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Abstract. In the present paper an approach for investigation of the
disordered two-component Ising systems with long range interaction has
been suggested. Possible applications to metalic and magnetic alloys and
lattice gas are considered. We have also obtained numerical results for
thermodynamical properties of these models. The comparison of numer-
ical results obtained within mean field, gaussian field and two-tail ap-
proximations are carried out.
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1. Introduction

The present paper is devoted to the investigation of a binary annealed
disordered magnet on the basis of Ising model. This model and its simpler
versions are often used in the study of metalic alloys [1-3], magnetic
alloys [4,5], ferroelectric solutions, in particular, the ferroelectrics with
hydrogen bonds [6].

Let us point out several works concerning the magnetic alloys. In
the work [4], V.G.Vaks and N.E.Zein obtained phase diagrams for the
model of the binary magnetic alloy with non-magnetic impurities within
two particle cluster approximation at 7' > T}, (T}, is the temperature of
the magnetic ordering). It was noted that in mean field approximation
(MFA) in contrast to cluster approximation the magnetic subsystem does
not influence the phase diagram. Later by means of MFA T.Kawasaki [5]
investigated the influence of the magnetic subsystem on the properties
of the atomic subsystem and v.v. at T' < T),. In the work [6] a detailed
investigation of this model within two-site cluster approximation were
performed. There was found the influence of the spin subsystem on bin-
odal (coexistence temperature 7}) and spinodal (spontaneous separation
temperature T;) temperatures of the system in a spin ordering phase.
Here the difference between quenched and annealed types of disorder has
been investigated and correlation functions have been calculated.

The non-magnetic version of the model is often applied to the study
of real binary alloys [1-3]. Using the pseudopotential theory for defining
of intersite interaction Z.Gurskii and Yu.Khokhlov tried to explain the
properties of Ca-Ba and K-Cs alloys [2]. For the thermodynamical aver-
aging they used the collective variables method with a non-selfconsistent
equation for unknown chemical potential.

This work has been directed to the study of a disordered model with
long range interaction or short range one in a case of large z (z is the
number of nearest neighbours). At first we consider the Hamiltonian
of M-component Ising model and study the model within mean field
approximation (MFA), Gaussian field approximation (GFA) and two-tail
approximation (TTA). But for the sake of simplicity all approximations
are formulated for the case M = 2.

2. Description of the model

Let us consider M-component system with site disorder on Bravais lat-
tice with the following Hamiltonian:

—BH =H = H, +H,, (2.1)
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where

HMZ HMZ

1 M N
€aTia T 5 Z Z Vaﬁ(i - j)xiaxjﬁa (2'2)

75*1 ,j=1
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M
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M
Z I'a%iaSia + = Z Z Iozﬁ

a,8=11,j=1

All parameters of the Hamiltonian (2.1) contain the factor (—f3). The
Hamiltonian H, corresponds to the disordered ionic subsystem. Here
€a = Vo + la, o = —5115 is the dimensionless chemical potential of
a-type ions, ¥, is related to the difference between alloy component
ion characteristics; Vog(i — j) = Vup(Ry;) is the potential of effective
ionic interaction; z;o, = 1, if the site is occupied by the ion of type «
and 0 otherwise. The Hamiltonian H, corresponds to the system of N
Ising spins (Sia = S7,) situated on the ions with external field energy
ha = (u,h) and exchange interaction Zog(i — j) = Zog(Rij)-

In the present paper we confine ourselves by the case of binary alloy
(M = 2). It should be noted that suggested approximations below can be
applied to magnetic alloys with arbitrary number of sorts. It is convenient
to use the spin variables instead of z;1, zi2(a = 1,2)

1 - (—1)°S;
Tio = %; Sio = Ti1 — Tiz. (2.4)
Now the Hamiltonian (2.1) can be written as follows
Hays = E(e) + Ho(T), (2.5)
N 1 N
Z Z FU®i7U + 5 Z Z Zo,a" (Rij)Gioer-
0=0,1,2 i=1 o,0' i,j=1

