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Amnoramisi. Hocmioxyerbca 6arata CKeisliHroBa IOBeIiHKa KOMOIMEPHIX
CiTOK y po34mHi. 3aCTOCOBYETHCH TEOPETHKO-1I0/IbOBUIL OUC y TepMiHAX KOM-
no3urHuX omeparopis. OrpuManuil 3a JOIOMOIOI IEPECYMYBAaHHHA y TPETbO-
My HOpAKY Teopil 30ypeHb CHeKTp CKeilsliHroBMX BHMIpHOCTEH Ma€ mikaBy
BJIACTHUBICTB: OMYKJICTHh CIEKTPY [I03BOJIAE ioro MysibTHdpPaKTAJIbHY IHTEp-
npetamnio. o ObOro acy BBaXKaJIoCh, HIO CTEIIiHb IIOJIBOBHUX OIEPATOPIB y
¢* reopii me Bostomie rakowo BiracrusicTio. 2D rpaHMNA 3IPKM CKJIALEHOI i3
O/IykaHb i3 B3a€MHUM yHUKAHHAM HMOBIDHO BiOmOBimae pesyJbTaraM KOH-
dopmunx pamis Kana. Taka kaacudikaris BuIa€ThCsa HEMOKINBOIO s 2D
CpPaHMUI] IHOIMX KOIOJTiMepHuX 3ipok. Bimbire Toro, ob4uciienHsa 3Ha9HOI KiTb-
KOCTi MOKA3HUKIB y TPETHOMY MOPAAKY Teopii 30ypeHb J03BOJIAE IEePeBipUTH
Y3IOIKEHICTh JBOX IOIOBHIOBAJIBHUX CXEM: €IICHJ/IOH PO3KJIALY Ta PeHOpMaJii-
3amil npu ¢QpikcoBaniii BUMIPHOCTI.

Copolymer nerworks: multifractal dimension spectra in poly-
mer field theory

Ch. von Ferber, Yu. Holovatch

Abstract. We explore the rich scaling behavior of copolymer networks in
solution. We establish a field theoretic description in terms of composite oper-
ators. Our 3rd order resummation of the spectrum of scaling dimensions brings
about remarkable features: Convexity of the spectra allows for a multifractal
interpretation. This has not been conceived for power of field operators of ¢*
field theory before. The 2D limit of the mutually avoiding walk star apparently
corresponds to results of a conformal Kac series. Such a classification seems
not possible for the 2D limit of other copolymer stars. The 3rd order calcu-
lation of a large collection of exponents furthermore allows for a consistency
check of two complementary schemes: epsilon expansion and renormalization
at fixed dimension.
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1. Introduction

Recently much interest focused on the relation of field theory and mul-
tifractals [1,2] and the associated multifractal dimension spectra [3,4]
as well as non-intersecting random walks and their 2D conformal the-
ory [5]. We present a model of multicomponent polymer networks that
shows a common core of these topics and allows for a detailed study of
the interrelations. The flux of diffusion onto an absorbing fractal defines
a multifractal measure. Cates and Witten [3] have mapped the moments
of this flux to that of a star of random walks (RW) avoiding the absorber
taken to be a polymer or RW itself. Using the field theoretic formulation
of polymer theory we show that the spectrum of scaling exponents gov-
erning these problems is given by the anomalous dimensions of composite
operators with appropriate symmetry.

For polymer networks consisting of polymer chains of one species it
has been shown, that the basic scaling exponents are connected with
'stars’, polymer chains tied together at one core [6-8]. The number of
configurations Z,; of a polymer star with f arms of N monomers will
scale for large N like

Zop ~ NV (R I2, (1)

The second part shows scaling with the size R ~ N” of the isolated coil
of N monomers on some scale ¢. The exponents v = 3/4,0.58(8) and
" =72 =7 =43/32,1.16(0) for space dimensions d = 2,3 are known in
polymer theory [9]. The exponents v, have been calculated analytically
in perturbation theory [7,8,10], by exact methods in two dimensions [6],
and by Monte Carlo simulations [11].

At short distance two polymer stars will repel each other. In view of
the below advocated language of field theory this is described in terms
of a short distance expansion. One finds the following relation for the
probability P(r) to find the cores of two stars of f; and fo at short
distance r [7]

P(T)NTGa@:Uf1+77f2—77f1+f2>0- (2)

This is compatible with the result, that the spectrum of polymer star
exponents 7y is convex from below as function of f with n; = 0.

