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Introduction

Among various approaches to the relativistic direct interaction theory
(RDIT), the formalism of Fokker-type action integrals is most closely
related with field-theoretical descriptions of particle interaction [1-4].
This feature permits to construct models of particle systems with in-
teractions of transparent physical meaning. Unfortunately the Fokker
formalism gives rise to integral- or difference-differential equations of
motion which complicate to great extent an analysis of the Fokker-type
models.

On the other hand, mathematically simpler approaches to RDIT,
namely those which provide a prediction of particle evolution determined
by Newton-like equations, lead to phenomenologically, rather than the-
oretically, substantiated models.

There exists a relativistic two-particle model which possesses advan-
tages of both of the above classes of approaches to RDIT. This model
was originated by Fokker in the framework of his formalism [1] and it
was later elaborated in more detail by Staruszkiewicz [5], Rudd and Hill
[6] and Kiinzle [7]. Physically their model describes the following par-
ticle interaction mediated by a massless linear vector (electromagnetic)
field: the advanced field of the first particle acts on the second particle
and the retarded field of the second particle acts on the first particle. In
this model a one-to-one correspondence of points of two particle world
lines appears naturally, namely, of those points which are separated by
an isotropic interval. This correspondence allows to reduce the Fokker
integral to a single-time action, i.e. to reformulate the model into the
framework of the Lagrangian and then Hamiltonian formalism [8,7] and,
finally, to integrate the model by standard methods [6,7,9].

The structure of the above model points the way to its generaliza-
tions. The same 1-to-1 correspondence arises in the Fokker integrals
of the more general form, namely, in those integrals which integrand
contains the retarded or advanced Green’s function of the d’Alambert
equation. Fokker actions of such a kind produce a wide class of relati-
vistic two-particle models which can be called (following the Refs.[9,10])
time-asymmetric models. Some of them permit a field-theoretical inter-
pretation of interaction and thus can be of special interest in physical
applications.

There exist other ways leading to time-asymmetric models which are
based on mathematical rather than physical considerations.

One of these was proposed by Kiinzle [7,11] in the framework of
manifestly covariant predictive mechanics. He has shown that the time-
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asymmetric models form the only class of relativistic models which do
not fall under the purview of the well-known no-interaction theorem [12].

Another such approach starts from the 3-dimensional Lagrangian for-
malism in various forms of relativistic dynamics. Usually the form of rela-
tivistic dynamics is defined by means of a family of spacelike or isotropic
hypersurfaces determining the simultaneity relation in the Minkowski
space M. A possible generalization of forms of relativistic dynamics
is the isotropic form proposed in Ref.[13]. It is based on the family of
isotropic hypersurfaces which are the future- or past-oriented light cones
with the vertices located on one of the particle world lines. In this case the
simultaneity relation is determined not in whole My but only on points of
the particle world lines. This relation establishes for them a one-to-one
correspondence which is the same as in time-asymmetric models. The
attractive feature of the isotropic form is the ability to construct inter-
action Lagrangians which depend only on the first order derivatives (un-
like other forms of dynamics which require dependence of Lagrangians on
higher derivatives of all orders up to infinity). The relevant Hamiltonian
description constructed by means of standard Legendre transformation
reproduces the Kiinzle’s results.

It is shown in Ref.[13] that all the ways mentioned above lead to
different descriptions of the same class of the time-asymmetric models.
The existence of simple relations between these descriptions unifies them
into the common approach which can be referred to as the relativistic
two-particle mechanics on the light cone.

In the case of two-dimensional space-time the light cone degenerates
to the light front and the mechanics on the light cone becomes the front
form of two-dimensional relativistic dynamics. The general formulation
of the latter is proposed in Ref.[15] in the frameworks of both the La-
grangian and Hamiltonian formalisms. The dynamics of time-asymmetric
models in this case is rather simple and was well studied with several
examples both on classical [5,6,10,16] and quantum [17-19] levels.

In the more realistic case of the 4-dimensional Minkowski space the
dynamics of concrete time-asymmetric models has been studied far less.
The only model considered in literature (see [7,9]) describes the vector
particle interaction. It is complicated enough and some features of its
behaviour are not clear from the point of view of different formalisms.
An analysis of other time-asymmetric models, especially those which
permit a field-theoretical interpretation, is not expected to be simpler.
Nevertheless just such models can be useful in physical applications and
they need further elaboration.

For this purpose the convenient calculation scheme which allows the




3 IIpenpunT

study of time-asymmetric models is proposed here. This scheme is based
on the results of a previous work [13] (in collaboration with V.Tretyak).

In Section 1 the most general form of the Fokker-type action inte-
grals leading to the class of time-asymmetric models is proposed, and a
structure of those which correspond to the field-theoretically tractable
models is shown.

In Section 2 reformulation of the time-asymmetric models into the
framework of manifestly covariant Lagrangian formalism is performed,
and Noether’s integrals of motion are obtained as consequences of
Poincaré-invariance of the models.

In Section 3 the transition to the manifestly covariant description in
the framework of Dirac’s canonical formalism with constraints is done.
This description is based on the two Poincaré-invariant first class con-
straints. One of them is purely kinematic. This constraint determines the
above mentioned 1-to-1 correspondence between points of particle world
lines, ¢.e., the simultaneity on the light cone. The other constraint is
the mass-shell constraint which determines the dynamics of the system.
The general structure of this constraint is found and the connection of
its concrete form with a choice of the original Fokker integral (or La-
grangian) is established. In Appendix A the model which permits the
exact construction of the mass-shell constraint is represented.

