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õäë: 530.145PACS: 61.41.+e, 64.60.Ak, 64.60.Fr, 11.10.Gh-ëÏÐÏÌ¦ÍÅÒÎ¦ Ó¦ÔËÉ: ÓÐÅËÔÒÉ ÍÕÌØÔÉÆÒÁËÔÁÌØÎÉÈ ×ÉÍ¦ÒÎÏ-ÓÔÅÊ × ÔÅÏÒ¦§ ÐÏÌÑ ÄÌÑ ÐÏÌ¦ÍÅÒ¦×ë. ÆÏÎ æÅÒÂÅÒ, à. çÏÌÏ×ÁÞáÎÏÔÁÃ¦Ñ. äÏÓÌ¦ÄÖÕ¤ÔØÓÑ ÂÁÇÁÔÁ ÓËÅÊÌ¦Î­Ï×Á ÐÏ×ÅÄ¦ÎËÁ ËÏÐÏÌ¦ÍÅÒÎÉÈÓ¦ÔÏË Õ ÒÏÚÞÉÎ¦. úÁÓÔÏÓÏ×Õ¤ÔØÓÑ ÔÅÏÒÅÔÉËÏ-ÐÏÌØÏ×ÉÊ ÏÐÉÓ Õ ÔÅÒÍ¦ÎÁÈ ËÏÍ-ÐÏÚÉÔÎÉÈ ÏÐÅÒÁÔÏÒ¦×. ïÔÒÉÍÁÎÉÊ ÚÁ ÄÏÐÏÍÏÇÏÀ ÐÅÒÅÓÕÍÕ×ÁÎÎÑ Õ ÔÒÅÔØÏ-ÍÕ ÐÏÒÑÄËÕ ÔÅÏÒ¦§ ÚÂÕÒÅÎØ ÓÐÅËÔÒ ÓËÅÊÌ¦Î­Ï×ÉÈ ×ÉÍ¦ÒÎÏÓÔÅÊ ÍÁ¤ Ã¦ËÁ×Õ×ÌÁÓÔÉ×¦ÓÔØ: ÏÐÕËÌ¦ÓÔØ ÓÐÅËÔÒÕ ÄÏÚ×ÏÌÑ¤ ÊÏÇÏ ÍÕÌØÔÉÆÒÁËÔÁÌØÎÕ ¦ÎÔÅÒ-ÐÒÅÔÁÃ¦À. äÏ ÃØÏÇÏ ÞÁÓÕ ××ÁÖÁÌÏÓØ, ÝÏ ÓÔÅÐ¦ÎØ ÐÏÌØÏ×ÉÈ ÏÐÅÒÁÔÏÒ¦× Õ�4 ÔÅÏÒ¦§ ÎÅ ×ÏÌÏÄ¦¤ ÔÁËÏÀ ×ÌÁÓÔÉ×¦ÓÔÀ. 2D ÇÒÁÎÉÃÑ Ú¦ÒËÉ ÓËÌÁÄÅÎÏ§ ¦ÚÂÌÕËÁÎØ ¦Ú ×ÚÁ¤ÍÎÉÍ ÕÎÉËÁÎÎÑÍ ÊÍÏ×¦ÒÎÏ ×¦ÄÐÏ×¦ÄÁ¤ ÒÅÚÕÌØÔÁÔÁÍ ËÏÎ-ÆÏÒÍÎÉÈ ÒÑÄ¦× ëÁÃÁ. ôÁËÁ ËÌÁÓÉÆ¦ËÁÃ¦Ñ ×ÉÄÁ¤ÔØÓÑ ÎÅÍÏÖÌÉ×ÏÀ ÄÌÑ 2DÇÒÁÎÉÃ¦ ¦ÎÛÉÈ ËÏÐÏÌ¦ÍÅÒÎÉÈ Ú¦ÒÏË. â¦ÌØÛÅ ÔÏÇÏ, ÏÂÞÉÓÌÅÎÎÑ ÚÎÁÞÎÏ§ Ë¦ÌØ-ËÏÓÔ¦ ÐÏËÁÚÎÉË¦× Õ ÔÒÅÔØÏÍÕ ÐÏÒÑÄËÕ ÔÅÏÒ¦§ ÚÂÕÒÅÎØ ÄÏÚ×ÏÌÑ¤ ÐÅÒÅ×¦ÒÉÔÉÕÚÇÏÄÖÅÎ¦ÓÔØ Ä×ÏÈ ÄÏÐÏ×ÎÀ×ÁÌØÎÉÈ ÓÈÅÍ: ÅÐÓÉÌÏÎ ÒÏÚËÌÁÄÕ ÔÁ ÒÅÎÏÒÍÁÌ¦-ÚÁÃ¦§ ÐÒÉ Æ¦ËÓÏ×ÁÎ¦Ê ×ÉÍ¦ÒÎÏÓÔ¦.Copolymer nerworks: multifractal dimension spectra in poly-mer �eld theoryCh. von Ferber, Yu. HolovatchAbstract. We explore the rich scaling behavior of copolymer networks insolution. We establish a �eld theoretic description in terms of composite oper-ators. Our 3rd order resummation of the spectrum of scaling dimensions bringsabout remarkable features: Convexity of the spectra allows for a multifractalinterpretation. This has not been conceived for power of �eld operators of �4�eld theory before. The 2D limit of the mutually avoiding walk star apparentlycorresponds to results of a conformal Kac series. Such a classi�cation seemsnot possible for the 2D limit of other copolymer stars. The 3rd order calcu-lation of a large collection of exponents furthermore allows for a consistencycheck of two complementary schemes: epsilon expansion and renormalizationat �xed dimension.ðÏÄÁ¤ÔØÓÑ ÄÏ Europhys. Lett.Submitted to Europhys. Lett.c
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1 ðÒÅÐÒÉÎÔ1. IntroductionRecently much interest focused on the relation of �eld theory and mul-tifractals [1,2] and the associated multifractal dimension spectra [3,4]as well as non-intersecting random walks and their 2D conformal the-ory [5]. We present a model of multicomponent polymer networks thatshows a common core of these topics and allows for a detailed study ofthe interrelations. The 
ux of di�usion onto an absorbing fractal de�nesa multifractal measure. Cates and Witten [3] have mapped the momentsof this 
ux to that of a star of random walks (RW) avoiding the absorbertaken to be a polymer or RW itself. Using the �eld theoretic formulationof polymer theory we show that the spectrum of scaling exponents gov-erning these problems is given by the anomalous dimensions of compositeoperators with appropriate symmetry.For polymer networks consisting of polymer chains of one species ithas been shown, that the basic scaling exponents are connected with'stars', polymer chains tied together at one core [6{8]. The number ofcon�gurations Z�f of a polymer star with f arms of N monomers willscale for large N likeZ�f � N
