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õäë: 530.145PACS: 61.41.+e, 64.60.Ak, 64.60.Fr, 11.10.Gh-ôÅÏÒÅÔÉËÏ-ÐÏÌØÏ×¦ ÏÐÅÒÁÔÏÒÉ ÄÌÑ ÍÕÌØÔÉÆÒÁËÔÁÌØÎÉÈ ÍÏ-ÍÅÎÔ¦×ë. ÆÏÎ æÅÒÂÅÒ, à. çÏÌÏ×ÁÞáÎÏÔÁÃ¦Ñ. ïÐÕËÌ¦ÓÔØ ÍÕÌØÔÉÆÒÁËÔÁÌØÎÏÇÏ ÓÐÅËÔÒÕ ÓÕÐÅÒÅÞÉÔØ,ÎÁ ÐÅÒÛÉÊ ÐÏÇÌÑÄ, ÚÁÇÁÌØÎÉÍ ÔÅÏÒÅÔÉËÏ-ÐÏÌØÏ×ÉÍ ÁÒÕÍÅÎÔÁÍ, ÑË¦ÓÔ×ÅÒÄÖÕÀÔØ, ÝÏ ÓÔÅÐ¦ÎØ ÐÏÌØÏ×ÉÈ ÏÐÅÒÁÔÏÒ¦× �f ÐÒÉ×ÏÄÉÔØ ÄÏ ××¦-ÇÎÕÔÏÇÏ ÓÐÅËÔÒÕ ÐÏËÁÚÎÉË¦× ÑË ÆÕÎËÃ¦§ f . ãÑ ÐÒÏÂÌÅÍÁ ×ÉÒ¦ÛÕ¤ÔØ-ÓÑ ×¦ÄÐÏ×¦ÄÎÉÍ ×ÉÂÏÒÏÍ ÏÐÅÒÁÔÏÒ¦× ÄÌÑ ÏÐÉÓÕ ÍÕÌØÔÉÆÒÁËÔÁÌØÎÉÈÍÏÍÅÎÔ¦×. ÷ ìÁÒÁÎÖÅ×¦Ê ÐÏÌØÏ×¦Ê ÔÅÏÒ¦§ ÐÏÌ¦× Ä×ÏÈ ÔÉÐ¦× �;  , ÝÏ×ÚÁ¤ÍÏÄ¦ÀÔØ Í¦Ö ÓÏÂÏÀ ¦ ÍÁÀÔØ ÎÕÌØ ËÏÍÐÏÎÅÎÔ, ÏÐÅÒÁÔÏÒÉ Of 0f = f 0�f ¦Ú "traceless" ÓÉÍÅÔÒ¦¤À ÐÒÉ×ÏÄÑÔØ ÄÏ ÍÕÌØÔÉÆÒÁËÔÁÌØÎÏÇÏÓÐÅËÔÒÕ ÇÁÒÍÏÎ¦ÊÎÏ§ ÄÉÆÕÚ¦§ Â¦ÌÑ ÆÒÁËÔÁÌØÎÏÇÏ ÁÂÓÏÒÂÅÒÁ.Field theoretic operators for multifractal momentsCh. von Ferber, Yu. HolovatchAbstract. Convexity of multifractal spectra seems to contradict general�eld theoretic arguments showing that power of �eld operators �f yielda concave spectrum of exponents as function of f . This is resolved byappropriate choice of operators to describe multifractal moments. In aLagrangian �eld theory of two mutually interacting species of �elds �;  ,operators Of 0f =  f 0�f with traceless symmetry give rise to multifractalspectra of harmonic di�usion near absorbing fractals when evaluated forzero component �elds.