On the other hand a multifractal (MF) measure p, defined on the
sites = of scale £ on some object of size R is characterized by the scaling
of its moments averaged over all sites:

Z py ~ (R/0) (3)
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From general inequalities for the moments of a probabitity distribution
one may deduce that the spectrum of exponents y; has to be convex from
above. This indicates an apparent discrepancy between objects described
in field theory (FT) as powers of field (see below) such as polymer stars,
and the moments of a MF measure [1]. This we want to resolve by
including both concepts in the same FT formalism showing that they
are special cases of a more general approach, which in addition also
describes the problem of non-intersecting random walks.

To this end we study the scaling behavior of a polymer star or a
general network of chains of different species and thus, within a unique
formalism, include effects caused by self and mutual interactions between
polymers of different species forming a network. We combine the field
theoretic formalism developed for the description of polymer stars and
networks [8] with the corresponding theory which describes multicom-
ponent polymer solutions [12].

2. Theory

We introduce a Landau-Ginsburg-Wilson-Lagrangian £ of f interact-
ing fields ¢, each with n components, i.e. ¢2 = Y. (¢%)?, with an
interaction matrix u,, and mass parameters mg:

1 ! d 2 2
Clowm} = 53 [ @t (mag? + (Vo,0)) +

4| Z Ugar / A2 (r) 62 (r). (4)

aafl

In this theory the star exponents are given in terms of the anomalous di-
mensions of composite operators H£:1 ®a [8]. We define vertex functions
'/ with insertion of this operator by

0(qgo+ ...+ qf)F

/He q”’“)ddrk
f

(I] $a(ro)br(r1) - 65 (r )i nos (5)

a=1

As in standard polymer FT this is evaluated with respect to the La-
grangian (4) keeping only contributions which correspond to one par-
ticle irreducible (1pi) graphs which have nonvanishing tensor factors in
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the n = 0 limit. In the single component case the theory may also be
described in terms of one O(n) symmetric field ¢ with n > f, where
the corresponding operator is N@1--%f ¢t ... ¢/ with a traceless tensor
N2 in the formal limit n = 0 [8,13].

We apply RG theory to make use of the scaling symmetry of the sys-
tems in the asymptotic limit to extract the universal content and at the
same time remove divergences which occur for the evaluation of the bare
functions in this limit [14]. Several asymptotically equivalent procedures
serve to the purpose of renormalization. In the present study we use two
somewhat complementary approaches: zero mass renormalization with
successive € = 4 — d -expansion [14] and the massive RG approach at
fixed dimension [15]. Application of both approaches will enable us to
check the consistency of approximations and the accuracy of the results
obtained. We pass from the theory in terms of the initial bare variables
to a renormalized theory. This can be achieved by a controlled rearrange-
ment of the series for the vertex functions (5) introducing renormalizing
Z-factors for fields (Z,, ), couplings (Zqs) and mass. Then, for instance
the bare couplings 1., are given in terms of their renormalized dimen-
sionless counterparts g, by

Ugh = FL4_dZ¢a Z(,beabgab . (6)

The scale parameter k represents the mass at which the massive scheme is
evaluated and the scale of external momenta in the massless e-expansion
scheme. We define the Z-factors in (6) as to renormalize the correlators
(---)* in each RG procedure (see e.g.[14]). The polymer limit n = 0
of zero component fields leads to essential simplification. Each field ¢,,
mass m, and coupling u,, renormalizes as if the other fields were absent.
The renormalization of the couplings ug,p involves only the fields ¢,
[12]. The renormalized couplings g, defined by relations (6) depend
on the scale parameter k. Thus the renormalization Z - factors also
depend implicitly on . This dependence defines the RG functions and
exponents: H%gaa = ﬂaa (gaa); Hf_ngab = ﬂab(gaa;gbb;gab); H% In Z¢a =
M. (9aa). The function 74, defines the pair correlation critical exponent.
The set of scaling exponents 7. for general copolymer stars is defined
by the renormalization factors Z.; for the star vertex functions I'*/:

f
H Z;fz*fr*f(ubb’ (gob> Gorvr > gow ) = K,

a=1

. d
with 7:¢(gas) = K InZ,.; . (7
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df =d+ (1 —d/2)f is the engineering dimension of the corresponding
bare vertex function.