Here we use the following notations

Ty Sio
r=1{ h |, ©;=| zaSa |,
ho Zi2Si2
R Z(R) 0 0
I(R) = 0 Tii(R) Zi2(R) )
0 Z15(R) I (R)
1 1 1
NE = 5(81 + 52) + g(‘/ll + Vt?Z + 2V12)7 (26)

—

Lo= (61 —e2) + E(Vu —Va2) (Vo3 = Vo 8(g = 0)),
4I(R) = Vll(R) + V22 (R) — 2‘/12(R)

[\
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The Hamiltonian He (I') describes the three-sort spin system. The ther-
modynamical potential (TP) of system (2.1) has the following form (h =
(h1, h2))

Q(e,h) = -7 In Spy, 4y ™) = E(e) + Qo (). (2.7)

Here Qg (T) is the TP for the Hamiltonian He(I'). The correlation func-
tions (C'F's) of an arbitrary order can be obtained on the basis of the
relations

QW (3161, i18) = (Os,5, - Oy5,) = ——— _
e (Zl 1 U l) < 4101 1151> (SFi161 5Fi161

Here we have replaced the uniform fields I', with nonuniform ones [';,.
The TP (2.7) is a function of temperature (7') and chemical potentials
(1, p2). Transition to concentration variables ¢, instead of u, can be
performed by the Legendre transformation

a=1,2

Here F'(c,h) is a free energy of system (2.1) and chemical potentials are
defined by (mg = (Si))
No, 6 1— (=1)%mg

o= o2 = 2 [-BOe, b)) = ——

2.1
N O0cq (2.10)

The system (2.10) gives only one independent equation for p; — s or Lo,
because ), cq = 1. Here we consider the system which undergoes both
the separation phase transition and magnetic phase at temperature T;,.
Therefore, the expression for (Siy) can contain the magnetic moments

my = (Si1) and my = (Si2) as well. The equations for them we will
obtain proceeding from (2.8):
o 1 o 1
= — . B0 (T = — . —[-60e(T)]. 2.11
= 80D me = T (21)

The system of equations (2.10), (2.11) gives the values for I'y, m1, mo as
function of temperature 7" and concentration ¢ = ¢;. The spontaneous
separation transition occurs at T (spinodal temperature) which is found
as divergence temperature of CF ({S;0Sjo))q—0- The coexistence tem-
perature T} (binodal temperature) of both phases A and B is calculated
from the following system

{ Qe(mo), B, Tp) /mo=mos = Ae(mo), B, Ty) /mo=rmos (2.12)
I‘o(moA; h, Tb) = FO(mOB; h, Tb)
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The system (2.12) gives the dependences moa(T3), mog (L) and it is
solved jointly with system (2.10), (2.11).

Although for the system (2.12) exact solution has not been found,
one can make some conclusions about the symmetry of phase diagrams.
In case 711 = I35 and I'; = I's the thermodynamical potential

N
Qo(To,h) = -3 ' InSpexp lz Co(zi—xi)+

i=1

1 & ]
3 Z I(i—j) (7 —wiz)($j1—$j2)+7'lsJ = Qe(—T'o,h)
1,j=1
will be even function of Iy (because trace over x;; and x;z becomes
equivalent). Similarly, it can be proved that

mo(To) = (Ti1—i2) =

Sp(zi1 _xiz)ezro($il*$i2)+%zz(i*j)($il*Iz'2)(mj1*$j2)+7'£s

Spez Lo(ir—mia)+3Z(i—j)(zi1—@iz)(wj1—zj2)+H -

Sp(zin _xil)eZ(fFo)(wnfwiz)Jr%ZI(ifj)(znfwiz)(wjl —zj2)+Hs

Spez Do(zii—iz)+3Z(i—j)(zi1 —iz) (wj1—aj2)+Hs

= (zip—wi1) = —mo(—Lo)

is odd function of Iy, where I'y ~ (u1 — p2) and determined by the
formula (2.6). This means that Qg is even function relatively vari-
able mg and first equation of the system (2.12) has following solution
moB = —mo4. Then second equation for my can be rewritten as fol-
lowing: T'o(rmoa,h,T;) = 0. Therefore, phase diagram is symmetrical
relatively variables mg or permutation of components’ concentration c;
and cs.