f�1 � (R=`)�f�f�2 : (1)The second part shows scaling with the size R � N� of the isolated coilof N monomers on some scale `. The exponents � = 3=4; 0:58(8) and
1 = 
2 = 
 = 43=32; 1:16(0) for space dimensions d = 2; 3 are known inpolymer theory [9]. The exponents 
f have been calculated analyticallyin perturbation theory [7,8,10], by exact methods in two dimensions [6],and by Monte Carlo simulations [11].At short distance two polymer stars will repel each other. In view ofthe below advocated language of �eld theory this is described in termsof a short distance expansion. One �nds the following relation for theprobability P (r) to �nd the cores of two stars of f1 and f2 at shortdistance r [7]P (r) � r� , � = �f1 + �f2 � �f1+f2 > 0 : (2)This is compatible with the result, that the spectrum of polymer starexponents �f is convex from below as function of f with �1 = 0.On the other hand a multifractal (MF) measure �x de�ned on thesites x of scale ` on some object of size R is characterized by the scalingof its moments averaged over all sites:h�kxi =Xx �kx � (R=`)yf : (3)
ICMP{97{02E 2From general inequalities for the moments of a probabitity distributionone may deduce that the spectrum of exponents yf has to be convex fromabove. This indicates an apparent discrepancy between objects describedin �eld theory (FT) as powers of �eld (see below) such as polymer stars,and the moments of a MF measure [1]. This we want to resolve byincluding both concepts in the same FT formalism showing that theyare special cases of a more general approach, which in addition alsodescribes the problem of non-intersecting random walks.To this end we study the scaling behavior of a polymer star or ageneral network of chains of di�erent species and thus, within a uniqueformalism, include e�ects caused by self and mutual interactions betweenpolymers of di�erent species forming a network. We combine the �eldtheoretic formalism developed for the description of polymer stars andnetworks [8] with the corresponding theory which describes multicom-ponent polymer solutions [12].2. TheoryWe introduce a Landau-Ginsburg-Wilson-Lagrangian L of f interact-ing �elds �b each with n components, i.e. �2a = Pn�=1(��a )2, with aninteraction matrix uaa0 and mass parameters ma:Lf�b;mbg = 12 fXa=1 Z ddr �ma�2a + (r�a(r))2�+14! fXa;a0=1uaa0 Z ddr�2a(r)�2a0 (r): (4)In this theory the star exponents are given in terms of the anomalous di-mensions of composite operatorsQfa=1 �a [8]. We de�ne vertex functions��f with insertion of this operator by�(q0 + : : :+ qf )��f (q0 : : : qf ) = Z fYk=0 ei(qkrk)ddrkh fYa=1�a(r0)�1(r1) : : : �f (rf )iL1pi;n=0; (5)As in standard polymer FT this is evaluated with respect to the La-grangian (4) keeping only contributions which correspond to one par-ticle irreducible (1pi) graphs which have nonvanishing tensor factors in