The pair of first class constraints generates a gauge freedom which is
analyzed in Section 4. Unlike other models of such a kind, here the gauge
arbitrariness does not influence particle world lines and is purely de-
scriptive. It is shown the choice of gauge fixing constraints which permit
to reduce the manifestly covariant description to the three-dimensional
Hamiltonian description in terms of covariant particle positions.

By means of other gauge fixing constraints proposed in Section 5
an arbitrary time-asymmetric model can be reduced to the well known
Bakamjian-Thomas model supplemented by covariant particle positions
as functions of canonical variables. In Appendix B such a description is
constructed for the system of two free particles and its relation to the
standard Hamiltonian free-particle dynamics is found.

The Bakamjian-Thomas description of time-asymmetric models al-
lows to reduce corresponding two-body problems to quadratures, which
is done in Section 6 by means of the standard Hamilton-Jakobi method.

Notice that not only the Fokker approach, but all the intermedi-
ate formalisms entering into the proposed scheme, can be considered
as original ones for the formulation of time-asymmetric models. For in-
stance, in the framework of canonical formalism with constraints, the
dynamics of models is determined by the choice of the mass-shell con-
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straint; within the Bakamjian-Thomas description it is determined by
means of the function of the total mass. In any case, the variety of the
time-asymmetric models is as wide as the class of functions depending
on three arguments. Besides, the possibility to choose different descrip-
tions for the same model is convenient for comparison with other models
known in literature.

1. Time-asymmetric Fokker-type action integrals

We start with the most general Fokker-type action integral for a two-
particle systems which has the following form [3,4]:

2
I= —Zma/dm/a':g —~ /d71d72<1>; (1)
a=1

here m, (a = 1,2) is the rest mass of the a-th particle; z#(7r,) (n =
0,...,3) are the covariant coordinates of the a-th particle on the
Minkowski space My ; 7, is an arbitrary evolution parameter on the a-th
world line; x# = o — zb; &# = da¥ [dr,;

@ = \/#2\/43 Ule,ur,us), 2)

where U is an arbitrary scalar function of 4-vectors z and u, =
iq/+/%2. We choose the time-like Minkowski metrics, i.e., || nu ||=
diag(+,—,—, —), and put the light speed to be unit.

There exists a physically important class of Fokker-type integrals
which permit a field-theoretical interpretation of the interaction between
particles [3,4]. For this class the function U describing the interaction
mediated by the tensor field of rank n is given by

U™ = g1go(ur- u2)"G(z), (3)

where g, are the charges of particles, and G(x) is the symmetrical Green’s
function of relevant wave equation. The choice n = 1 and G(z) = §(z?)
corresponds to the well known Fokker-Wheeler-Feynman action for the
electromagnetic interaction [1,2].

The Fokker-type action leads mainly to integral- or difference-
differential equations of motion. Such equations describe systems with
infinite number of degrees of freedom and cause difficulties both mathe-
matical and physical.

The possibility to avoid these difficulties was noticed by Fokker [1]
and later was developed by Staruszkiewicz [5], Rudd and Hill [6]. They
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proposed to modify the two-particle Wheeler-Feynman action, namely,
to replace the symmetrical Green’s function by

Gy(z) = 20(na°)d(2*) (4)

which is the retarded (for n = +1) or advanced (n = —1) Green’s func-
tion of d’Alambert equation. The resulting time-asymmetric model yields
ordinary differential equations of motion. Their exact solution was ob-
tained in Refs.[5-7.9].

A natural generalization of this model leads to the action integral (1)
with the function @ of the form:

=0aG,, (5)

where ® is an arbitrary regular function of the form (2). Let us express
this function in a more explicit form.
Since the Green’s function (4) does not vanish if and only if

=0, nz2°>0, ie, 2’ =|x|, (6)

where x = (z; = —1f) (z = 1,2,3), the function ® does not depend
on the scalar argument x? Next let us suppose that the action (1),
(5) is determined only on tlmehke world lines (i.e., #2 > 0) which are
parametrized with well defined evolution parameters (i.e., ©0 > 0). Then,
using Eq.(6) one can easily prove the following inequalities:

&1~ &y >0, (7)
NEq x>0, a=1,2. (8)
Finally, the function ® can be put into the following form:

Vit /i Ty o )7

nZ1 -z niz-x’ (21 1)(B-T)

& = (1 2)(ds- 2) ( 9)
where W is an arbitrary regular function of the indicated positive argu-
ments. The general structure of ¥ determines the class of models which
we take under consideration. Especially, the choice of ¥ in the form

) _919(\/_ f)l n(( 1y ))n (10)

Nk x Mg Z1-x) (B x

corresponds to the n-rank tensor generalization of the vector model.
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2. Single-time Lagrangian formalism

The Fokker action (1) is parametrically invariant with respect to each
of the parameters 7, and 7. Thus the two of eight functions z/' (),
xh(72) to be found (one for each particles) remain undetermined within
the variational problem. The structure of the function ® allows to fix
partially this function arbitrariness in natural manner. Let us require of
the condition (6) to be identity if 71 = 7». It means, firstly, that both
world lines are parametrized with a common evolution parameter, for
instance, with 71 ; and, secondly, that a simultaneity relation for points of
world lines is set. Since the condition (6) can be treated as the equation
of a past- or future-oriented light cone (it depends both on what is a
value of n = £1 and what point z; or z» is chosen to be the vertex of
the cone), this parametrization can be called naturally the single-time
description on the light cone. Following the Ref.[8] the Green’s function
G, in the second term of the action (1) can be written down in the form:

29[ (331(7'1) - 33(2)(7'2))](5[(3}1(7'1) - £L'2(T2))2:| =
=0(n - TZ)/‘@(T‘Z) ' (ml(ﬁ) - 5U2(Tz)) ‘ (11)

Integrating explicitly this term over 75 one can reduce the functional (1)
to the single-time action

I=-— /dTi (12)

with the Lagrangian L = L|tx, where
2 ~
= Y ma/i2 + ®/|ds | (13)
a=1

The Lagrangian L is defined on the first prolongation TK of the 7-
dimensional configuration manifold K C M2 = My x My described by
the equation (6). The corresponding variational problem gives rise to
second order differential equations and thus the transition to the usual
Hamiltonian description is straightforward.

The action (12) is a parametrically invariant functional with respect
to the common evolution parameter 7. Hence the Lagrangian L (as well
as L) is a first order uniform function in particle velocities. This fact to-
gether with the condition (6) enables the removal redundant degrees of
freedom which correspond to the time variables 2%, 29. An explicit elim-
ination of these variables, both partial and complete (the latter leads to
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the ordinary Lagrangian description in the 6-dimensional configuration
space) breaks the manifest covariance of the description and makes the
hamiltonization procedure cumbersome.

It is more convenient to renew a manifest covariance by means of
transition to the Lagrangian description on the 8-dimensional configu-
ration space M2. For this purpose an unconditional extremum problem
is modified in favour of an equivalent conditional extremum problem of
the action

I'=— /dT (L + \z?) (14)

with the Lagrangian (13) defined on TM2. Here the Lagrangian mul-
tiplier A is introduced to take into account the condition (6) as the
holonomic constraint (the boundary constraint nz® > 0 is meant also).

For the sake of construction of the Hamiltonian description it is de-
sirable to put the Lagrangian (13) in a more convenient form. Let us
parametrize the space M3 by the collective variables

y' =g +ay), M=l - (15)
(the external and internal variables respectively) in terms of which
ot =y* + 1(=)%*, a=1,2, a=3-a. (16)

Taking into account the inequalities (8) and the differential consequence
of the constraint (6), i.e.,

-z =0, (17)

the following positive function can be introduced and written down in a
few ways:

0=ny -x=nx1-=ni2-x > 0. (18)
Then the Lagrangian (13) takes the following form:

LZGF(O'l,O'Q,(S), (19)
2

FEZmaoa—f—‘I/(ol,og,é), (20)
a=1

where an interacting term W, and thus the total expression F', may be
an arbitrary function of positive arguments:

oaz\/g';—g/ez\/y2+(—)ay-i:+§a':2/0, a=1,2,

§=dn-32/0% = (v° — 137)/6°. (21)
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Especially, for Eq.(10) we have
‘If(n) = glgg(UlUQ)l_n(Sn. (22)

Poincaré-invariance of both the Lagrangian (19) and the constraint
(6) leads to the existence of ten Noether’s integrals of motion. These
are the total momentum P, of the system and the angular momentum
tensor

Juv = yuPo — yo Py + Qo (23)
where
Quu =TuWy — TyWy, (24)
oL F F ] 1/F Fj)\&
Po=— = (L 2o ) e (22 )
’ 8y“ <Ul + g9 + 0 0 + 2 o1 (2] 0 +
+ (F—UlFll —0’2F£—2(5F$)’I]£L“H, (25)
oL 1(F F\y, 1(F F; z
=_——="|—=-= )4y =4+ = 2F;| £ 26
Wn oxH 2 <0'1 (o) 0 + 4 g1 + (o) 0 0 ’ ( )
and F, = 0F /00, (a=1,2), F§ = 0F/00.
Besides, the Lagrangian (19) satisfies identity:
yP+iw—L=0 (27)

which is the consequence of parametric invariance of the action (14).

3. Canonical formalism with constraints

The Lagrangian description in the configuration space M3 enables a nat-
ural transition to the manifestly covariant Hamiltonian description with
constraints [20] on the 16-dimensional phase space T*M3. First of all
consider general features of such a description.

Let us parametrize the space T*M2 by the position variables y*, z*
and conjugated momenta P,, w,, and introduce the standard Poisson

brackets [...,...]. Then the above integrals of motion P, and J,, be-
come the generators of the canonical realization of the Poincaré group
in T*M2.

By virtue of the parametric invariance of the Lagrangian description
the canonical Hamiltonian vanishes (as follows from the identity (27))
and the dynamics of a system is determined by the Poincaré-invariant
constraint which can be called as the mass-shell constraint in analogy to
the single-particle case.
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Besides, the kinematical constraint (6) is carried into the Hamilto-
nian description too, so that both these constraints are the primary ones.
The constraint (6) allows to remove a redundant internal coordinate, for
one z°. A conjugated momentum variable (wo in present instance) is
obviously unobservable and is sooner or later subject to elimination by
means of a secondary constraint which can be found to provide a self-
consistency of the description. Instead, it is more convenient to construct
the Hamiltonian description is such a form which uses at the beginning
the observables only. The latters are meant as quantities which do not
depend on the redundant momentum variable. Of course, there exist
arbitrariness in a choice of redundant variables. Nevertheless it is possi-
ble to formulate the observability condition unambiguously. Namely, the
function f(y,z, P,w) is observable if it satisfies the condition:

[f,2*] =0, (28)

where sign “&” denotes an equality on the light cone (6). Integrating
the condition (28) one conclude that an observable can be an arbitrary
function of the covariant arguments y*, z*, P, and v, = P"Q,,/P -«
(see (24)) which form 15 independent quantities (because P -v = 0).