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1 ðÒÅÐÒÉÎÔ1. IntroductionThe concept of multifractality developed in the last decade has proven tobe a powerful tool for analyzing systems with complex statistics whichotherwise appear to be intractable [1,2]. It has found direct applicationsin a wide range of �elds including turbulence, chaotic attractors, Lapla-cian growth phenomena etc [2{8]. Here we generalize the idea of Catesand Witten [9,10] by deriving the multifractal (MF) spectrum in theframes of a �eld theoretical (FT) formalism and make use of renormal-ization group (RG) methods. We relate the MF spectrum to the spectrumof scaling dimensions of a family of composite operators of Lagrangian�4 �eld theory. This gives an example of power of �eld operators whosescaling dimensions show the appropriate convexity for a MF spectrum[11], while there is no need to include �eld gradients for this property.We calculate the MF spectrum to third order of perturbation theoryusing two complementary approaches: zero mass renormalization withsuccessive "-expansion (see e.g. [12]) and massive renormalization groupapproach at �xed dimension [13], reproducing previous results obtainedin lower order of perturbation theory for special cases [9,10]. The result-ing series are asymptotic. We take this into account and obtain numericalvalues only by careful resummation.We address a special case of a growth process controlled by a Lapla-cian �eld. The latter may describe a variety of phenomena dependingon the interpretation of the �eld. For di�usion limited aggregation this�eld is given by the concentration of di�using particles, in solidi�cationprocesses it is given by the temperature �eld, in dielectric breakdown itis the electric potential, in viscous �ngers formation it is the pressure[5,15]. In all mentioned phenomena the resulting structure appears to beof fractal nature and is characterized by appropriate fractal dimensions[1]. Its growth and spatial correlations lead to (non-trivial) spectra ofmultifractal dimensions [2]. In general, the boundary conditions deter-mining the �eld will be given on the surface of the growing aggregateitself. It is this dynamic coupling that produces the rich structure ofthe phenomena and seems to make the general dynamical problem in-tractable.Here we study the simpler case when the fractal has been alreadyformed and look for the distribution of the Laplacian �eld and its highermoments near the surface of the fractal [9,10]. We will follow the dif-fusion picture, considering the aggregate as an absorbing fractal, \theabsorber". The �eld �(~r) gives the concentration of di�using particlesand vanishes on the surface of the absorber. More speci�cally we con-
ICMP{97{01E 2sider the Laplacian �eld �(~r) in the vicinity of an absorbing (fractal)path, `a polymer', or a junction of absorbing paths, `a core of a polymerstar'. In general we assume the ensemble of absorbers to be character-ized by either random walk (RW) or self-avoiding walk (SAW) statistics.Multifractal scaling is found for the f -moments h�f (~r)i of the �eld withrespect to these ensembles.This formulation of the problem allows us to use the polymer pic-ture and theory developed for polymer networks and stars [16{18] andextended for copolymer stars [19,20]. The theory is mapped to a La-grangian �4 �eld theory with several couplings [21{23] and higher ordercomposite operators to describe star vertices.In section 2 we present the path integral solution of the Laplace equa-tion and relate it to polymer theory. Field theoretical representation andrenormalization are discussed in section 3. together with the renormal-ization group ow and expressions for the exponents. In section 4. wede�ne the multifractal spectrum and give its