numerical treatment of single ion problem in themean �eld approximationIn this section we consider the case of local anharmonic potential in non-symmetric form (3), where � = M!20 > 0. Transformation of the lastterm in (1) in accordance with the mean-�eld approximation leads to�12Xij 'ijqiqj ! 'hqiq � 12'hqi2; (4)' = �Xi 'ij :This results in the following form of H :H0 = Xi Hi;Hi = p2i2M + M!202 q2i � �q3i3 + q4i4 + dqi + 'hqiqi � 12'hqi2: (5)Here the asymmetry �eld described by parameter d is introduced. Onthe basis of eigenfunctions of harmonic oscillator operators p and q havethe form of the following in�nite-dimensional matrices:qkj = r �h2M!0 (�(k+1)jpk + �k(j+1)pj); (6)pkj = irM�h!02 (�(k+1)jpk � �k(j+1)pj):After substituting q and p in (6) according to (7), the Hamiltonianmatrix has the following form (all terms are divided by �h!0):^H0�h!0 = ^�� C1 ^� + C2^ + C3^�(d+ 'hqi)� C4hqi2; (7)where C1 � C4 are de�ned through the initial model parameters, andmatrices ^�� ^� are the in�nite-dimensional matrices which elements maybe de�ned using the following relations (see [11] for more detail):�ij = �ij 2i� 12 ;



5 ðÒÅÐÒÉÎÔ�ij = �i(j+1)3jpj + �j(i+1)3ipi+ �i(j+3)pj(j + 1)(j + 2) +�j(i+3)pi(i+ 1)(i+ 2); (8)ij = �ij3(i2 + (i� 1)2) + �i(j+2)2(2j + 1)pj(j + 1) +�j(i+2)2(2i+ 1)pi(i+ 1) + �i(j+4)pj(j + 1)(j + 2)(j + 3) +�j(i+4)pi(i+ 1)(i+ 2)(i+ 3);�ij = �(i+1)jpi+ �i(j+1)pj:For the purpose of numerical treatment of the Hamiltonian matrix (7)we limit the dimension of this matrix to some �nite size. As the calcula-tion of dependencies of thermodynamical functions on model parametersshows, limitation of the size of Hamiltonian matrix (this corresponds toallowing for the �nite number of harmonic oscillator levels, starting fromthe lowest one) to N = 25 is su�cient when kT�h!0 � 5. All calculations inSection 2 are made within this approximation.For calculation of the mean value of coordinate qi which has a mean-ing of the order parameter we use the expressionhqi = Sp(qe��H0)Spe��H0 : (9)After the unitary transformation is madeHd = V �1H0V; (10)which diagonalizes the Hamiltonian matrix (7), we gethqi = Sp(~qe��Hd)Spe��Hd ; ~q = V �1qV: (11)Note that hqi is contained in the Hamiltonian (7). Denoting f = d+'hqi,we derive the self-consistent system of equations:� hqi = hqi(f; T );f = d+ 'hqi: (12)Numerical solution of this system allows to obtain the dependencehqi = hqi(d) (Fig.1a) for various values of kTh!0 (in all calculations here,C1=0.157, C2=0.025, and C3'=-20; these values of parameters corre-spond to the ones used in [5]). Substituting this function in the Hamil-tonian (7), we can calculate the dependence of the free energy on theexternal �eld, according to the expression below:
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dFigure 1: Dependencies of the order parameter and free energy on theexternal �eld, kT�h!0=0.17.F (d; T ) = �T lnSp e��Hd � 12'hqi2: (13)Fig. 1b represents the obtained result for F = F (d).The dependencies shown on Fig. 1 are typical for the �rst order phasetransition. The abscissa of the self-crossing of the curve F correspondsto the value d� at which the phase transition occurs, causing a jump-likechange of the order parameter on Fig. 1a. Raising the temperature leadsto vanishing of the hysteresis-type of this dependence, i.e., to vanishingof the phase transition.Temperature increase also results in decrease of d�. Finding numeri-cally d� for each value of the temperature and di�erent values of C1, weconstruct the phase diagrams (d�; T ) which are shown on Fig. 2.The left end of the phase coexistence curve corresponds to values ofd� and kT�h!0 at which the phase transition vanishes, having a meaning ofthe critical point ( kT�h!0 ' 3:9, d�c = 1:293 at C1 = 0:157). As was shownin [11], the presence of the anharmonicity of third order signi�cantlyincreases the value of the critical temperature.3. Phonon spectrum in the random phase approxi-mationIn the case of investigated above one-particle problem( p2i2M + V (qi)) ia =Wa ia; (14)