The covariant particle coordinates z# and the canonical generators
P,, Ju are evidently the observables (in sense of the definition (28)).
This means that the description in terms of observables only provides
the complete physically important information concerning the classical
motion of a system. Hence it is natural to require of the Hamiltonian
equations of observable motion to be expressed in terms of observables
only. This requirement is fulfilled if the function on the left-hand side (l.-
h.s.) of the mass-shell constraint is observable. Besides the z? there exist
4 independent Poincaré-invariant functions of the observables. They are
P2 v%, P.-zand v-z =~ w-z. Thus the general structure of the mass-shell
constraint is as follows:

#(P?, v*, P-x, v-z) =0. (29)

Since the ¢ satisfies the condition (28), the corresponding Hamilto-
nian equations of motion hold the constraint (6) and do not produce
any secondary constraints. It follows from this fact that an extra con-
straint for redundant momentum variable would arise as the primary
constraint only and thus the set of equations (25), (26) would be twice
degenerated. For the present this extra constraint may be not taken into
account because of no its physical meaning while the constraints (29) and
(6) are considered as the pair of first class constraints which determine
completely the dynamics of the observables.
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Rather general above considerations lead to the Hamiltonian mechan-
ics which embraces the class of particle systems as wide as the original
Fokker or Lagrangian formalism does. Indeed, the mass-shell constraint
(29) can be considered as an equality which determines implicitly one of
the argument of ¢ as a function of three other arguments. And so, the
variety of all possible models in both the original Fokker and resulting
Hamiltonian formalisms is given rise (except few degenerate cases) by
an arbitrary function of three arguments.

Now we follow step—by—step the hamiltonization procedure of an ar-
bitrary time-asymmetric model which is given originally by means of its
Fokker or Lagrangian formulation. For this purpose consider the rela-
tions (25)—(26) as the set of equations for the particle velocities to be
found. In general case the rank defect of this set is 1 (as the consequence
of the parametric invariance of the description). In order to obtain the
mass-shell constraint in the desirable form (29) it is necessary to decrease
the rank of the set (25)—(26) by 1. This is possible owing to the holo-
nomicity of the constraint (6). Indeed, its differential consequence (17)
sets an additional relation for velocities which can be taken into account
on the right-hand side (r.-h.s.) of Eqs.(25)—(26). After this is done one
can easy to see that the indicated in Eq.(29) 4 arguments of the function
¢ can be expressed in terms of 3 independent functions o1, o2, d (21)
of coordinates and velocities. Especially,

F|
P-x:n<—1+ 2+2Fg>, (30)

o1 02

! ’
U.SU:Q(ﬂ_Q), (31)
g1 g9

. (F! > Fi F}
(-“ +Fé> o2 + 2<_1 +Fé> (—2 +Fé>6 ;
a1 \Oa 01 02
F F
+ 2(0—1 + 2y 2F,§> (F — ovF{ — 03 F — 26FY), (32)
1 2

while the remaining quantity v? obeys the relation

v® + (v-z)?P?/(P-x)* +

- 2F + o1 F1 + 02 F5 + 20F§ ) =0 (33)
nP-z \nP-x g1FL T o2 o ’
where
Fi Fj :
=122_Fp (34)

01 02
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Eliminating o1, o2, 6 from the set of equations (30)—(33) one can find
the mass-shell constraint in the form (29). Notice that besides the (30)-
(31) one can obtain one more relation which determines the unobservable
(in sense of (28)) quantity P - w in terms of o1, 02, d. This makes it
possible to find the above mentioned subsidiary primary constraint which
has not any physical meaning and thus will be omitted from further
consideration.

The possibility to construct the mass-shell constraint (29) in an ex-
plicit form depends on how successful can be excluded the quantities
o1, 02, 0 from the relations (30)—(33). For example, if the set of equa-
tions (30)—(32) permits the existence of a positive solution for o1, o3, ¢
in terms of P-x, v-z, P2, its substitution into the 1.-h.s of (33) yields the
mass-shell constraint sought. In certain models the quantity § falls out
the equations (30),(31) and (33). In these cases the only solving of two
the equations (30) and (31) with respect to o1, o2 is needed what sim-
plifies the construction of the mass-shell constraint. The example of such
a model which corresponds to the arbitrary superposition of the scalar,
vector and confinement interactions is represented in Appendix A.

Taking into account the complicated nonlinear structure of the equa-
tions (30)—(33), one can expect an existence of some critical points in
the phase (or prolonged configuration) space, at which this set of equa-
tions becomes degenerated or possesses a solution with unphysical (zero
or negative) values of o1, 02, J. At such points the equivalence be-
tween the Lagrangian and Hamiltonian descriptions can break. Similar
peculiarities occur when consider the one-dimensional time-asymmetric
models [16]. They correspond to the physical situations when particles
collide or reach the speed of light. One can hope that at least some of
such peculiarities would disappear in the three-dimensional counterparts
of these models.