series expansion in bothrenormalization group approaches adopted here. Section 5. is devoted toresummation of these asymptotic series and numerical results followedby some conclusions and an outlook in section 6..2. Path Integral Solution of the Laplace Equationand Polymer Absorber ModelIn this section we describe the di�usion of particles in the vicinity ofa polymer absorber by a \polymer" formalism. Let us formulate theproblem �rst in terms of di�usion of particles in time. The probability of�nding a randomly walking particle at point ~r1 at time t which startedat point ~r0 at time t = 0 is given described by the following normalizedpath integral:G0(~r0; ~r1; t) = h�(~r(1)(0)� ~r0)�(~r(1)(t)� ~r1)iH0(t): (1)Angle brackets in (1) denote the normalized integralh: : :iH0(t) = R (: : :) exp(�H0(t))dfr(1)gR exp(�H0(t))dfr(1)g ; (2)which is performed with the Hamiltonian:H0(t) = Z t0 �d~r(1)(�)d� �2: (3)



3 ðÒÅÐÒÉÎÔIntegration in (1) is performed over all paths ~r(1)(�) with 0 � � � t.Note that we have absorbed the di�usion constant into re-de�nition oftime. G0(~r0; ~r1; t) obeys the following di�erential equation:��r1 + d2t � @@t�G0(r0; r1; t) = 0 (4)with d the dimension of space. For �nite d the random walker will visitany site after some �nite time and we may assume a steady state limit forG0(r0; r1; t) for t =1. In this case G0(~r0; ~r1; t) will become independentof ~r0 and its limit and de�nes a �eld:�(~r1) = limt!1 1V Z d~r0G0(r0; r1; t); (5)here V is the system volume. The �eld �(~r) obeys the Laplace equation:��(~r) = 0: (6)We introduce boundary conditions in such a way that the �eld �(~r)equals to some constant �1 at r =1 and vanishes on the absorber. Theabsorber itself we describe by a path ~r(2)(s), 0 � s � S2.Let us explain the solution of the Laplace equation (5) in the presenceof an absorbing path ~r(2)(s). The boundary conditions are implementedby an avoidance interaction u12 punishing any coincidence of the pathr(1) of the RW and the path r(2) of the absorber. The correlation functionof a random walk in the presence of an absorbing path ~r(2)(s) may thenbe written as G(~r0; ~r1; S1) = h�(~r(1)(0)� ~r0)�(~r(1)(S1)� ~r1)expn� u12 Z S10 ds1 Z S20 ds2�(~r(1)(s1)� ~r(2)(s2)oiH0(S1); (7)where we have adopted the notation t = S1.We are interested in ensemble moments h�f2(~r1)i of the �eld in thevicinity of the absorber, assuming an ensemble of RW or SAW absorbers.For the RW ensemble the average is performed with respect to the Hamil-tonian H0(S2), for the SAW ensemble an additional interaction has tobe included.Here we choose a more general formulation, which allows us to de-scribe the moments of the �eld in the vicinity of the core of an absorbingpolymer star, or near the junction of f1 absorbing paths.The calculation of the f2 moment of (7) near the junction of f1absorbing paths will include the average over f2 random walks ending at
ICMP{97{01E 4r1 and the ensemble average over the con�gurations of the f1 absorbingpaths with junction at r1.We are thus lead to consider the partition function of a star of walkswhich are in part mutually-avoiding. We will give this partition functionhere for the more general case of f walks of which f2 random walksdescribe the �eld and f1 walks correspond to the absorber. This situationdescribes the f2th moment of the ux of the �eld to the core of anabsorbing star of f1 walks. We allow for additional avoidance interactionsamong these absorbing paths:Z�f = 1Z0�f h fYi=1 �(~r(i)i (0)� ~r0) expn� 16 fXa;b=1uab Z Sa0 dsaZ Sb0 dsb�(~r(a)(sa)� ~r(b)(sb)oiH�f0 fSag; (8)here H�f0 fSag = fXi=1H0(Si)whereH0(Si) is given by (2). Z0�f stands for the partition function of starwith zero interactions uab = 0. The matrix uab is given in the followingform: uab =8>><>>: u011 if a; b � f1u012 if a � f1 < b � f1 + f2or b � f1 < a � f1 + f20 else (9)This corresponds to the partition function of co-polymer stars consistingof two species of chains [19,20] with f1 chains of one species and f2 chainsof the other. u011 is the interaction between absorbing paths.3. Field Theory and RenormalizationAs is well known, the polymer model may be mapped to the limit ofm = 0 of O(m)-symmetrical Lagrangian �eld theory [26]. To describepolymers and interacting random walks at the same time we adopt theformalism developed for multicomponent polymer solutions [23]. Its �eldtheory is described by the following Lagrangian:Lf�b; �bg = 12 fXa=1 Z ddr ��a�2a + (r�a(r))2�



5 ðÒÅÐÒÉÎÔ+ 14! fXa;a0=1ua;a0 Z ddr�2a(r)�2a0 (r): (10)in general m-component theory�2a = mX�=1(��a )2: (11)�a is a chemical potential conjugated to the Gaussian surfaces Sa in (7).Correlation functions in this theory are de�ned by averaging with theweight given by (10):h(: : :)ijL = Z D[�a(r)](: : :) exp[�Lf�b; �bg] jm=0: (12)here functional integration R D[�a(r)] is de�ned in such a way that nor-malization is already included: h1ijL = 1 if all ua;a0 = 0. The limit m = 0in (12) can be understood as a certain rule to calculate the diagrams ap-pearing in the perturbation theory expansions and can be easily checkeddiagrammatically.The partition function Z�f de�ned in (7) is mapped to the �eld theo-retical correlation function ~Z�f via a Laplace transform in the Gaussiansurfaces Sa to conjugate chemical potentials (\mass variables") �a:~Z�ff�ag = Z 10 Yb dSbe��bSbZ�ffSag; (13)and ~Z�ff�ag = hZ dra fYa=1�a(r0)�a(ra)ijL (14)Our interest is in the scaling properties of these functions. Note thatby (14) these are governed by the spectrum of scaling dimensions of thecomposite operators Qfa=1 �a. To extract them we use renormalizationgroup methods [27,28]. Here we use the results of our previous approach-es to the problem of co-polymer stars: massless renormalization groupscheme with successive "-expansion (see e.g. [12]) and massive renormal-ization group approach at �xed dimension [13] compiled in a pseudo-"expansion [30]. On the basis of correlation functions it is standard tode�ne vertex functions �4uab corresponding to the couplings uab as wellas vertex functions ��f��a with insertion of composite operators Qa �a.
ICMP{97{01E 6Explicit expressions may be found in [19,20]. We de�ne renormalizationand introduce renormalized couplings gab by:uab = �"Z�aZ�bZabgab: (15)The renormalizing Z-factors are power series in gab according to thefollowing conditions:Z�a(gaa) @@k2�(2)aa (uaa(gaa)) = 1 (16)Zab(gab)�(4)aabb(uab(gab)) = �"gab (17)� is a scale parameter (equal to the mass at which the massive schemeis evaluated and giving the scale of external momenta in the masslessscheme).In order to renormalize the star vertex functions we introduce renor-malization factors Z�f��a by:( fYa=1Z1=2�a )Z�f��a��f��a(uab(gab)) = ����a ; (18)where ���a is the engineering dimension of the composite operator���a = f("2 � 1) + 4� " (19)The dependence of the renormalized couplings gab and of renormalizingZ-factors on the scale parameter � is expressed by the following relations:� dd�gab = �ab(ga0b0); (20)� dd� lnZ�f��a(gab) = ���a(gab): (21)We are going to look on the situation of having two sets of walks ofdi�erent species. In this case only three di�erent couplings remain. Wewill refer to them as g11, g22, g12 = g21. The corresponding functions�11, �22, �12 de�ne a ow in the space of couplings. This renormalizationgroup ow was discussed in [22,23]. Its �xed points are determined by aset of equations:�ab(g�ab) = 0; a; b = 1; 2: (22)In the space of the three couplings one �nds [23] 8 �xed points corre-sponding to absence or presence of inter- and intra- species interaction.



