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1 PreprintIntroductionAmong various approaches to the relativistic direct interaction theory(RDIT), the formalism of Fokker-type action integrals is most closelyrelated with �eld-theoretical descriptions of particle interaction [1{4].This feature permits to construct models of particle systems with in-teractions of transparent physical meaning. Unfortunately the Fokkerformalism gives rise to integral- or di�erence-di�erential equations ofmotion which complicate to great extent an analysis of the Fokker-typemodels.On the other hand, mathematically simpler approaches to RDIT,namely those which provide a prediction of particle evolution determinedby Newton-like equations, lead to phenomenologically, rather than the-oretically, substantiated models.There exists a relativistic two-particle model which possesses advan-tages of both of the above classes of approaches to RDIT. This modelwas originated by Fokker in the framework of his formalism [1] and itwas later elaborated in more detail by Staruszkiewicz [5], Rudd and Hill[6] and K�unzle [7]. Physically their model describes the following par-ticle interaction mediated by a massless linear vector (electromagnetic)�eld: the advanced �eld of the �rst particle acts on the second particleand the retarded �eld of the second particle acts on the �rst particle. Inthis model a one-to-one correspondence of points of two particle worldlines appears naturally, namely, of those points which are separated byan isotropic interval. This correspondence allows to reduce the Fokkerintegral to a single-time action, i.e. to reformulate the model into theframework of the Lagrangian and then Hamiltonian formalism [8,7] and,�nally, to integrate the model by standard methods [6,7,9].The structure of the above model points the way to its generaliza-tions. The same 1-to-1 correspondence arises in the Fokker integralsof the more general form, namely, in those integrals which integrandcontains the retarded or advanced Green's function of the d'Alambertequation. Fokker actions of such a kind produce a wide class of relati-vistic two-particle models which can be called (following the Refs.[9,10])time-asymmetric models. Some of them permit a �eld-theoretical inter-pretation of interaction and thus can be of special interest in physicalapplications.There exist other ways leading to time-asymmetric models which arebased on mathematical rather than physical considerations.One of these was proposed by K�unzle [7,11] in the framework ofmanifestly covariant predictive mechanics. He has shown that the time-
ICMP{96{13E 2asymmetric models form the only class of relativistic models which donot fall under the purview of the well-known no-interaction theorem [12].Another such approach starts from the 3-dimensional Lagrangian for-malism in various forms of relativistic dynamics. Usually the form of rela-tivistic dynamics is de�ned by means of a family of spacelike or isotropichypersurfaces determining the simultaneity relation in the Minkowskispace M 4 . A possible generalization of forms of relativistic dynamicsis the isotropic form proposed in Ref.[13]. It is based on the family ofisotropic hypersurfaces which are the future- or past-oriented light coneswith the vertices located on one of the particle world lines. In this case thesimultaneity relation is determined not in whole M 4 but only on points ofthe particle world lines. This relation establishes for them a one-to-onecorrespondence which is the same as in time-asymmetric models. Theattractive feature of the isotropic form is the ability to construct inter-action Lagrangians which depend only on the �rst order derivatives (un-like other forms of dynamics which require dependence of Lagrangians onhigher derivatives of all orders up to in�nity). The relevant Hamiltoniandescription constructed by means of standard Legendre transformationreproduces the K�unzle's results.It is shown in Ref.[13] that all the ways mentioned above lead todi�erent descriptions of the same class of the time-asymmetric models.The existence of simple relations between these descriptions uni�es theminto the common approach which can be referred to as the relativistictwo-particle mechanics on the light cone.In the case of two-dimensional space-time the light cone degeneratesto the light front and the mechanics on the light cone becomes the frontform of two-dimensional relativistic dynamics. The general formulationof the latter is proposed in Ref.[15] in the frameworks of both the La-grangian and Hamiltonian formalisms. The dynamics of time-asymmetricmodels in this case is rather simple and was well studied with severalexamples both on classical [5,6,10,16] and quantum [17{19] levels.In the more realistic case of the 4-dimensional Minkowski space thedynamics of concrete time-asymmetric models has been studied far less.The only model considered in literature (see [7,9]) describes the vectorparticle interaction. It is complicated enough and some features of itsbehaviour are not clear from the point of view of di�erent formalisms.An analysis of other time-asymmetric models, especially those whichpermit a �eld-theoretical interpretation, is not expected to be simpler.Nevertheless just such models can be useful in physical applications andthey need further elaboration.For this purpose the convenient calculation scheme which allows the



