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Field theoretic operators for multifractal moments
Ch. von Ferber, Yu. Holovatch

Abstract. Convexity of multifractal spectra seems to contradict general
field theoretic arguments showing that power of field operators ¢/ yield
a concave spectrum of exponents as function of f. This is resolved by
appropriate choice of operators to describe multifractal moments. In a
Lagrangian field theory of two mutually interacting species of fields ¢, 1,
operators Oy y = P! ’¢>f with traceless symmetry give rise to multifractal
spectra of harmonic diffusion near absorbing fractals when evaluated for
zero component fields.
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1. Introduction

The concept of multifractality developed in the last decade has proven to
be a powerful tool for analyzing systems with complex statistics which
otherwise appear to be intractable [1,2]. It has found direct applications
in a wide range of fields including turbulence, chaotic attractors, Lapla-
cian growth phenomena etc [2-8]. Here we generalize the idea of Cates
and Witten [9,10] by deriving the multifractal (MF) spectrum in the
frames of a field theoretical (FT) formalism and make use of renormal-
ization group (RG) methods. We relate the MF spectrum to the spectrum
of scaling dimensions of a family of composite operators of Lagrangian
¢* field theory. This gives an example of power of field operators whose
scaling dimensions show the appropriate convexity for a MF spectrum
[11], while there is no need to include field gradients for this property.
We calculate the MF spectrum to third order of perturbation theory
using two complementary approaches: zero mass renormalization with
successive e-expansion (see e.g. [12]) and massive renormalization group
approach at fixed dimension [13], reproducing previous results obtained
in lower order of perturbation theory for special cases [9,10]. The result-
ing series are asymptotic. We take this into account and obtain numerical
values only by careful resummation.

We address a special case of a growth process controlled by a Lapla-
cian field. The latter may describe a variety of phenomena depending
on the interpretation of the field. For diffusion limited aggregation this
field is given by the concentration of diffusing particles, in solidification
processes it is given by the temperature field, in dielectric breakdown it
is the electric potential, in viscous fingers formation it is the pressure
[5,15]. In all mentioned phenomena the resulting structure appears to be
of fractal nature and is characterized by appropriate fractal dimensions
[1]. Its growth and spatial correlations lead to (non-trivial) spectra of
multifractal dimensions [2]. In general, the boundary conditions deter-
mining the field will be given on the surface of the growing aggregate
itself. It is this dynamic coupling that produces the rich structure of
the phenomena and seems to make the general dynamical problem in-
tractable.

Here we study the simpler case when the fractal has been already
formed and look for the distribution of the Laplacian field and its higher
moments near the surface of the fractal [9,10]. We will follow the dif-
fusion picture, considering the aggregate as an absorbing fractal, “the
absorber”. The field p(7) gives the concentration of diffusing particles
and vanishes on the surface of the absorber. More specifically we con-
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sider the Laplacian field p(7) in the vicinity of an absorbing (fractal)
path, ‘a polymer’, or a junction of absorbing paths, ‘a core of a polymer
star’. In general we assume the ensemble of absorbers to be character-
ized by either random walk (RW) or self-avoiding walk (SAW) statistics.
Multifractal scaling is found for the f-moments (p (7)) of the field with
respect to these ensembles.

This formulation of the problem allows us to use the polymer pic-
ture and theory developed for polymer networks and stars [16-18] and
extended for copolymer stars [19,20]. The theory is mapped to a La-
grangian ¢! field theory with several couplings [21-23] and higher order
composite operators to describe star vertices.

In section 2 we present the path integral solution of the Laplace equa-
tion and relate it to polymer theory. Field theoretical representation and
renormalization are discussed in section 3. together with the renormal-
ization group flow and expressions for the exponents. In section 4. we
define the multifractal spectrum and give its series expansion in both
renormalization group approaches adopted here. Section 5. is devoted to
resummation of these asymptotic series and numerical results followed
by some conclusions and an outlook in section 6..