7 ðÒÅÐÒÉÎÔTable 1: Fixed points for the interactions of a system of polymers of twospecies. G0 U0 U 00 S0 G U U 0 Sg11 0 g� 0 g� 0 g� 0 g�g22 0 0 g� g� 0 0 g� g�g12 0 0 0 0 g�G g�U g�U g�They are given in the table 1 where g� corresponds to the �xed point ofthe theory containing only 1 species, whereas g�G corresponds to the caseof having only inter-species interactions, g�U describes a set of randomwalks interacting with another set of self-avoiding walks.The phenomenon we address in this article corresponds to the caseof non-vanishing interaction between the two species of walks, while oneset has no self-interaction. Thus we consider the two �xed points labeledG and U. The �rst corresponds to a set of random walks interactingwith random walks of another species and thus describes absorption onrandom walk absorbers, the second corresponds to a set of random walksinteracting with another set of self-avoiding walks and thus describesabsorption on SAW (polymer) absorbers.Having f1 walks of the �rst species and f2 walks of second specieswe de�ne the following exponents in the �xed points G,U:�Gf1f2 = ���a(g11 = g22 = 0; g12 = g�G); (23)�Uf1f2 = ���a(g11 = g�; g22 = 0; g12 = g�U ); (24)which govern the scaling properties of the partition sum (8).The scaling may be formulated in terms of the size R of the walks: Wehave to normalize the partition function by the number of con�gurationsof the absorber given by Z�f10. For large R the resulting quantity scaleslike Z�f1f2=Z�f10 � R��f1f2 : for R = S� !1 (25)Here �f1f2 = �f1f2 � �f10, � is the correlation length critical exponentof the walks: � = 1=2 for random walks and � ' 0:588 for self-avoidingwalks at d = 3. For the �xed point G we have �Gf10 = 0 and � = 1=2 forall walks.The exponent �2;n corresponds to the nth moment of the ux onto thecenter segment of an absorbing linear chain. Considering the absorberto be either a random walk or a self-avoiding walk let us de�ne the
ICMP{97{01E 8exponents: �RW (n) � �G2;n = ��G2n; (26)�SAW (n) � �U2;n = ��U2n + �20 (27)Previously [19,20] we obtained the expressions for the exponents�Gf1f2 , �Uf1f2 in terms of "-expansion and pseudo-" expansion series inmassless and massive renormalization group schemes. Whereas the �rstcorresponds to collecting perturbation theory terms of the same powersof " = 4 � d, in the pseudo-" expansion series [30] at each power of thepseudo-" parameter (�) one collects contributions from the dimension-dependent loop integrals of the same order. In the �nal results � = 1.Based on the expressions for the exponents �Gf1f2 , �Uf1f2 [19,20] we �nd:�RW (") = " n� n (n� 1) "24 +n (n� 1) (�1 + n+ 3 �(3)) "38 (28)�SAW (") = 3 " n4 +� 7n128 � 9n264 � "2 + �� 149n2048 �21n21024 + 27n3512 � 69n�(3)512 + 135n2�(3)512 �"3 (29)�RW (�) = � " n+�" n22 � " n2i1 � " n2 + " ni1� �2 +�3loopRW �3: (30)�SAW (�) = 3 � " n4 + �" ni14 + 9 " n232 � 9 " n2i116 + " ni216 �" n8 ��2 + �3loopSAW �3: (31)Here �(3) ' 1:202 is the Riemann zeta function, ij are the loop inte-grals dependent on the space dimension d: at d = 3 i1 = 2=3, i2 = �2=27.The expressions for the three-loop terms �3loopRW , �3loopSAW in (30),(31) aregiven elsewhere [31].4. Multifractal SpectrumA widely used description for the MF spectrum is obtained from a Leg-endre transform, the spectral function f(�), of the analytically continued