3 ðÒÅÐÒÉÎÔthe n = 0 limit. In the single component case the theory may also bedescribed in terms of one O(n) symmetric �eld � with n > f , wherethe corresponding operator is N�1:::�f��1 � � ���f with a traceless tensorN�1:::�f in the formal limit n = 0 [8,13].We apply RG theory to make use of the scaling symmetry of the sys-tems in the asymptotic limit to extract the universal content and at thesame time remove divergences which occur for the evaluation of the barefunctions in this limit [14]. Several asymptotically equivalent proceduresserve to the purpose of renormalization. In the present study we use twosomewhat complementary approaches: zero mass renormalization withsuccessive " = 4 � d -expansion [14] and the massive RG approach at�xed dimension [15]. Application of both approaches will enable us tocheck the consistency of approximations and the accuracy of the resultsobtained. We pass from the theory in terms of the initial bare variablesto a renormalized theory. This can be achieved by a controlled rearrange-ment of the series for the vertex functions (5) introducing renormalizingZ-factors for �elds (Z�a), couplings (Zab) and mass. Then, for instancethe bare couplings uab are given in terms of their renormalized dimen-sionless counterparts gab byuab = �4�dZ�aZ�bZabgab : (6)The scale parameter � represents the mass at which the massive scheme isevaluated and the scale of external momenta in the massless "-expansionscheme. We de�ne the Z-factors in (6) as to renormalize the correlatorsh� � �iL in each RG procedure (see e.g.[14]). The polymer limit n = 0of zero component �elds leads to essential simpli�cation. Each �eld �a,massma and coupling uaa renormalizes as if the other �elds were absent.The renormalization of the couplings uab involves only the �elds �a,�b[12]. The renormalized couplings gab de�ned by relations (6) dependon the scale parameter �. Thus the renormalization Z - factors alsodepend implicitly on �. This dependence de�nes the RG functions andexponents: � dd�gaa = �aa(gaa); � dd�gab = �ab(gaa; gbb; gab); � dd� lnZ�a =��a(gaa). The function ��a de�nes the pair correlation critical exponent.The set of scaling exponents ��f for general copolymer stars is de�nedby the renormalization factors Z�f for the star vertex functions ��f :fYa=1Z1=2�a Z�f��f (ubb0(gbb; gb0b0 ; gbb0)) = ��f ;with ��f (gab) = � dd� lnZ�f : (7)
ICMP{97{02E 4�f = d + (1 � d=2)f is the engineering dimension of the correspondingbare vertex function.In a study devoted to ternary polymer solutions the RG 
ow given bythe above de�ned �-functions has been calculated [12,16] to third looporder. The equations for the �xed points of the �-functions were foundto have the following nontrivial solutions: �aa(g�S) = 0 and for a 6= b:�ab(0; 0; g�G) = 0, �ab(g�S; 0; g�U) = 0, �ab(0; g�S; g�U) = 0, �ab(g�S; g�S; g�S) =0, corresponding to all combinations of interacting and non-interactingchains.We evaluate the exponents for two general arrangements of the �xedpoint matrix. The ternary case of two mutually interacting species ofpolymer chains in solution, and the