2. Path Integral Solution of the Laplace Equation
and Polymer Absorber Model

In this section we describe the diffusion of particles in the vicinity of
a polymer absorber by a “polymer” formalism. Let us formulate the
problem first in terms of diffusion of particles in time. The probability of
finding a randomly walking particle at point 7 at time ¢ which started
at point 7 at time ¢ = 0 is given described by the following normalized
path integral:

GO(7, 71, 1) = (§(A1(0) = 70)(A1 (8) = 7)) 3000 (1)
Angle brackets in (1) denote the normalized integral

Vo = LG (o)A
s Ho(t) — fexp(—?-[o(t))d{r(l)} )

(2)

which is performed with the Hamiltonian:

Holt) = /0 t (L(;)T(T) )2- (3)
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Integration in (1) is performed over all paths #(7) with 0 < 7 < .

Note that we have absorbed the diffusion constant into re-definition of
time. G° (7%, 71, t) obeys the following differential equation:

d 0

A c_Z

( nt T

with d the dimension of space. For finite d the random walker will visit

any site after some finite time and we may assume a steady state limit for

GO(rg,r1,t) for t = occ. In this case G°(7y, 7, t) will become independent

of 7y and its limit and defines a field:

)GO(To,Tl,t):O (4)

t—o0

1
p(f1) = lim v /dFOGO(To, r1,t), (5)
here V is the system volume. The field p(7) obeys the Laplace equation:
Ap(7) = 0. (6)

We introduce boundary conditions in such a way that the field p(7)
equals to some constant po, at 7 = oo and vanishes on the absorber. The
absorber itself we describe by a path #2)(s), 0 < s < S.

Let us explain the solution of the Laplace equation (5) in the presence
of an absorbing path #?) (s). The boundary conditions are implemented
by an avoidance interaction w15 punishing any coincidence of the path
(1) of the RW and the path 7(?) of the absorber. The correlation function
of a random walk in the presence of an absorbing path 2)(s) may then
be written as

G(7o,71,51) = (67 (0) — 7o) (V) (Sy) — 1)
51 52
exp{ — U129 / ds; dSQfs(F(l) (81) - 7:(2) (32)})H0(51)a (7)
0 0

where we have adopted the notation ¢ = Sy.

We are interested in ensemble moments (p/2 (7)) of the field in the
vicinity of the absorber, assuming an ensemble of RW or SAW absorbers.
For the RW ensemble the average is performed with respect to the Hamil-
tonian Ho(S2), for the SAW ensemble an additional interaction has to
be included.

Here we choose a more general formulation, which allows us to de-
scribe the moments of the field in the vicinity of the core of an absorbing
polymer star, or near the junction of f; absorbing paths.

The calculation of the fo moment of (7) near the junction of f;
absorbing paths will include the average over f, random walks ending at
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r1 and the ensemble average over the configurations of the f; absorbing
paths with junction at r;.

We are thus lead to consider the partition function of a star of walks
which are in part mutually-avoiding. We will give this partition function
here for the more general case of f walks of which f, random walks
describe the field and f; walks correspond to the absorber. This situation
describes the foth moment of the flux of the field to the core of an
absorbing star of f; walks. We allow for additional avoidance interactions
among these absorbing paths:

! f S
1 , R 1 a
Z*f = Z—O <H 6(,,:‘50 (0) — 7'0) eXp { — g Z Uab A dSa

*f =1 a,b=1
" Lo g () )
[ a3 (50) = 7060 g s ®)
here
f
Ho'{Sa} =D Ho(S)
i=1
where Hy (S;) is given by (2). Z7; stands for the partition function of star
with zero interactions uqp = 0. The matrix ugp is given in the following
form:
Wy if a,b < fi
u)y fa<fi<b< fitfo

orb< fi<a< fi+ f2 (9)
0 else

Ugh =

This corresponds to the partition function of co-polymer stars consisting
of two species of chains [19,20] with f; chains of one species and f, chains
of the other. u9; is the interaction between absorbing paths.

3. Field Theory and Renormalization

As is well known, the polymer model may be mapped to the limit of
m = 0 of O(m)-symmetrical Lagrangian field theory [26]. To describe
polymers and interacting random walks at the same time we adopt the
formalism developed for multicomponent polymer solutions [23]. Its field
theory is described by the following Lagrangian:

1 ! d 2 2
Clonm =33 [ Al (1ad? + (Vou()?)
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/
g Y e [AEOIEC) (10

1
a,a =1

in general m-component theory

m

a = (62)% (11)

a=1

I4q is a chemical potential conjugated to the Gaussian surfaces S, in (7).
Correlation functions in this theory are defined by averaging with the
weight given by (10):

(- Nle = /D[cﬁa(r)](---)exp[—ﬁ{sﬁb,ub}]Im:o- (12)

here functional integration [ D[¢,(r)] is defined in such a way that nor-
malization is already included: (1)| = 1 if all ug o = 0. The limit m = 0
in (12) can be understood as a certain rule to calculate the diagrams ap-
pearing in the perturbation theory expansions and can be easily checked
diagrammatically.