4. Transition to the three-dimensional Hamiltonian
description

The scheme of the transition from the manifestly covariant description of
a canonical system with constraints to its three-dimensional formulation
is well known in literature [21,22]. It consists in the reduction of an orig-
inal phase space to a space of less dimensions (to be the reduced phase
space IP), determined by means of relevant number of pairs of second class
constraints. The latters serve also for constructing of the Dirac brack-
ets [...,...]* which being restricted to the P induce on PP the symplectic
structure, i.e., the nondegenerated Poisson brackets {...,...}. Final step
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of the reduction procedure consists in parametrization of P by such vari-
ables in terms of which the Poisson brackets take the standard form. For
this purpose it is convenient to use the Shanmugadhasan method [21],
that is, to perform in original phase space a canonical transformation
which reduces the set of constraints to the canonical form. The latter is
that form in which at least one constraint of each pair of second class
constraints means the vanishing of that new canonical variable which
must be eliminated. The remaining new variables parametrize the space
P in desirable way, i.e., they are canonical with respect to the induced
Poisson brackets.

When first class constraints are present, arbitrary (in principle) gauge
fixing constraints of the same number can be added in order to use
the above reduction procedure. In this case a proper choice of gauge
fixing constraints can simplify to a great extent the Sanmugadhasan
transformation and/or a final description in the reduced space P.

In our case the manifestly covariant Hamiltonian description on the
16-dimensional space T*MZ is based on three constraints. One of them
is a first class constraint and two other form a pair of second class con-
straints. Thus such a description can be reduced to the description on
the 12-dimensional phase space P. It has shown above that the dynamics
of such a system can be determined in physically equivalent way by the
pair of first class constraints, namely, the mass-shell constraint (29) and
the holonomic constraint (6). During the reduction procedure this fact
allows to replace the above mentioned second class constraint of non-
physical meaning by an arbitrary (not necessarily Poincaré-invariant)
gauge fixing constraint

Y(y,z, P,w) =0, (35)
where 1 obeys the only condition

[, 2] # 0. (36)

The constraint (35), which together with the (6) removes a pair of re-
dundant internal variables (for instance, z° and wy), has purely formal
meaning because its explicit form does not influence both the dynamics
of a system and the structure of final three-dimensional description.

In order to remove a redundant pair of external variables (for in-
stance, y° and Pp) we need one more gauge fixing constraint which com-
plements the mass-shell constraint and completes whole set of constraints
to the second class ones. This constraint breaks the parametric invari-
ance of the description and fixes the evolution parameter in terms of
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observables. Therefore it can be defined as follows:
x(y,az,P,v,t) =0, (37)
where the function x is only restricted by the conditions

[x, 9] # 0, (38)
dx /ot # 0; (39)

here and hereafter ¢ denotes the evolution parameter fixed with the con-
straint (37) unlike the undetermined parameter 7.

The gauge fixing constraint (37) (as well as the previous (35)) does
not influence the dynamics of a system, but its choice (together with a
structure of the constraints (29) and (6)) determines specific features of
final description, namely, the reduced phase space P (as a submanifold of
T*M2), the induced Poisson brackets, and a possible choice of variables,
in terms of which these brackets take the canonical form. An explicit
form of observables (i.e., the covariant particle positions, the generators
of the Poincaré group etc.) being functions of canonical variables of the
space P, depends on a choice of the constraint (37) too. Thus using the
arbitrariness of this choice one can make the effective influence on the
structure of the final description.

Notice, that the gauge freedom due to the parametric invariance
is also typical for other manifestly covariant approaches [23-25]. It of-
fers wide opportunities for three-dimensional reformulations of these ap-
proaches, for example, the obtaining of various forms of relativistic dy-
namics, the constructing of the formulation in which a selected group of
dynamical variables gets a simpler description.

In our case a special choice of the constraint (37) allows to avoid
the well-known no—interaction theorem [12], that is, to transit to such
a three-dimensional Hamiltonian description of time-asymmetric models
in which the spatial covariant particle positions become the canonical
variables. Indeed, following Darboux’s theorem this is possible if and
only if the variables z¢ (a = 1,2; i = 1,2,3) mutually “commute” (in
sense of the Poisson brackets on P), i.e.,

{zo2p} = ~lzo, 2]l e =0, i,j=123 ab=12 (10
(here sign “—” is due to the choice of Minkowski metrics as in Sec.1).
Taking the structure of the Dirac brackets into account, the condition
(40) takes the form:

(Iwh, dllx, 2] = [2h X[, 2i]) = 0. (41)

P_
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These relations can be treated as equations for the function y sought.
Their solution

X =x,z,Po,t), (42)

where the function on the r.-h.s. is an arbitrary function of indicated
arguments, can be chosen to satisfy the conditions (38), (39), what makes
it possible the transition to the relevant reduced description.

The three-dimensional Hamiltonian description in terms of covari-
ant variables is desirable in various aspects. For example, it simplifies
the introduction of the interaction with external fields and allows the
position representation on the quantum-mechanical level. But this de-
scription is not convenient for solving a two-body problem, because it
does not provide a relevant separation of external and internal degrees of
freedom. Below we propose the transition to another three-dimensional
description in which the desirable separation is achieved using relativistic
centre-of-mass variables.

5. Three-dimensional Hamiltonian description in
terms of relativistic centre-of-mass variables

We look for variables in terms of which the motion of a two-particle
system as a whole can be separated naturally from its internal evolution.
It is convenient to start this search in the framework of the manifestly
covariant Hamiltonian description (in T*M). We note, that the above
defined external and internal variables y*, P, and z*,w, do not solve this
task. Indeed, the manifestly covariant Hamiltonian equations of motion
for external variables y*,

g ~ [y, ¢l = 09/0F,, (43)

predict an intricate external evolution due to the general structure of the
function ¢ (29) including a particle interaction. It is desirable to replace
the y# by another variables Q* which describe the motion of a system
as a whole like the motion of single particle with 4-momentum FP,, i.e.,

Q" ~ P*. (44)

Such variables can be introduced by means of a canonical transformation
in T*M2,

(yua Pu; z", wu) = (QH7 P;u P, wu): (45)
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which does not change the total 4-momentum P, and provides a de-
pendence of the function ¢ on new external variables through the P?
only.