mutual avoiding walk case of essen-tially f only mutually interacting species. In the �rst case we describepolymer stars made of f1 chains of species 1 and f2 = f � f1 chains ofspecies 2. Either both species are non self-interacting and�Gf1f2 � ��f (gab = 0 if a; b � f1 or a; b > f1; else gab = g�G) ; (8)or species 1 self-interacts and species 2 does not such that�Uf1f2 � ��f (gab = g�S if a; b � f1; gab = 0 if a; b > f1;else gab = g�U): (9)For f2 = 0 this includes the homo-polymer star with �f = �Uf;0 in eq.(1).The mutually avoiding walk case reads�MAWf � ��f (gab = 0 if a = b else gab = g�G) : (10)3. ResultsWe give the results for the exponents in " = 4� d-expansion. The corre-sponding more lengthy expressions obtained by �xed d = 3 RG may befound in [16]:�Gf1f2(") = �f1 f2 "2 + f1 f2 �f2 � 3 + f1�"28 � f1 f2 �f2 �3 + f1��f1 + f2 + 3 �(3)� 3� "316 (11)�Uf1f2(") = f1 �1� f1 � 3 f2�"8 + f1 �25� 33 f1 + 8 f1 2 �91 f2 + 42 f1 f2 + 18 f2 2� "2256 + f1 �577� 969 f1 +



5 ðÒÅÐÒÉÎÔ456 f1 2 � 64 f1 3 � 2463 f2 + 2290 f1 f2 � 492 f1 2f2 +1050 f2 2 � 504 f1 f2 2 � 108 f2 3 � 712 �(3) +936 f1 �(3)� 224 f1 2�(3) + 2652 f2 �(3)�1188 f1 f2 �(3)� 540 f2 2�(3)� "34096 (12)�MAWf (") = �(f � 1)f "4 + f (f � 1)(2 f � 5) "216 � (f � 1)�f (4 f 2 � 20 f + 8 f �(3)� 19 �(3) + 25) "332 (13)Here �(3) ' 1:202 is the Riemann �-function. The above formulas re-produce the 3rd order calculations of 
f � 1 = �(�Uf;0 � f�U2;0) [8] aswell as the 2nd order exponents �(xx) de�ned in equations (xx) of [3],�(29)(n) = ��G2;n, �(47)(n) = ��U2;n + �U2;0, �(48)e (n) = ��G1;n, �(49)e (n) =��U1;n, correcting a missprint in eq.(49) of [3]. Also the 2nd order resultsfor exponents xL;n � xL;1 = �2(�GL;n � �GL;1) of [1] and �L = 1=2�MAWLde�ned in [5] �nd their 3rd order extension by the above expansions.With these exponents we can describe the scaling behavior of polymerstars and networks of two components, generalizing the relation for singlecomponent networks [7]. In the notation of (1) we �nd for the numberof con�gurations of a network G of F1 and F2 chains of species 1 and 2ZG � (R=`)�G�F1�20�F2�02 ;with �G = �dL+ Xf1+f2�1Nf1f2�f1f2 ; (14)where L is the number of Loops and Nf1f2 the number of vertices with f1and f2 arms of species 1 and 2 in the network G. To receive an appropriatescaling law we assume the network to be built of chains which for bothspecies will have a coil radius R when isolated.To obtain reliable numerical values from the "-expansions (11) - (13)in and from the series obtained in the �xed d scheme [16] apply Borelresummation using the technique of conformal mapping [17] which hasproven to yield good results for many critical exponents. We use infor-mation about the higher order behavior [17,12] of the series (11)-(13)derived from the instanton analysis of the appropriate �eld theory. Theresults for d = 3 are given in Table 1. The data show consistency andstability of the results while deviations grow for large number of armsas may be expected. Note that the above expansions are in fact series inf", not " alone.