The partition function Z,; defined in (7) is mapped to the field theo-
retical correlation function 3* ¢ via a Laplace transform in the Gaussian
surfaces S, to conjugate chemical potentials (“mass variables”) fi,:

Z, e} = /0 T] dSve "5 2, {8}, (13)
b

and

f
Zop{pa) = ¢ / drg [T #a(ro)de(ra))lc (14)

Our interest is in the scaling properties of these functions. Note that
by (14) these are governed by the spectrum of scaling dimensions of the
composite operators H£:1 ¢o. To extract them we use renormalization
group methods [27,28]. Here we use the results of our previous approach-
es to the problem of co-polymer stars: massless renormalization group
scheme with successive e-expansion (see e.g. [12]) and massive renormal-
ization group approach at fixed dimension [13] compiled in a pseudo-e
expansion [30]. On the basis of correlation functions it is standard to

define vertex functions Fjﬁab corresponding to the couplings wuqp, as well

as vertex functions Fl*{;a with insertion of composite operators [, ¢a-
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Explicit expressions may be found in [19,20]. We define renormalization
and introduce renormalized couplings g, by:

Uab = 1 Zy, Loy ZabGab- (15)

The renormalizing Z-factors are power series in g, according to the
following conditions:

0 .
Zy, (gaa)wrgza) (4a(gaa)) =1 (16)
Zab(gab)rgt)bb(uab(gab)) = /fgab (17)

i is a scale parameter (equal to the mass at which the massive scheme
is evaluated and giving the scale of external momenta in the massless
scheme).

In order to renormalize the star vertex functions we introduce renor-
malization factors Zﬂ’;a by:

/
(I 223, T (wan(gan)) = e, (18)

a=1

where dr14, is the engineering dimension of the composite operator

bus, = f5—1)+4- ¢ (19)

The dependence of the renormalized couplings g,» and of renormalizing
Z-factors on the scale parameter y is expressed by the following relations:

d
K Y 20
Hgpdar Bab(garvr) (20)
d ..
g 1 Zio, (9ar) = 716, (9as)- (21)

We are going to look on the situation of having two sets of walks of
different species. In this case only three different couplings remain. We
will refer to them as g11, g22, g12 = g21. The corresponding functions
(11, P22, P12 define a flow in the space of couplings. This renormalization
group flow was discussed in [22,23]. Its fixed points are determined by a
set of equations:

Bab(gar) =0,  a,b=1,2. (22)

In the space of the three couplings one finds [23] 8 fixed points corre-
sponding to absence or presence of inter- and intra- species interaction.
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Table 1: Fixed points for the interactions of a system of polymers of two
species.

Go Upb U, S G U U 3
gu 0 g~ 0 g 0 g 0 g"
g2 0 0 g g 0 0 g g"
gz 0 0 0 0 g5 9y 9y 9

They are given in the table 1 where g* corresponds to the fixed point of
the theory containing only 1 species, whereas g¢; corresponds to the case
of having only inter-species interactions, g;; describes a set of random
walks interacting with another set of self-avoiding walks.

The phenomenon we address in this article corresponds to the case
of non-vanishing interaction between the two species of walks, while one
set has no self-interaction. Thus we consider the two fixed points labeled
G and U. The first corresponds to a set of random walks interacting
with random walks of another species and thus describes absorption on
random walk absorbers, the second corresponds to a set of random walks
interacting with another set of self-avoiding walks and thus describes
absorption on SAW (polymer) absorbers.

Having f1 walks of the first species and f» walks of second species
we define the following exponents in the fixed points G, U:

0%, = e, (911 = g22 = 0,912 = g&), (23)
Nf g = e, (911 =g, 922 = 0,912 = g77), (24)

which govern the scaling properties of the partition sum (8).