7 ðÒÅÐÒÉÎÔ

1.290 1.292 1.294 1.296 1.298 1.300 1.302d�0.01.02.03.04.0 kT�h!0 a)
Figure 2: Phase diagram for di�erent values of cubic anharmonicity:C1 = 0:157 (a) and C1 = 0:197 (b).we introduce Hubbard operators Xabi = ji; aihi; bj on the basis of  iawhich describe transitions between the states of this basis (see [16]).Operator Xabi is the matrix which has only one non-zero element equal 1located at the intersection of row a and column b. Displacement qi maybe therefore written as qi =Xab dabXabi ; (15)where dab is the matrix element of displacement qdab = Z  �iaqi iad� (16)After introducing Hubbard operators the Hamiltonian (1) may be rewrit-ten as H =Xia WaXaai � 12Xij 'ijqiqj (17)Let us consider now ions vibrations relatively to their average displace-ments qi. Separating terms which correspond to the mean �eld approxi-mation, Hamiltonian (17) may be rewritten in the formH = �12N'hqi2 +H0 +H 0 ; (18)where H0 =Xi [Xa WaXaai + hqi'qi]; (19)

ICMP{97{14E 8and H 0 = �12Xij Vij(qi � hqi)(qj � hqi) (20)Diagonalization of Hamiltonian H0 by means of unitary transforma-tion (10) is accompanied by the following transformation of Hubbardoperators: Xabi =X��0 q�a�qb�0 ~X��0i (21)where qa� are eigenfunctions of the one-site Hamiltonian matrixXb (Wa�ab � hqiJ ~dab)qb� = E�qa�; (22)here ~d��0 =Xab dabq�a�qb�0 ; (23)so that qi =X��0 ~d��0 ~X��0i (24)Then Hd is written in the formHd =Xi� E� ~X��i ; (25)Having transformed the Hamiltonian (17) this way, we construct theGreen function hhqijqkii = �i�(t� t0)h[qi(t)qk(t0 ]i; (26)where operators are written in Heisenberg representaion, and statisticalaveraging is performed with Hamiltonian H .After writing equation of motion for operators ~X��0i , performing nec-essary linearization in the random �eld approximation, the Fourier imageof the Green function can be written in the form:G(q; E) = 12� 1Z�1(E) + '(q) ; (27)where Z(E) =X��0 ~d��0 h ~C��0 iE �E��0 (28)