The spinodal temperature also is symmetrical function of mg = ¢; —
c2 in case 717 = Zsy and I'y = I'y. Spinodal decay takes place if the
CF ((Si0Sjo)“)q=o diverges. It means that the system becomes unstable

0L = (. Si
= U. dSince
Bmg

=Ty , the last condition may be rewritten as 222 = 0. Iy is odd

Omyo
function of mg, then g;% will be even function of mg. This means if

for a certain temperature T the equation g;% = 0 has solution my, the

solution —my also exists and spinodal temperature T is an even function
relatively mg.

Further for calculation of TP and CFs of system with Hamiltonian
Heo(T') we will use the expansion over 1/z and the results of ref. [7].

against the infinitesimal fluctuation of concentration:

OF
amo
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Now the TP Qg(I') can be written as follows (Zog = (Zap(q — 0),V =
Via—0))
—ﬁﬂe( Z Z,wm,smy =+ f( ) (213)

6 5= 071,2

f) = (FO@+0)— 5 Y AN (@+0) -

5,6'=0,1,2

— 5 O Indet[l = Z(g)(F, F2(z + 0))]. (2.14)

Here irreducible part f(ae) of Qg(I') is written with the accuracy up
one-loop diagrams (two-tail diagrams approximation (TTA)).

We use the following notations from ref. [7] for averages of arbitrary
function y(=e + o) over fluctuating fields o with Gaussian distribution
function pa(o):

(y(+0)) = /dO’QdO’ldUng(O’)y(EE +o0), (2.15)
pa(o) = [det 27 NP1/ exp{— Z[/\ 155/050%6 }

66’
& =T +Im0; aea:ha'f'zzaﬁm,@ (aaﬂ:172)7

B

where [A®)]! is the inverse matrix to A?). In (2.15) we use the following
notations for functions on x = (xg, 1, Z2)
FO(x) =1In Z(x) = In{e® Z; (x1) + €% Zs(x2) };
Wy _ 9 0 (2) 6 0 o
F = —F Fs5; — —F 2.1
60 = L FO60; FiE = = PO o, (2.16)
Zo(To) = Sps, €75 ﬁ 2cosha:a,

Sa=%

-7:&0) (za) =InZu(20); .7:(5}) (za) = -7:(0) (Ta)-

a
From stationarity conditions with respect to nine variables myg, mq,
)\g%), /\(2) A2 )\(2) we find the system of nine equations for nine

Oa a0
unknown I'g, m, )\(()20), )\(()202 = /\ao, /\(azg

2¢—1=mo = (F) (e +0)), ma = (FY (e + o)), (2.17)

A = (% S[ - Z(g)(F®) (= + cr))]-li(q)) - (218)

44’
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In the works of Onyszkiewicz at all [8] GFA was suggested. It can be ob-
tained expanding In det[1 —i(q)(ﬁd(?,) (e+0))] in (2.14) and (ﬁ Zq[i—
Z(q)(F® (2 + U))]flf(q))w in (2.18) in Z(g) up to the terms of second

order. In the result :

fle)=(FV(et+o)) - Y AES (e+0) -
5,6'=0,1,2

1 ; 9
o O (En(er o) E o)) Y Lan (@)Tss(0), (219)

4,01,02=0,1,2 q
1 .
N =gn O (En (o) Y Tos (0)T6s (). (2:20)
01,02=0,1,2 q

In contrast to GFA and TTA MFA permits to get analytical results
for thermodynamical functions and transition temperatures in case of
non-magnetic alloys. This approximation one can obtain neglecting fluc-
tuation of molecular field mgs. The expression for TP is