The scaling may be formulated in terms of the size R of the walks: We
have to normalize the partition function by the number of configurations
of the absorber given by Z, ¢ ¢. For large R the resulting quantity scales
like

Zutifo] Zupro ~ R0z, for R=S5" = o0 (25)

Here Ap r, = np . — Npio, v is the correlation length critical exponent
of the walks: v = 1/2 for random walks and v ~ 0.588 for self-avoiding
walks at d = 3. For the fixed point G we have 77?;0 =0and v =1/2 for
all walks.

The exponent A ;, corresponds to the nth moment of the flux onto the
center segment of an absorbing linear chain. Considering the absorber
to be either a random walk or a self-avoiding walk let us define the
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exponents:
ASAVV(”) = )‘gn = _ngjn + 720 (27)

Previously [19,20] we obtained the expressions for the exponents
n?l o 77][{1 f, in terms of e-expansion and pseudo-¢ expansion series in
massless and massive renormalization group schemes. Whereas the first
corresponds to collecting perturbation theory terms of the same powers
of e =4 — d, in the pseudo-¢ expansion series [30] at each power of the
pseudo-e parameter (7) one collects contributions from the dimension-
dependent loop integrals of the same order. In the final results 7 = 1.
Based on the expressions for the exponents 77](:1 far 77][{1 fo [19,20] we find:

n(n—1)e2

/\RW(E) = En—fﬂ‘
n(n—1)(=1+n+3¢(3))e (28)
8
3en T 9n?\ , 149n
Asaw () = = +<ﬁs_ﬁ>5 +(~ 2018
21n?  2Tn®  69nC(3)  135n2C(3)\ s
1024 512 512 + 512 )6 (29)
2
Arw(T) = Tsn+<%—an2i1—%+sni1>72+
N3Loop 13, (30)
_ 37en eni;  9en®  9en?i;  enidg
Asaw(r) = — ( 4 32 16 16
%)72 + AHoop -3, (31)

Here ((3) ~ 1.202 is the Riemann zeta function, i; are the loop inte-
grals dependent on the space dimension d: at d = 3, = 2/3, iy = —2/27.
The expressions for the three-loop terms A22%7 X¥9° in (30),(31) are

given elsewhere [31].

4. Multifractal Spectrum

A widely used description for the MF spectrum is obtained from a Leg-
endre transform, the spectral function f(«), of the analytically continued
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spectrum A(n) —nA(1) by

fl@) =(A(n) —nA(1))+na with a= —;—n()\(n) —nA\(1))(32)

For standard moments of a MF measure not including an ensemble av-
erage f(a) is called the spectral function. Here this notion is kept. The
spectral function is widely used to characterize the multifractal nature
of many processes [2]. In the standard approach the function f(«) de-
fined for a multifractal measure on a set X gives for every a the fractal
dimension of the subset of X for which the measure at scale ¢ is charac-
terized by ¢ with the Hblder exponent «, in the limit £ — 0. Due to this
interpretation as a property of a (multifractal) measure, strict convexity
conditions hold. The standard f(«) has the shape of a cap. While simple
power of field operators ¢/ will not generate such a spectrum [11], the
operators constructed here accord to this condition.

Using the perturbation expansions for the A exponents given to third
loop order both in € and 7 expansion in massless and massive renormal-
ization (28) - (31) and the relations for A(n) and the spectral function
some algebra leads to the corresponding expansions for «,, and f(ay,):

_ _n 2
cante) = 2+ (L e
n 3¢(3) 3n? 3n4( )
_n_ 2549 | S 1/8 33
( 5 s Tt VY (33)
e?n? n® 3n%¢(3) n’
= 2 - - o T i ’ 4
Faw(e) 1 +<4+ 2 4>6 (34)
B _E . _ . 2 3loop _3
agw(t) = 2+ 2 tei ten—2eniy )T+ agytT" (35)
faw(r) = 2+ (%—En u) 7+ faw T (36)
7 9n 149
= 2-1/4e+ (2 - )% ( - 52
asaw (€) [4e+ (128 32)5 ( 2048
69¢(3) 21n  81n>  135n((3)\
512 512 | 512 256 ) (37)
9n? 11\ ,/27n°
fsaw(e) = 2_1/45+(_6—4_E8)5 ( 256
1351%¢(3) 21n®> 83 33§(3)) 3 (38)
512 1024 2048~ 256
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_ 15 e  9eniy 9ne €1y
asaw(r) = 2-gr+ (g gt g
£ 12 3loo
16 ) + SAVIP;T3 (39)
€ 9en?i;, 9en? 5He  cig
- 9_°% _ o0& [ El2
Fsaw(7) riins ( 16 32 327 16
Se g 3l
)7+ e (40)