9 ðÒÅÐÒÉÎÔHere ~C��0i =X� ( ~d�0� ~X�0�i � ~d�0� ~X�0�i );E�0� = E�0 �E� (29)G(q; E) in form (27-29) was derived in [16]. We need to transformG(q; E) to the form convenient for further treatment and investigation.Denoting A��0 = ~d��0 h ~C��0 i, we rewrite (27) in the formG(q; E) = 12� P (E)Q��0 (E �E��0 ) + '(q)P (E) ; (30)where P (E) =X��0 A��0 Y��0 6=��0(E �E��0) (31)Assuming that we are able to solve equationY��0(E �E��0 ) + '(q)P = 0; (32)or �nd roots of the polinomial in the denominator of (30), we write thisdenominator as Q =Yj (E � ~Ej); (33)where ~Ei are the roots of equation (32).This gives a possibility to expand (30), using a well-known formula,into the sum of simple fractions in a way that each fraction's denominatorcontains E � ~Ei: G(q; E) = 12�Xi P ( ~Ei)Q0( ~Ei) 1E � ~Ei : (34)From (33) it follows thatQ0( ~Ei) =Yi 6=j( ~Ei � ~Ej): (35)Form (34) immediately allows to write the phonon density of states�(E) = 2Im(G(q; E � i�)). After making the analytical continuationto the complex plane and applying a well-known formula we derive:2Im(G(q; E � i�)) =Xi P ( ~Ei)Q0( ~Ei)�(E � ~Ei): (36)
ICMP{97{14E 10Now we can interpret (36) as a set of peaks which heights are equal toP ( ~Ei)Q0 ( ~Ei) (see Fig.5 - 7).After making simple transformations, h ~C��0 i may be written ash ~C��0 i = ~d��0 e��E� � e�E�0Pk e��Ek (37)In calculating G(q), values E�, ~d��0 are derived according to the proce-dure described in (15) - (25) and using the method outlined in Section 1.We assume that the double-well potential has the form of that in �3+�4model, and use the model parameters mentioned in Chapter 1. Values~Ei, or spectrum of phonon vibrations is obtained by numerical solvingof equation (32). Values of roots ~Ei = ~Ei(q) are between values Ei andEi+1 and depend on '(q) (if '(q) = 0, ~Ei = Ei). The number of rootscorresponds to the number of di�erencies Eii+1 and is equal to N(N�1).The smallest value of ~E0(q) is the peculiar mode referred as the softmode, as it will be shown below. Its value becomes small near the centerof the Brillouen zone and comes to zero at q = 0, or '(q)='(0) = 1 atthe critical point. Before discussing behavior of this mode, we commenton the results related to this matter found previously in [16]. Particu-larly, it was pointed out that the existence of a barrier and two minimain the local potential leads to grouping of the lower energy levels intopairs. Two lowest energy levels pair at the beginning, while pairing ofother levels is much less signi�cant and quickly disappears with energyincrease. Such an e�ect was proved in [11] for the model with Gaussianbarrier potential by the numerical approach mentioned above, i.e., by thediagonalization of the single-ion Hamiltonian: the existence of two partsof the spectrum of di�erent character was found, with quasidoublet (atthe lower values of energy) and quasi equally distanced (at the highervalues of energy) structures. The crossover from one part to another isrelatively sharp and takes place in the range of energies which are of theheight of potential barrier by the order of magnitude. Thus, assumingthat only two lowest levels are paired while all others stay equally dis-tanced ("low anharmonicity double well") and applying random phaseapproximation, behavior of the soft modes was studied in [16]. Threemodes were found in the energy spectrum and analysis of their statisti-cal weights showed that there is e�ectively one soft mode which seemedto consist of three parts. The energy of this mode tends to come to zeronear T = Tc at q = 0.We plot three lowest energies ~E found as solutions of (32) as functionsof '(q)='(0) on Fig. 3a (dependence of ~E on q is shown on Fig.3b),
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Figure 3: Dependencies of the three lowest energy levels on '(q)='(0)(a), and on q (b).for values of d and ~t = kTh!0 which correspond to the critical point onthe phase diagram shown on Fig.2. As it follows from Fig.3, the lowestenergy branch ~E0 goes to zero when '(q)='(0) = 1. 2 As calculationsshow, at other values of (d; ~t) this does not happen; energy ~E0 decreasesas q comes to zero, but stays �nite. This suggests that the lowest energybranch is the soft mode which becomes zero at q = 0 only at the criticalpoint.In order to study the behavior of the lowest energy branch at'(q)='(0) = 1 near phase transition line, we also plot the dependen-cies ~E0 = ~E0(d) for two di�erent values of ~t on Fig.4. The jump-likechange of the energy ~E0 at ~t = 1:6 occurs at d ' 1:301 (Fig.4a), i.e.at the point which falls on the phase coexistence line on Fig.2. Such achange is understood since ~E� depends on E�, and in turn, as it followsfrom (5), E� depends on hqi. At the phase transition point hqi changesjump-like, thus causing jump-like change of ~E0. As calculations show, theheight of this jump decreases as one moves to the critical point. At thecritical point (Fig.4b) no jump-like change occurs in hqi and therefore~E0 = ~E0(d) has no abrupt changes going to zero at the critical point.Fig.5 represents dependencies �(E) = 2Im(G(q; E � i�)) in the ener-gy range 0 < E < 4 for di�erent values '(q)='(0) = �0:8;�0:4 at values(d; ~t) which correspond to the critical point. Comparing intensities whichare shown as height peaks on Fig.5 and Fig.6 of energy branches for thosevalues one concludes that moving to the lower values of '(q)='(0), or2The energy ~E0 is not equal to zero exactly at the critical point on Fig.3 andother further corresponding �gures since we �nd this point with a certain degreeof accuracy. However, we can distinguish between the critical point and other (d; ~t)points in terms of closiness of the lowest energy to zero well enough.
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Figure 4: Dependencies of the lowest energy level on d at ~t = 1:6 (a)and at the critical point ~t = 4 (b).
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Figure 5: Dependencies of �(E) on E at '(q)='(0) = 0:8 (a) and at'(q)='(0) = �0:8 (b) at the critical point.
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Figure 6: Dependencies of �(E) on E at '(q)='(0) = 0:4 (a) and at'(q)='(0) = �0:4 (b) at the critical point.
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Figure 7: Dependencies of �(E) on E at (dcr; ~tcr=2 = 2) (a) and at(dcr; ~tcr=4 = 1) (b) at '(q)='(0) = 0:8.to the larger values of wave vector q leads to gradual redistribution ofintensities of phonon vibrations energy branches. At q � 0 the majorbranch with the maximum intensity is the lowest in the spectrum softmode (Fig.5a). As one moves from the center of the Brilloen zone thismaximum moves to the upper energies (Fig.5b, 6b). Such a redistribu-tion of intensities was foreseen in [16], basing on approximation of "lowanharmonicity double well".We also plot �(E) for values (d; ~t) where d corresponds to the criticalvalue of d = dcr but ~t = ~tcr=2 and ~t = ~tcr=4 on Fig.7. This �gure illus-trates how the soft mode increases as one moves away from the criticalpoint by temperature decrease; no substantial change of the spectrumdensity is observed. This soft mode increase is consistent with the oneobserved on Fig. 4b when we decrease parameter d starting from itscritical value.4. ConclusionsIn this paper the dynamics of collective vibrations in the locally anhar-monic "'3 + '4" model is studied. The single ion problem is solved bynumerical method and the interaction between ions in di�erent cells isaccounted for in the random phase approximation while calculating thephonon Green function. The density of vibrational states at various val-ues of temperature ~t, single ion asymmetry �eld d and wave vector qis derived. The existence in the spectrum of the soft mode which en-ergy comes to 0 at the critical point is veri�ed. The redistribution ofintensities among various energy branches in the spectrum as the wavevector changes is established. It can be interpreted as manifestation of
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