The transformation (45) can be naturally determined by means of
the generating function:

W(y, P,x,w) = Puy" + w, A(P/|P|)", 2", (46)
where |P| = vV P?, and ||[A(P/|P|)",|| € SO(1,3) obeys the condition:
A" PY = §8|P). (47)

The matrix A describes the Lorentz transformation into the centre-of-
inertia reference frame. The condition (47) fixes the A up to an arbitrary
matrix of spatial rotation (which can depend on P). Missing details we
note that this arbitrariness allows to get as the result of a following
reduction procedure various Hamiltonian forms of dynamics (see, for
example, [22,26]).
Let us choose A as the pure boost, i.e.,
P

50 3
|P|

Pl

A% 1] =

(48)
b; . Ligkie]
7] ‘ 0ij + TPIPTHFD)
Then we obtain the final description in the framework of the Bakamjian-
Thomas (BT) model, that is, the three-dimensional Hamiltonian descrip-
tion in the instant form of dynamics formulated in terms of the centre-
of-mass variables.

Let us write down explicitly the canonical transformation generated
by the function (46),

y" = Q" — LSy, ANOAN"" JOP,, (49)

o' = p"AS, wy = w A, (50)
where

S E AN Qe = puwy — prwy, (51)
and express the constraints (6) and (29) in terms of new variables:

pP=0, np”>0, e, p’—nlp/=0, (52)

P? — M?(S0,5%, p° p-w)=0. (53)

The function M in the 1.-h.s. of Eq.(53) is the positive solution of the
equation:

$(M2, M S0, 5%, Mp®, p-w) =0 (54)
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and has a sense of the total mass of the system. Under the general anal-
ysis of the description (when ¢ is meant arbitrary) the mass M can be
considered as an arbitrary function of the indicated scalar combinations
of the internal canonical variables p*,w,. It is obvious that the mass-
shell constraint (53) satisfies the condition (44) regardless of the internal
dynamics of the system. So, we have the desirable separation of variables.

Now we perform the transition to the three-dimensional Hamiltonian
description following the scheme proposed in Sec.4. Let choose the gauge
fixing constraint (37) in the following form:

Q° —t=9y" +tr(AQOAT/OP) —t =0, (55)

while the constraint (35) is meant arbitrary.
Following the Sanmugadhasan method [21] we perform the canonical
transformation

(Q07 Qi7 P07 Pi7 P0> Pi; wo, wi) =
= (Q07 Qla PU: Pi: ﬁoa Pl: wo, ﬂ-i) (56)

which is determined by the generating function:
W =R (Q° —t) + BQ" + wo(p” —nlpl) + mip". (57)
It has the following explicit form:

QO ZQO -1, ﬁo ZPO—U|P|7 Uy :Wi_"?wopi/|p| (58)

(the remaining variables do not change). This transformation reduces
the set of constraints to the canonical form (i.e., two the constraints
(52) and (54) among four ones read: p° = 0 and Q° = 0). Besides,
due to the explicit dependence of the transformation (56)—(58) on ¢, the
Hamiltonian H = Py appears. A following reduction of the description
onto the 12-dimensional phase space P parametrized by the canonical
variables Q!, P;, p', m; (i =1,2,3) is straightforward and leads to the
BT model [27] with the well-known canonical generators of the Poincaré

group,

H = PO = M? +P27 Pi:
Ji = Eiijij + Si7
(P X S),

(59)

Here S = p x 7 is the total spin (the internal angular momentum) of the
system, and M (p, 7) is the total mass of the system which determines its
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dynamics in the reduced space P. In our case M is the positive solution
of the equation:

p(M?, —M?*p*n*, nMp, —p-7) =0, (60)

which we call the mass-shell equation (here p = |p|, m = |&|).

Besides the canonical realization of the Poincaré group, the proposed
in Sect.4 reduction scheme permits to obtain the covariant coordinates
of particles x# as functions of the canonical variables, what makes it
possible to build particle world lines in the Minkowski space My. Using
constraints in the r.-h.s. of Eqgs.(15) and (48)—(51) it is easy to get the
zh explicitly,

= X%+ [AT(P/M)]" el(p, ), (61)
where
X0 = ¢ (62)
i [ (P X S)l
N =9 - yaem (63)

are the well-known Pryce centre-of-inertia variables [28], and

o= 3(=)"np, e =3(=)"p +npr' /M, a=1,2, a=3—a. (64)

a a

The formulae (61)—-(64) correspond to the special choice of general ex-
pressions for the covariant coordinates which is proposed in Refs.[29,30]
for a space-time interpretation of the BT model.

It is worth to note that the spatial particle positions z¢ are not
mutually involutive (in sense of Poisson brackets on P), i.e.,

{ag, 27} #0. (65)

It means that the BT description of time-asymmetric models is not
canonically equivalent to their Hamiltonian description in terms of cova-
riant variables (although their dynamics is the same in both the descrip-
tions). This situation takes place even in the free-particle case: when we
start from the Lagrangian description on the light cone (taking ¥ = 0
in (20)), we come to the BT description of two free particles in which
the function of the total mass M has a nonstandard form and the par-
ticle positions are not “commutative”. This description is considered in
Appendix B and its relation to the standard Hamiltonian description of
the free particles in the instant form of dynamics is found.