In a study devoted to ternary polymer solutions the RG flow given by
the above defined B-functions has been calculated [12,16] to third loop
order. The equations for the fixed points of the g-functions were found
to have the following nontrivial solutions: f,,(93) = 0 and for a # b:
ﬂab(oaoaga) = 07 ﬂab(g§7oag]’5) = 07 ﬂab(oaggagfj) = 07 ﬂab(ggagghgg) =
0, corresponding to all combinations of interacting and non-interacting
chains.

We evaluate the exponents for two general arrangements of the fixed
point matrix. The ternary case of two mutually interacting species of
polymer chains in solution, and the mutual avoiding walk case of essen-
tially f only mutually interacting species. In the first case we describe
polymer stars made of f; chains of species 1 and fo = f — fi chains of
species 2. Either both species are non self-interacting and

0NF gy =g (9as = 0if a,b < f1 or a,b > fi else gup = g5) ,  (8)
or species 1 self-interacts and species 2 does not such that

0% gy = s (Gar = 95 i a,b < f1590 =0 if  a,b> fi;
else gy =975)-  (9)

For f, = 0 this includes the homo-polymer star with n; = 77,?,0 in eq.(1).
The mutually avoiding walk case reads

MW =, 4 (gas = 0if a = b else gap = g3;) - (10)
3. Results

We give the results for the exponents in € = 4 — d-expansion. The corre-
sponding more lengthy expressions obtained by fixed d = 3 RG may be
found in [16]:

2
nf ) = —fi f2§+f1 fe (f2 —3+f1)% — f1 f2(2 -
3

3+f1)(f1+f2+3C(3)—3)i—6 (11)

n© = fi(1—fi=3f)5+fi (2533 +8° -

2
g
O1fy +42f, fo + 18f22) 5mg i (577 — 969 f, +
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456 ;2 — 64 f,> — 2463 fo + 2290 f; fo — 492 f1°fo +
1050 fo2 — 504 f; f2> — 108 f2° — 712¢(3) +
936 f1 ((3) — 224 £1%((3) + 2652 f» ((3) —

&3

1188 f2 ((3) = 540 £2°((3)) 056 (12)
V) = —(F-Vf - D=5 - (F -1 x

3
F4f2—20F +8fC(3) —19((3)+25)§—2 (13)

Here ((3) ~ 1.202 is the Riemann (-function. The above formulas re-
produce the 3rd order calculations of vy — 1 = 1/(17}{0 — fn50) [8] as
well as the 2nd order exponents A®) defined in equations (xx) of [3],
X () = =, AT () = =+ ily, W' () = —nfh, X (n) =
—1} , correcting a missprint in eq.(49) of [3]. Also the 2nd order results
for exponents zr,n, — 11 = —2(nf, —nf ) of [1] and o, = 1/2n)" AW
defined in [5] find their 3rd order extension by the above expansions.
With these exponents we can describe the scaling behavior of polymer
stars and networks of two components, generalizing the relation for single
component networks [7]. In the notation of (1) we find for the number
of configurations of a network G of F; and F5 chains of species 1 and 2

Z5 ~ (R/g)ng—Fﬂho—Fzﬂw’

with ng = —dL + Z Ny 2N fos (14)
fit+f221

where L is the number of Loops and Ny, y, the number of vertices with f;
and fo arms of species 1 and 2 in the network G. To receive an appropriate
scaling law we assume the network to be built of chains which for both
species will have a coil radius R when isolated.