Here ((3) ~ 1.202 is the Riemann zeta function, ¢; are the loop
integrals dependent on the space dimension d: at d = 3 iy = 2/3, iy =
—2/27.

Again ((3) is the Riemann zeta function, 41 and i» are the two-loop
integrals and the explicit form of the three-loop contributions in (35),
(36), (39), (40) is given elsewhere [31].

5. Resummation

As is well known, the series of type (28)-(31), (33) - (40), as they occur
in field theory appear to be of asymptotic nature with zero radius of
convergence. However, knowledge of the asymptotic behavior of the series
as derived from the renormalization group theory allows us to evaluate
these asymptotic series (see e.g. [29]). To this end several procedures are
available depending on the additional information known for the series
to be resummed. We assume our series to be of e-expansion character
together with additional information for the case of the Lagrangian [23]
(10) we consider here. So we expect the following behavior of the kth
order perturbation theory term Ay for any of given above quantities:

A ~ KK (—a)k (41)

the constant a for the e-expansion of Lagrangian ¢* field theory with
one coupling was derived in [34,35]: a = 3/8. For the unsymmetric fixed
point, where two different couplings are present we use the value a =
27/64 [23]. We assume as well that the same properties hold also for the
pseudo-¢ expansion in terms of 7. With the above information in hand
one can make use of the Borel summation technique improved by the
conformal mapping procedure which up to now served a powerful tool
in the field theory (see [29] for example).

Table 2 contains the results for the exponents Agw (n) and Agaw (n)
obtained in € and in pseudo-¢ expansion techniques from the correspond-
ing values of exponents 7y, 7, [19] with the application of the resumma-
tion procedure as described above.
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Table 2: Exponents Agw (n) and Agaw (n) obtained in € and in pseudo-¢
expansion techniques.

n Arw(e) Arw(T) Asaw(e) Asaw(7)
1 099 0.99 0.71 0.71
2 1.77 1.81 1.31 1.33
3 245 2.53 1.86 1.92
4 3.01 3.17 2.34 2.44
5 3.51 3.75 2.78 2.94
6 3.95 4.28 3.19 3.41

We have calculated the spectral function as a Legendre transform
from the series of exponents received from the scaling of the moments
of measure defined by diffusion. These moments were calculated as aver-
ages over all configurations of the absorber instead of performing a site
average. Thus the interpretation of f(a) itself does not directly corre-
spond to the picture developed above for the standard MF. All the same
deriving f(a) in the same way from the spectrum of scaling exponents of
moments of a measure the above discussed properties of a M F' spectral
function hold also for f(«) in this case. In particular max f(«) = 79 gives
the fractal dimension of the absorber and f is convex f"(a) < 0.

Our numerical results for the spectral function are presented in Figs.
la,1b. They were obtained from the series for a,, and f(a,,) as functions
of n. We show the results of the resummation procedure described above
applied to the series in both RG approaches. For comparison we also
show the curve for direct summation of the € and 7 series to the 2nd
order. In addition we have performed an analytical continuation of our
series in form of [2/1] Padé approximants for the €3 and 72 series. It
is obvious that direct summation of €3 and 7° series fails to converge
and gives comparable values for au,, f(ay) only for small values of n,
i.e. near the maximum of f(«) at n = 0. The symmetry of the Padé
approximant holds only in the region shown and may be an artifact of
the method. On the left wing, where it coincides with the resummed
results the Padé approximant gives a continuation which is compatible
with the estimation for the minimal « value o, = d—2. The Padé result
i8S min (&) = 1.333, amin(7) = 1.017 for the RW absorber and amin(e) =
1.250, amin(7) = 1.013 for the SAW absorber, which is calculated here
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Figure 1: Spectral function f(«) for absorption on (a) RW and (b) SAW.
Solid curves: 1 - [2/1] Padé approximant for € results, 2- [2/1] Padé
approximant for pseudo-g? results; dashed curves: 3 - €2 results with-
out resummation, 4 - pseudo-€? results without resummation; stars -
resummed > results; boxes - resummed pseudo-£2 results.
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only from 3rd order perturbation theory.