ICMP-96-13E 18

6. Reduction of the relativistic two-body problem to
quadratures

In the BT model the 12-dimensional phase space P can be expanded
naturally onto the external and internal subspaces P = P, x P;,,, where
the P., is parametrized by the external variables @);, P; and the P;, is
parametrized by the internal variables p;, ;.

Due to Poincaré-invariance of the description it is sufficient to choose
the centre-of-inertia reference frame in which

P=0 K=0, (66)

so that
Q=0 X=0, (67)
and then to consider the subspace P;, only. At this point the problem is
reduced to the rotating-invariant problem of some effective single body.
The corresponding phase trajectory lies in the plane which is orthogonal
to the S. For its description it is naturally to use the polar coordinates,
p=peE,, T=T,€E,+ S€L/p; (68)

here S = |S|; the unit vectors €,, €, are orthogonal to the S, they form
together with S a right triplet of vectors and can be decomposed in the
usual manner in terms of the Cartesian unit vectors i, j, é.e.,

€, =1cosp+jsing, €, =—isinp+jcosyp, (69)

where ¢ is the polar angle.
In terms of this denotations the mass-shell equation (60) reads:

(M3, —Mz(pzﬂ'z +8%), nMp, —pm,) =0, (70)
and the covariant coordinates of particles (61)—(64) take the form:

T =t + 5(=)"p, (71)

xq = (3(=)" + 0wy /M) pe, + nSe, /M. (72)

Using the equation (70) the internal radial momentum =, can be
expressed in terms of p, M, S and then following the Hamilton-Jakobi
method a solution of the Hamilton equations can be locally found in
quadratures,

E—ty = /dp o, (p, M, S)/OM, (73)

¢~ = = [do om(p. M, 5)/05. (74)
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The function 7,(p, M, S) usually consists of few branches and describes
the projection of the phase trajectory onto the subspace of the radial
variables (p,7,) = P, C P;,. Thus the quadratures (73), (74) give a
local solution of the problem only, i.e., within the domain of values of p
in which some branch of the function 7, exists. In order to obtain the
global solution it is necessary to sew up local solutions in such a way that
the resulting curve in P;, should be a continuous and preferably smooth
curve. Generally such a phase trajectory can consist of few isolated con-
tinuous components, and physical meaning of some of them turns out
to be not clear. This situation occurs often in various relativistic models
[9,16] and needs a care when constructing their Hamiltonian description.

Finally we give the direct prescription how to obtain the mass-shell
equation when the dynamics of a time-asymmetric model is given orig-
inally in the framework of the Fokker or Lagrangian formalism. In this
case the function ¢ in the 1.-h.s. of Eq.(70) is determined by the struc-
ture of the function F(oq,02,d) (20). Taking the relations (30)—(34) into
account one can represent the corresponding mass-shell equation in the
following form:

S?/p* + (F5— (§M? —m)p/M) (M/p —
— 2F + 01F| + 02 F} + 26F5) = 0, (75)

where o1, 09, d must be found from the set of equations:

Fq
_+F(§ = ba = (%M‘Fn(_)awp)% a:1727 (76)

Oa

b0} + b305 + 2b1b20 + 2M p(F — 01 F{ — 02 F — 26Ff) = M?*. (77)

Conclusion

The formalism of the Fokker-type action integrals has arisen as one of
early approaches to RDIT. In spite of the closed relation of this approach
to the field theory its application to the description of concrete physical
systems is held up by difficulties due to nonlocality of the equations
of motion. Alternatively a variety of other approaches which are more
similar mathematically to the nonrelativistic mechanics appears. They
make it possible the construction of much simpler (including exactly
solvable) but usually phenomenological models of relativistic systems of
interacting particles.

The class of time-asymmetric two-particle models proposed here can
be considered as the compromise approach which lies on the frontier
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between the field theory and the relativistic mechanics of directly inter-
acting particles and possesses some their advantages.

First of all, there exists a subclass of the time-asymmetric Fokker-
type integrals which permits a field-theoretical interpretation of the par-
ticle interaction and thus it can lead to tractable models of various phys-
ical systems. There is also an important possibility to modify these in-
tegrals in order to take semiphenomenologically into account such field
effects which by now can not be deduced from the first principles (for
example, the phenomenon of quark confinement).

Second, the time-asymmetric models are descriptionally flexible. It
is possible to reformulate them into the framework of the Lagrangian
and Hamiltonian formalisms (both in the manifestly covariant and three-
dimensional forms) using the covariant coordinates or the centre-of-mass
variables. These opportunities are useful for the study of the models and
enable their comparison with other models known in literature.

Third, all the time-asymmetric models are exactly solvable: their
equations of motion are integrable in quadratures without use of any
expansions in 1/¢ nor coupling constant. We plan in next works the
study of some most physically interesting models.

Author is much grateful to Professor R.Gaida and V. Tretyak for deep
their interest in this work and helpful discussion.

Appendix A. The model of particle system with
scalar, vector and confinement interactions

Let us choose the function ¥ (o1, 03,0) in the 1.-h.s. of Eq.(20) as follows:
\11:040102 +ﬁ(5+’)/ (A].)

where «,3,v are arbitrary constants. The first and second terms on
the r.-h.s. of Eq.(A.1) correspond to the scalar and vector field-type
interactions with the coupling constants a and [ respectively, and the
third term describes the confinement interaction (when v > 0). In the
nonrelativistic limit this model leads to the potential U = (a+3)/r+~r,
where r is the distance between particles.