1
Qo) =—-= Y Tiwmsms +FO (). (2.21)
2
6,6'=0,1,2
The equation for chemical potential and order parameters is determined
by the relations (2.10), (2.11). In MFA one can obtain:
20, —1=mo=F\" (se)= [¢®° Z) (w1 ) —e ™ Zy(m2)] Z(20) !,  (2.22)
me = FW () = D@0 700 () Z(2e) L. (2.23)
The equation for mg can be transformed to two dependent equations for
the components’ concentration ¢, (see 2.10)):

1)att

20 7 (wa)Z(2e) L. (2.24)

Co =€t
From (2.23),(2.24) it follows
Mo = caFP (a4). (2.25)

The equation (2.22) for unknown difference of chemical potential can
be solved analytically
14+ mg 2o (&)2)
1-— mo Z1 (331) '

1
FO = —Imo + 5 lIl (226)
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Using (2.9) one can obtain following result for the free energy:

1
NF(C,h) = azél 2Ca19 + In2 + S(Vll + V22 + 2‘/12)
1 1 2 1 9 mo 1+ mo
+4(V22 V11)m0 + 21m0 5 ln(l mo) 5 In -
1 mo ., Zp(®) 1
_5 E Iaﬁmamg — 7 In Zl (&1) + 5 In Z1 (%1)Z2(2E2). (227)

a,f=1,2

The system (2.12) in a case 737 = Zyp and I'; = T's can be solved
analytically with the following result:

—QImo
T = e e (2.28)
n 1+mo Z1(ae1)

However, &; and @5 is to find from equations (2.11). The expression for
spinodal temperature can be found exactly only for non-magnetic case:

Ty = Z(1 — mi) = 4Zc) co. (2.29)

The pair CF's we obtain on the basis of the relation (2.8) (the de-
tails see in [7]) and this procedure leads to expression for matrix of CF

08 (@) = {085, (@)}
02 (q) = [i - fPZ(@]™" f(a),
° F({) s (@

c 1 p c
((mﬂwjl) )(q)zzﬂg)oo(q), (<$11 $ja5ja) )(q) QQg)OQ(Q)- (2-30)

Here féi);Q (q) is the irreducible part of CF Q(@z ) (¢) with respect to in-
teraction Z(q). It is obtained by double differentiation of irreducible
part f (ae) with respect to nonuniform fields a;,4, , ®1,5,. Within TT A at
T>T, f(g) is independent of q and has form

: MFA
T (@) = (F, (e + ) 550 F (w0), (2.31)
Fo(g) () = 40102,F(%) = —(—1)“ma20a
(2) Z(z)(eea) MFA (232)
Foz,@ (m = Ca Z(®e (5 — CaCpMaIMg.
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From matrix expression for Q(@?) (q) (2.30) it can be found

QZ)0(@) = [1 — @oo(@)V ()]~ 2oo(a),
05 () = [1 - &*(q)Z°(a)] ' &°(a), (2.33)

Poo(@=Ft5 (@+ Y £ (@ (T @O-F @I @]™) (),

Q12
[eaNes]

850 (@) = f2 (@) + £ @V (@[~ foola) (@] £ (@),

F@=12@) T = {Zas(a)}- (2.34)

At the temperature of second order phase transition the C'F's of system
diverge at certain values q* (we consider here only case q* = 0).

In the case T' > T, the f(2)( ) = 0 and ®go(q) = ég)(q),
¢ (q) = C%B, (q). Within MFA from first expression we obtain the

T, (the influence of magnetic subsystem is absent) and from the second
one the equation for T}, (T}, is the temperature of magnetic transition)

Ts = 401021(0),
2Tm = ClTll + CT22 — {(ClTll — 61T22)2 + 40162 T122}1/2, (235)

Tap = Tag\| & F. (2.36)

3. Results of numerical investigation

The Hamiltonian (2.1) corresponds to the most generalized model of
M-component magnet. There is no possibility at present to obtain any
analytical solutions in this case. Therefore, in this section we represent
some numerical results performed for particular cases of one-component
Ising model, binary alloys and lattice gas. Here the numerical calculations
become simpler.