Note that though the results obtained for «,, and f(a,,) for a specific
value of n differ in both approaches, the same curve f(«) is described
with better coincidence for the left wing of the curves, corresponding
to positive n. The resummation techniques we apply have proven to
be a powerful tool already in the field theoretical approach to critical
phenomena and have lead to high precision values for critical exponents.
We hope that the application of these methods to calculations of MF
phenomena allows to improve the reliability and comparability of the
results.

We currently work on the generalization of our present approach to
find the series of spectral functions obtained for absorption at the core
of a polymer with any number of arms.

As can be extrapolated from the Padé approximant and as was shown
also on the basis of high order approximations [9], f(«) as it is defined
here, will become negative near i, and a,,x. For this reason the iden-
tification of f(a) as the fractal dimension of some identifiable subset is
not possible here. Also the extrapolation of the resummed data seems to
indicate such a behavior. Note, however, that the perturbative approach,
even in combination with resummation and analytical continuation is
still not capable to give reliable results for high values of the expansion
parameters. In particular this method is only good near the maximum
of f(a).

The possible negative values of the spectral function were discussed
already in [9] and a physical interpretation of f(«) was given as a his-
togram of the measure u plotted in logarithmic variables. In this inter-
pretation negative f(«) indicate that the number of sites with a certain
logarithmic measure o ~ In p decreases as the size of the absorber R in-
creases. Thus for large R this number can only be defined by an ensemble
average, as performed here.

6. Conclusions

We have studied the characteristics of harmonic diffusion in the presence
of a fractal absorber. We related the description of diffusing particles near
absorbing paths to interacting walks. Following the model proposed by
Cates and Witten [9] we used the polymer formalism to describe both
the absorber and the random walks of diffusing particles. The ensemble
of absorbers we considered to have random walk or polymer chain (self
avoiding walk) statistics. The flux of diffusing particles onto such kind of
the absorber and its higher moments generate a multifractal measure [1].
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The MF properties of this measure we described by the spectral function
formalism [2].

We performed our calculations in the frames of a field theoretical ap-
proach, relating our study to the study of scaling properties of composite
field operators and defining their spectrum. Namely we show that the
“copolymer star” [19,20] - star operators Hf:l Hbf2 Yedp in a field theo-
ry with interactions uy and uyg generate a spectrum of scaling dimen-
sions which transforms to a MF spectrum with the appropriate convexity
property. To calculate this spectrum we have used the massless renor-
malization group scheme and massive renormalization group approach
at fixed dimension.

We give the explicit expressions for different kinds of exponents de-
scribing our problem (formulas (28)-(31), (33), (35), (37), (39) as well as
for the spectral function (34), (38), (36), (40) in terms of power series in
¢ = 4 —d and in pseudo-¢ expansion. All calculations were performed in
the third order of perturbation theory. In particular, in the second order
in € we recover previously obtained results [9].

Special attention was payed to the fact that the series are asymptotic
and have zero radius of convergence. We have used Padé approximants
to obtain analytic continuation of the series under consideration for non-
zero value if the expansion parameter. In addition we applied resumma-
tion techniques well approved in field theoretic calculations in order to
obtain reliable information for the spectral function f(«), Holder expo-
nent « and exponents A governing scaling behavior of averaged density
moments of diffusing particles (see figs. 1a, 1b and table 2). While stan-
dard in field theoretical studies of critical phenomena, the resummation
technique as to our knowledge was not applied in the theory of multifrac-
tals. We hope that our attempt will attract attention for this possibility
in the context of other problems arising in the theory of multifractal mea-
sures as well as that the presumed accuracy of our results might evoke
comparable efforts by numerical simulation. Further studies devoted to
the set of spectra associated with diffusion near the core of absorbing
stars with higher numbers of arms. We hope to gain more insight on the
unsymmetric behavior of the spectral function and find the envelope of
the family of spectra.
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