9 ðÒÅÐÒÉÎÔspectrum �(n)� n�(1) byf(�) = (�(n)�n�(1))+n� with � = � ddn(�(n)�n�(1))(32)For standard moments of a MF measure not including an ensemble av-erage f(�) is called the spectral function. Here this notion is kept. Thespectral function is widely used to characterize the multifractal natureof many processes [2]. In the standard approach the function f(�) de-�ned for a multifractal measure on a set X gives for every � the fractaldimension of the subset of X for which the measure at scale ` is charac-terized by `� with the H�older exponent �, in the limit `! 0. Due to thisinterpretation as a property of a (multifractal) measure, strict convexityconditions hold. The standard f(�) has the shape of a cap. While simplepower of �eld operators �f will not generate such a spectrum [11], theoperators constructed here accord to this condition.Using the perturbation expansions for the � exponents given to thirdloop order both in " and � expansion in massless and massive renormal-ization (28) - (31) and the relations for �(n) and the spectral functionsome algebra leads to the corresponding expansions for �n and f(�n):�RW (") = 2 + ��n2 + 1=4� "2 +��n2 � 3 �(3)8 + 3n28 + 3n�(3)4 + 1=8� "3: (33)fRW (") = 2� "2n24 +�n34 + 3n2�(3)8 � n24 � "3 (34)�RW (�) = 2 + ��"2 + " i1 + " n� 2 " ni1� �2 + �3loopRW �3 (35)fRW (�) = 2 +�" n22 � " n2i1� �2 + f3loopRW �3 (36)�SAW (") = 2� 1=4"+ � 7128 � 9n32 �"2�� 1492048�69 �(3)512 � 21n512 + 81n2512 + 135n�(3)256 �"3 (37)fSAW (") = 2� 1=4"+ �� 9n264 � 11128�"2�27n3256 +135n2�(3)512 � 21n21024 � 832048 + 33 �(3)256 �"3 (38)
ICMP{97{01E 10�SAW (�) = 2� "4� + �� "8 � 9 " ni18 + 9n"16 + " i14 +" i216 ��2 + �3loopSAW �3 (39)fSAW (�) = 2� "4� + �� 9 " n2i116 + 9 " n232 + 5 "32 + " i216 �5 " i116 ��2 + f3loopSAW �3 (40)Here �(3) ' 1:202 is the Riemann zeta function, ij are the loopintegrals dependent on the space dimension d: at d = 3 i1 = 2=3, i2 =�2=27.Again �(3) is the Riemann zeta function, i1 and i2 are the two-loopintegrals and the explicit form of the three-loop contributions in (35),(36), (39), (40) is given elsewhere [31].5. ResummationAs is well known, the series of type (28)-(31), (33) - (40), as they occurin �eld theory appear to be of asymptotic nature with zero radius ofconvergence. However, knowledge of the asymptotic behavior of the seriesas derived from the renormalization group theory allows us to evaluatethese asymptotic series (see e.g. [29]). To this end several procedures areavailable depending on the additional information known for the seriesto be resummed. We assume our series to be of "-expansion charactertogether with additional information for the case of the Lagrangian [23](10) we consider here. So we expect the following behavior of the kthorder perturbation theory term Ak for any of given above quantities:Ak � k! kb (�a)k (41)the constant a for the "-expansion of Lagrangian �4 �eld theory withone coupling was derived in [34,35]: a = 3=8. For the unsymmetric �xedpoint, where two di�erent couplings are present we use the value a =27=64 [23]. We assume as well that the same properties hold also for thepseudo-" expansion in terms of � . With the above information in handone can make use of the Borel summation technique improved by theconformal mapping procedure which up to now served a powerful toolin the �eld theory (see [29] for example).Table 2 contains the results for the exponents �RW (n) and �SAW (n)obtained in " and in pseudo-" expansion techniques from the correspond-ing values of exponents �f1;f2 [19] with the application of the resumma-tion procedure as described above.