3.1. Ising model

The case of Ising model will correspond to M = 1. The ionic part of the
Hamiltonian becomes constant and does not influence on the thermody-
namical and correlation functions of the system:

H= Zrl it Z 71151551 + const (3.1)
4,j=1
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For calculation of free energy, magnetization, two-tail we can use
formulae (2.13)-(2.20) and put «,3 = 1. In this case we have to solve
system of only two equations for order parameter m; and fluctuating
parameter /\ﬁ). Therefore, one can write the following expression for
generating function in the framework of two-tail approximation (2.13)-

(2.18) that corresponds to free energy in the case of Ising model:

1 . 1
R R(T) =~ Zum + (O (e +01) — SA(ED (1 + o)

5 2 Il = T (g)(FLY (1 + 01))) (3.2)
q
The equations for order parameters m; and two-tail )\ﬁ) follow from the
equations (2.17)-(2.18) :
= (F{{ze1 + 01}), (3.3)

(2) _ T11(q)
A 2NZ1—IM (@ (F {1 + 1)) (4

Here the averaging is performed with distribution function :

2
1 R - A—
pa{o} = / dg¢ eilo ——42)\(2) — 726 2;521). (3.5)
\/27r)\§1)

GFA gives the following results for the free energy and equation for two-
tail A2 (see (2.19), (2.20)):

1 . 1
R R(T) = T + (O + 01) — M (ED (1 + o)
1
3 1+ 00) (B (1 + 01) szl 2Aﬁ>] . (36)
my = (FV{ee; + 013}) o (3.7
. 1
N = (B o), 5 2 Th(@). (3.8)
q

Neglecting the fluctuation term —% > Z;; AS;AS; in the Hamiltonian we
j

get the MFA approxirnation This concerns the case /\ﬁ) =0,—-pF()/N
= ——Iuml + F( {&1} and m; = (1){%1}
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The numerical calculations were performed for the model with near-
est neighbours interaction :

T11(q) =1 Z cos qa. (3.9)

The results of this investigation can be seen in Fig.1, 2. In Fig.1 the
free energy of the system as a function of order parameter for various
temperatures is depicted. It is known, that we get first order phase tran-
sition in the framework of two-tail approximation. This can be seen in
Fig.1. The curve for T'/Z(0) = 0.72 has two minima with equal energy.
Although the GFA is more rough than two-tail approximation, it gives
us a second order phase transition at 7'/Z(0) = 0.86. The results of tem-
perature dependences of magnetization in different approximation are
plotted in Fig.2.

The obtained results show that the two-tail approximation predicts a
non-physical behaviour in the close vicinity of the critical temperature.
This may lead to the non-controlled errors by investigation of binary
alloys and lattice gas. Therefore, for these systems we shall restrict only
GFA and compare results with MFA.

3.2. Binary alloy

The Hamiltonian of the non-magnetic binary alloy follows from (2.1) if
we put Ill(i - ]) = 112(i - ]) = IZZ(i - ]) =0,I';1 =T =0:

2 N 1 2 N
H = Hz = Z ZEQHZW + 5 Z Z Vag(i — j)xml'jg. (3.10)

a=1 i=1 a,8=11,j=1

The MFA and GFA may be easily reformulated for this case using for-
mulae of previous section. Our numerical calculations concern the sys-
tem with nearest neighbours interaction. As may be proved in section 2
the critical temperatures of binodal and spinodal decay depends only on
T = Vi1 + Vo —2V35 and are symetrical relatively substitution ¢, instead
of ¢;. This can be seen in Fig. 4, where binodal and spinodal tempera-
tures as a function of ¢; are depicted. The comparison of GFA and MFA
approximation results show that GFA approximation is essentially bet-
ter that MFA in the vicinity of ¢; = 0.5. When ¢; — 0 or ¢; — 1, the
difference disappears. It should be noticed that two-tail approximation
will give non-physical results namely in the vicinity of ¢; = 0.5.
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-0.57
-0.61—
. m
—065 L L L L L AL e
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: The free energy %F as a function of magnetization m for
various temperature (solid curves - two-tail approximation, long dashed
curves - GFA, short dashed curves - MFA)
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Figure 2: The magnetization m as a function of temperature 7' (solid
curve - two-tail approximation, long dashed curve - GFA, short dashed
curve - MFA)