To obtain reliable numerical values from the e-expansions (11) - (13)
in and from the series obtained in the fixed d scheme [16] apply Borel
resummation using the technique of conformal mapping [17] which has
proven to yield good results for many critical exponents. We use infor-
mation about the higher order behavior [17,12] of the series (11)-(13)
derived from the instanton analysis of the appropriate field theory. The
results for d = 3 are given in Table 1. The data show consistency and
stability of the results while deviations grow for large number of arms
as may be expected. Note that the above expansions are in fact series in
fe, not € alone.
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4. Conclusion: Multifractals and Field Theory

Does the data answer the question of convexity? A close study of the ma-
trix of values reveals, that for fixed f; both 77;(”;1 s, and 77}}1 f, are convex
from above as function of fs, thus yielding ‘MF statistics’. The relation
to a MF spectral function for f; = 1,2 has been pointed out in [3], it
is analysed in close detail in view of the new data and FT formulation
in a separate publication [16]. On the other hand also copolymer stars
should repel each other. This is found to be true as well, the correspond-
ing convexity from below shows up e.g. along the diagonal values ¢ as
function of f. The general relation ny, f, + 0y s 2 Mgy p1 45, 1S always
fulfilled. In view of our FT formalism the MF moments (u*) are rep-
resented by field operators ¢Lof = ¢a, - ba, db, -+~ b, in a FT with
vanishing interactions gy,;;. Thus, even though simple power k of field
operators ¢* do not describe MF moments [1], they may be written as a
power L + k of field operators which have the appropriate short distance
behavior. This is also illustrated in fig.1, showing the spectrum of expo-
nents 17}31 s, in the 2D limit [16]. The opposite convexity along the two
axes is clearly seen for these unsymmetric combinations of a polymer
fi-star and a random walk f>-star which mutually interact.

5. 2D Copolymer Stars

The 2D exponents for polymer stars have been shown to belong to a Kac
series of exponents of conformal FT with v — 1 = (4 + 27f — 9f%)/64
[6]. There are strong indications that this is the case also for MAW
stars with n}'AW = (1 — 4f?)/12 [5]. Already in view of fig.1 though,
such a simple 2nd order polynomial seems not to describe the 2D limit
of general copolymer star exponents. In 2D however, each chain of a
star will interact only with its direct neighbors. A star described here
by n?f will behave like a MAW 2 f-star if each species-1 chain has two
neighbors of species-2 whereas it will behave differently if the chains
are ordered such that each species is in one bulk of chains. The 2D
copolymer stars in this sense reveal an even richer behavior. Thus, the
copolymer generalization of the MAW star adds another problem, for
which a rigorous formulation in terms of an exactly solvable 2D model
is yet to be found. We thank Lothar Schifer for valuable discussions.

Supported in part by Deutsche Forschungsgemeinschaft SFB 237 and
Minerva Gesellschaft.
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Table 1: Values of the copolymer star exponent 7]% 1,» upper part (U),
and 77](@’1 1, lower part (G), at d = 3 obtained by e-expansion () and by
fixed dimension technique (3d).

f 1 2 3 4 5 6

fi e 3d e 3d e 3d e 3d e 3d 3 3d

-0.43 -0.45 -0.79 -0.81 -1.09 -1.09 -1.35 -1.37 -1.60 -1.64 -1.81 -1.89

-0.98 -0.98 -1.58 -1.60 -2.13 -2.19 -2.61 -2.71 -3.05 -3.21 -3.46 -3.68

-1.64 -1.67 -2.44 -2.52 -3.16 -3.30 -3.82 -4.04 -4.44 -4.75 -5.01 -5.42

-2.39 -2.47 -3.33 -3.50 -4.20 -4.48 -5.02 -5.40 -5.80 -6.30 -6.53 -7.15

-3.21 -3.38 -4.28 -4.57 -5.28 -5.71 -6.24 -6.81 -7.15 -7.89 -8.02 -8.92

-4.11 -4.40 -5.29 -5.73 -6.41 -7.03 -7.48 -8.28 -8.51 -9.50 -9.50 -10.69

-0.56 -0.58 -0.99 -1.00 -1.33 -1.35 -1.63 -1.69 -1.88 -1.98 -2.10 -2.24

-1.77 -1.81 -2.45 -2.53 -3.01 -3.17 -3.51 -3.75 -3.95 -4.28

-3.38 -3.57 -4.21 -4.50 -4.94 -5.36 -5.62 -6.15

-5.27 -5.71 -6.24 -6.84 -7.12 -7.90

-7.42 -8.24 -8.50 -9.54

-9.78 -11.07

[
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Figure 1: Exponent 77}31 5, I the ‘Unsymmetric’ fixed point at d = 2
obtained in e-expansion and in fixed d scheme. The steps in the ‘flying
carpet’ indicate the difference of the results in the two approaches
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