Calculating F, and Fj for this case and substituting them into the
l.-h.s. of Eq.(33) one can see that the latter does not depend on §. The
corresponding set of equations (30)—(31) takes the form:

(mq + aog + Bog)/0a = by =n(3P -2+ (=) - ), (A.2)
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and it can be easy solved with respect to og,:

_ (bﬁ - ﬂ)ma + amg
7= - B B~ o -

Finally, the substitution of o, (A.3) into the l-h.s. of (33) gives the
mass-shell constraint

¢ = ¢f + ¢int = 0, (A4)

where

o5 = %PQ - %(m% +m§) + (my —mj3) (A.5)

is the free-particle term, and

_ 2amims + B(P% —m? —m3) 3 27( b1by —ﬂ) 3

¢int = nP .

2amims + (by — B)m3 + (b — B)m3

— (o =p7) np.m((bl—ﬂ)(bg—ﬂ)_O‘Q)

describes the interaction.

Appendix B. The free-particle system

The free-particle mass-shell constraint ¢ = 0 (see Eq.(A.5)) takes within
the framework of BT description the form
2) Tp _ 0.

PM? = w® = g(mi+m3) — o (mi—m3

s (B.1)

Besides, the requirement of o1, 05 to be positive restricts the phase space
to the domain in which

- pl < 3 Mp. (B.2)

The mass-shell equation is cubic with respect to the function of the
total mass M (p, ). Its solution has a complicate form and does not
coincide with the standard total mass of the free-particle system in the
BT model [31]. Nevertheless following the reduction scheme proposed in
Sec.4 and integrating the equations of motion (with use (B.2)) we come
to correct particle world lines.

Here we do not display this analysis which represent rather metho-
dological interest. Instead, we construct the canonical transformation of
the internal variables (p, ) + (r, k) which reduces the free-particle total
mass to the standard form.
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Let
m?—m2 p
=k - n———2°%. B.3
™ "o, (B.3)
The substitution of (B.3) into (B.1) leads to the bisquare equation for

M

)
(mi —m3)?

M- gmiami) + e

- k? =0, (B.4)

which has four solutions. They are:

2 2
Mk) = Y cikao = Y ca/m2 +k2, (B.5)
a=1 a=1

where €, = £1 (a = 1,2). The only one of them is of physical meaning
(if e, = 1). Let us show that nonphysical solutions can be dropped when
requiring positivity of M and taking (B.2) into account. Hereafter we set
my > msy. Using (B.2) and (B.3) in (B.1) one can obtain the inequalities

2 2\ 2
ms —m: :1
2 k|+— 1 “=" B.
T <| | + Wi , 5 (B.6)

IM? —m?
a =2z,

a

IV IA
V IA

which after simple calculations and use of (B.5) become as follows:
(81]{510 — EQon)(é‘ak‘ao + |k|) > 0, a=1,2. (B?)

Requiring the positivity of M and taking (B.7) into account we conclude
that ¢, = 1 what corresponds to the standard form of the free-particle
total mass.

Now taking an explicit expression for M (k) into account one can
write down the Eq.(B.3) in the following form:

T = k+g(k20—k10)§ =

0 U oW (p, k)
= (k- p+ (ks — k = P70 B.8
ap ( p+ 2( 20 10)0) op (B.8)
Thus the W (p,k) is the generating function of the transformation
sought, and we immediately obtain:

_ IW(p,k) _ n(1 1
r= o =P + AU pk. (B.9)

Eqgs.(B.8) and (B.9) which determine this transformation in an unexplicit
form, make it possible to express all dynamical quantities in terms of




23 IIpenpunT

new variables. Especially the expressions for the functions e,, €% (64)
determining the covariant coordinates of particles can be written down

as follows:
_ (kg e
eur1) = (7 (rs k), a-12
eo(r,k) = 1(=)"np(r,k), a=3-a, (B.10)

where the function p(r,k) has a cumbersome form but is not essential
for next calculations.

The covariant coordinates of particles (61)—(63), (B.10) run out the
standard description of the free particles in the framework of the BT
model [31] unlike the canonical generators (59) and the total mass (B.5)
(with €, = 1). Nevertheless the description obtained here reproduces
correctly the free-particle dynamics. In order to proof this statement we
perform (following [31]) the canonical transformation from the centre-of-
mass variables Q, P, r, k to the particle canonical variables q,,p, (a =
1,2). This transformation is defined by the generating function

2

k
W(‘h:‘lQ:P:k) = ﬁqa'P + ((h—QQ) : <k+
a=1

(P-X)P
m) (B.11)

It reduces the canonical generators (59), (B.5) to the standard free ex-
pressions in the instant form ot dynamics, i.e.,

2 2 2
H = po =Y \m3d+p: P = pa,
a=1 a=1 a=1

2 2
J = ZQa X Pa, K = —tP + ZQapaO: (B-12)
a=1

a=1

The covariant coordinates of particles (61)-(63), (B.10) in terms of new
variables read:

Jig :t+Aa, Xa :(Ia+Aapa/pa0: (B13)

where A, are some functions of canonical variables. These formulae
describe correct (straight) free-particle world lines, each of them is
parametrized by the time ¢ although shifted in time by A, in comparison
with the standard description.
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