0.3
1232

0.2

Figure 3: The two tail A as a function of temperature T' (solid curve -
two-tail approximation, dashed curve - GFA)
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1.0 == —

1T/T Ly * TR

0.8 —

06 —

04

0.2 o

00 L L L L L AL e

Figure 4: Phase diagrams for the model (3.9): 1- correspond to the bin-
odal temperature, 2- spinodal temperature (solid line - GFA, dashed line
- MFA)
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3.3. Lattice gas

We shall get the Hamiltonian of the non-magnetic lattice gas, if we put
Vi2(i — j) = Vaa(i — j) = 0 in case of binary alloy:

N 1 N
H=> px;+ 5 > V(i - jwiz;. (3.11)
i=1

ij=1

Indeed, the Hamiltonian (3.11) may describe the gas. Let us consider the
system in volume V and divide volume on N = V equal cubic cells. We
will use the condition that more than one particle can not be situated in
one site. Therefore, we get a lough model of a gas with repulsion between
particles on short distance and model interaction for long distance.
Here we neglect the kinetic energy of the particles. But being taken
into account it leads only to the renormalization of the chemical potential

=+ gln (2rh™*mkT), (3.12)

where m - particle’s mass.
Similarly to (2.5), the Hamiltonian (3.13) can be transformed to

N 1
H=E(u) + [pSio + = Z(i — 7)SioS;o, 3.13

(:u) ; 0~:0 2 iJZ:1 ( .7) 1050 ( )

where E(u) = Sp+ £V, To = sp+ 1V, 4Z(i — j) = V(i — j).

It is known from thermodynamics, that thermodynamical potential of

the system Q(u,T) = —pV, where p is pressure and V is volume of the

system. The average of z; that equal n = 1/v, plays the role of gas

density. The state equation can be written in the following form

PV = Qu(w), T) or p = 3 0p(r), ). (3.14)

In MFA the state equation can be obtained in the analytical form.
The expression for TP follows from (2.21) and has the following form:

1 1 1 1__ .
NQ(’U’T) = 5H + §V - §Imé + In 2 cosh(Ty + Zmy), (3.15)
where T'o(mg) = —BZmo + 1 1n }f;”lg, p = 2Ly — 7. If we take into

account that mgo = 2n — 1, we can obtain state equation in variables p,
n, T:

= —Ban® + ®(n), (3.16)

Nl
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where ®(n) = In 2. It should be noted that for van der Waals state
equation ®(n) = 5.

We have also obtained isoterms in GFA. Since the Hamiltonian of
the lattice gas is identical to the Hamiltonian of the binary alloy with
Via(i — j) = Vaa(i — j) = 0, we can use all approximation formulated in
the previous subsection to its investigation.

In the Fig.5 the isoterms for the lattice gas with nearest neighbours
interaction are depicted. The dashed curve corresponds to the MFA and
solid curve for the GFA. It can be seen that values of the pressure p and
binodal and spinodal temperature of the system obtained within GFA
are smaller than those obtained within MFA.

4. Conclusions

In this paper we have considered the M-component Ising model with
site disorder. Several approximation for this model have been formulated
here. Namely, we have obtained the expressions for the thermodynamical
potential, free energy and pair correlation functions within TTA, GFA
and MFA.

The numerical calculations were performed for some simpler models:
one-component Ising model, non-magnetic binary alloy and lattice gas.
For example, we have chosen the nearest neighbours interaction. For the
one-component Ising model we calculated the free energy as a function of
the magnetization, temperature dependences of the magnetization m(T")
and the two-tail A(®) (fluctuating parameter) within TTA, GFA, MFA.
For non-magnetic binary alloy we obtained phase diagrams (binodal and
spinodal curves) within GFA and MFA. For lattice gas the isoterms and
coexistence curves are depicted.

This work was supported in part by the International Soros Science
Education Program (ISSEP) through grant No. PSU062015.
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