11 ðÒÅÐÒÉÎÔTable 2: Exponents �RW (n) and �SAW (n) obtained in " and in pseudo-"expansion techniques.n �RW (") �RW (�) �SAW (") �SAW (�)1 0.99 0.99 0.71 0.712 1.77 1.81 1.31 1.333 2.45 2.53 1.86 1.924 3.01 3.17 2.34 2.445 3.51 3.75 2.78 2.946 3.95 4.28 3.19 3.41We have calculated the spectral function as a Legendre transformfrom the series of exponents received from the scaling of the momentsof measure de�ned by di�usion. These moments were calculated as aver-ages over all con�gurations of the absorber instead of performing a siteaverage. Thus the interpretation of f(�) itself does not directly corre-spond to the picture developed above for the standard MF. All the samederiving f(�) in the same way from the spectrum of scaling exponents ofmoments of a measure the above discussed properties of a MF spectralfunction hold also for f(�) in this case. In particular max f(�) = �0 givesthe fractal dimension of the absorber and f is convex f 00(�) < 0.Our numerical results for the spectral function are presented in Figs.1a,1b. They were obtained from the series for �n and f(�n) as functionsof n. We show the results of the resummation procedure described aboveapplied to the series in both RG approaches. For comparison we alsoshow the curve for direct summation of the " and � series to the 2ndorder. In addition we have performed an analytical continuation of ourseries in form of [2/1] Pad�e approximants for the "3 and �3 series. Itis obvious that direct summation of "3 and �3 series fails to convergeand gives comparable values for �n; f(�n) only for small values of n,i.e. near the maximum of f(�) at n = 0. The symmetry of the Pad�eapproximant holds only in the region shown and may be an artifact ofthe method. On the left wing, where it coincides with the resummedresults the Pad�e approximant gives a continuation which is compatiblewith the estimation for the minimal � value �min = d�2. The Pad�e resultis �min(") = 1:333, �min(�) = 1:017 for the RW absorber and �min(") =1:250, �min(�) = 1:013 for the SAW absorber, which is calculated here
ICMP{97{01E 12
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Figure 1: Spectral function f(�) for absorption on (a) RW and (b) SAW .Solid curves: 1 - [2/1] Pad�e approximant for "3 results, 2- [2/1] Pad�eapproximant for pseudo-"3 results; dashed curves: 3 - "2 results with-out resummation, 4 - pseudo-"2 results without resummation; stars -resummed "3 results; boxes - resummed pseudo-"3 results.



13 ðÒÅÐÒÉÎÔonly from 3rd order perturbation theory.Note that though the results obtained for �n and f(�n) for a speci�cvalue of n di�er in both approaches, the same curve f(�) is describedwith better coincidence for the left wing of the curves, correspondingto positive n. The resummation techniques we apply have proven tobe a powerful tool already in the �eld theoretical approach to criticalphenomena and have lead to high precision values for critical exponents.We hope that the application of these methods to calculations of MFphenomena allows to improve the reliability and comparability of theresults.We currently work on the generalization of our present approach to�nd the series of spectral functions obtained for absorption at the coreof a polymer with any number of arms.As can be extrapolated from the Pad�e approximant and as was shownalso on the basis of high order approximations [9], f(�) as it is de�nedhere, will become negative near �min and �max. For this reason the iden-ti�cation of f(�) as the fractal dimension of some identi�able subset isnot possible here. Also the extrapolation of the resummed data seems toindicate such a behavior. Note, however, that the perturbative approach,even in combination with resummation and analytical continuation isstill not capable to give reliable results for high values of the expansionparameters. In particular this method is only good near the maximumof f(�).The possible negative values of the spectral function were discussedalready in [9] and a physical interpretation of f(�) was given as a his-togram of the measure � plotted in logarithmic variables. In this inter-pretation negative f(�) indicate that the number of sites with a certainlogarithmic measure � � ln� decreases as the size of the absorber R in-creases. Thus for large R this number can only be de�ned by an ensembleaverage, as performed here.6. ConclusionsWe have studied the characteristics of harmonic di�usion in the presenceof a fractal absorber. We related the description of di�using particles nearabsorbing paths to interacting walks. Following the model proposed byCates and Witten [9] we used the polymer formalism to describe boththe absorber and the random walks of di�using particles. The ensembleof absorbers we considered to have random walk or polymer chain (selfavoiding walk) statistics. The ux of di�using particles onto such kind ofthe absorber and its higher moments generate a multifractal measure [1].
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