ICMP{97{02E 64. Conclusion: Multifractals and Field TheoryDoes the data answer the question of convexity? A close study of the ma-trix of values reveals, that for �xed f1 both �Gf1f2 and �Uf1f2 are convexfrom above as function of f2, thus yielding `MF statistics'. The relationto a MF spectral function for f1 = 1; 2 has been pointed out in [3], itis analysed in close detail in view of the new data and FT formulationin a separate publication [16]. On the other hand also copolymer starsshould repel each other. This is found to be true as well, the correspond-ing convexity from below shows up e.g. along the diagonal values �ff asfunction of f . The general relation �f1f2 + �f 01f 02 � �f1+f 01;f2+f 02 is alwaysful�lled. In view of our FT formalism the MF moments h�ki are rep-resented by �eld operators �La�kb = �a1 � � ��aL�b1 � � ��bk in a FT withvanishing interactions gbibj . Thus, even though simple power k of �eldoperators �k do not describe MF moments [1], they may be written as apower L+k of �eld operators which have the appropriate short distancebehavior. This is also illustrated in �g.1, showing the spectrum of expo-nents �Uf1f2 in the 2D limit [16]. The opposite convexity along the twoaxes is clearly seen for these unsymmetric combinations of a polymerf1-star and a random walk f2-star which mutually interact.5. 2D Copolymer StarsThe 2D exponents for polymer stars have been shown to belong to a Kacseries of exponents of conformal FT with 
f � 1 = (4 + 27f � 9f2)=64[6]. There are strong indications that this is the case also for MAWstars with �MAWf = (1 � 4f2)=12 [5]. Already in view of �g.1 though,such a simple 2nd order polynomial seems not to describe the 2D limitof general copolymer star exponents. In 2D however, each chain of astar will interact only with its direct neighbors. A star described hereby �Gff will behave like a MAW 2f -star if each species-1 chain has twoneighbors of species-2 whereas it will behave di�erently if the chainsare ordered such that each species is in one bulk of chains. The 2Dcopolymer stars in this sense reveal an even richer behavior. Thus, thecopolymer generalization of the MAW star adds another problem, forwhich a rigorous formulation in terms of an exactly solvable 2D modelis yet to be found. We thank Lothar Sch�afer for valuable discussions.Supported in part by Deutsche Forschungsgemeinschaft SFB 237 andMinerva Gesellschaft.
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ICMP{97{02E 8Table 1: Values of the copolymer star exponent �Uf1f2 , upper part (U),and �Gf1f2 , lower part (G), at d = 3 obtained by "-expansion (") and by�xed dimension technique (3d).f2 1 2 3 4 5 6f1 " 3d " 3d " 3d " 3d " 3d " 3d1 -0.43 -0.45 -0.79 -0.81 -1.09 -1.09 -1.35 -1.37 -1.60 -1.64 -1.81 -1.892 -0.98 -0.98 -1.58 -1.60 -2.13 -2.19 -2.61 -2.71 -3.05 -3.21 -3.46 -3.68U 3 -1.64 -1.67 -2.44 -2.52 -3.16 -3.30 -3.82 -4.04 -4.44 -4.75 -5.01 -5.424 -2.39 -2.47 -3.33 -3.50 -4.20 -4.48 -5.02 -5.40 -5.80 -6.30 -6.53 -7.155 -3.21 -3.38 -4.28 -4.57 -5.28 -5.71 -6.24 -6.81 -7.15 -7.89 -8.02 -8.926 -4.11 -4.40 -5.29 -5.73 -6.41 -7.03 -7.48 -8.28 -8.51 -9.50 -9.50 -10.691 -0.56 -0.58 -0.99 -1.00 -1.33 -1.35 -1.63 -1.69 -1.88 -1.98 -2.10 -2.242 -1.77 -1.81 -2.45 -2.53 -3.01 -3.17 -3.51 -3.75 -3.95 -4.28G 3 -3.38 -3.57 -4.21 -4.50 -4.94 -5.36 -5.62 -6.154 -5.27 -5.71 -6.24 -6.84 -7.12 -7.905 -7.42 -8.24 -8.50 -9.546 -9.78 -11.07
01234560 1 2 3 4 5 6-15-10-50 f1

�Gf1;f2
Figure 1: Exponent �Uf1f2 in the `Unsymmetric' �xed point at d = 2obtained in �-expansion and in �xed d scheme. The steps in the `
yingcarpet' indicate the di�erence of the results in the two approaches
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