3 Preprintstudy of time-asymmetric models is proposed here. This scheme is basedon the results of a previous work [13] (in collaboration with V.Tretyak).In Section 1 the most general form of the Fokker-type action inte-grals leading to the class of time-asymmetric models is proposed, and astructure of those which correspond to the �eld-theoretically tractablemodels is shown.In Section 2 reformulation of the time-asymmetric models into theframework of manifestly covariant Lagrangian formalism is performed,and Noether's integrals of motion are obtained as consequences ofPoincar�e-invariance of the models.In Section 3 the transition to the manifestly covariant description inthe framework of Dirac's canonical formalism with constraints is done.This description is based on the two Poincar�e-invariant �rst class con-straints. One of them is purely kinematic. This constraint determines theabove mentioned 1-to-1 correspondence between points of particle worldlines, i.e., the simultaneity on the light cone. The other constraint isthe mass-shell constraint which determines the dynamics of the system.The general structure of this constraint is found and the connection ofits concrete form with a choice of the original Fokker integral (or La-grangian) is established. In Appendix A the model which permits theexact construction of the mass-shell constraint is represented.The pair of �rst class constraints generates a gauge freedom which isanalyzed in Section 4. Unlike other models of such a kind, here the gaugearbitrariness does not in
uence particle world lines and is purely de-scriptive. It is shown the choice of gauge �xing constraints which permitto reduce the manifestly covariant description to the three-dimensionalHamiltonian description in terms of covariant particle positions.By means of other gauge �xing constraints proposed in Section 5an arbitrary time-asymmetric model can be reduced to the well knownBakamjian-Thomas model supplemented by covariant particle positionsas functions of canonical variables. In Appendix B such a description isconstructed for the system of two free particles and its relation to thestandard Hamiltonian free-particle dynamics is found.The Bakamjian-Thomas description of time-asymmetric models al-lows to reduce corresponding two-body problems to quadratures, whichis done in Section 6 by means of the standard Hamilton-Jakobi method.Notice that not only the Fokker approach, but all the intermedi-ate formalisms entering into the proposed scheme, can be consideredas original ones for the formulation of time-asymmetric models. For in-stance, in the framework of canonical formalism with constraints, thedynamics of models is determined by the choice of the mass-shell con-
ICMP{96{13E 4straint; within the Bakamjian-Thomas description it is determined bymeans of the function of the total mass. In any case, the variety of thetime-asymmetric models is as wide as the class of functions dependingon three arguments. Besides, the possibility to choose di�erent descrip-tions for the same model is convenient for comparison with other modelsknown in literature.1. Time-asymmetric Fokker-type action integralsWe start with the most general Fokker-type action integral for a two-particle systems which has the following form [3,4]:I = � 2Xa=1maZ d�ap _x2a � Z Z d�1d�2 � ; (1)here ma (a = 1; 2) is the rest mass of the a-th particle; x�a(�a) (� =0; :::; 3) are the covariant coordinates of the a-th particle on theMinkowski space M 4 ; �a is an arbitrary evolution parameter on the a-thworld line; x� � x�1 � x�2 ; _x�a � dx�a=d�a;� �q _x21q _x22 U(x; u1; u2); (2)where U is an arbitrary scalar function of 4-vectors x and ua �_xa=p _x2a. We choose the time-like Minkowski metrics, i.e., k ��� k=diag(+;�;�;�), and put the light speed to be unit.There exists a physically important class of Fokker-type integralswhich permit a �eld-theoretical interpretation of the interaction betweenparticles [3,4]. For this class the function U describing the interactionmediated by the tensor �eld of rank n is given byU (n) = g1g2(u1 � u2)nG(x); (3)where ga are the charges of particles, andG(x) is the symmetrical Green'sfunction of relevant wave equation. The choice n = 1 and G(x) = �(x2)corresponds to the well known Fokker-Wheeler-Feynman action for theelectromagnetic interaction [1,2].The Fokker-type action leads mainly to integral- or di�erence-di�erential equations of motion. Such equations describe systems within�nite number of degrees of freedom and cause di�culties both mathe-matical and physical.The possibility to avoid these di�culties was noticed by Fokker [1]and later was developed by Staruszkiewicz [5], Rudd and Hill [6]. They



5 Preprintproposed to modify the two-particle Wheeler-Feynman action, namely,to replace the symmetrical Green's function byG�(x) = 2�(�x0)�(x2) (4)which is the retarded (for � = +1) or advanced (� = �1) Green's func-tion of d'Alambert equation. The resulting time-asymmetric model yieldsordinary di�erential equations of motion. Their exact solution was ob-tained in Refs.[5{7,9].A natural generalization of this model leads to the action integral (1)with the function � of the form:� = ~�G� ; (5)where ~� is an arbitrary regular function of the form (2). Let us expressthis function in a more explicit form.Since the Green's function (4) does not vanish if and only ifx2 = 0; �x0 > 0; i:e:; �x0 = jxj; (6)where x � (xi = �xi) (i = 1; 2; 3), the function ~� does not dependon the scalar argument x2. Next let us suppose that the action (1),(5) is determined only on timelike world lines (i.e., _x2a > 0) which areparametrized with well de�ned evolution parameters (i.e., _x0a > 0). Then,using Eq.(6) one can easily prove the following inequalities:_x1 � _x2 > 0; (7)� _xa � x > 0; a = 1; 2: (8)Finally, the function ~� can be put into the following form:~� = ( _x1 � x)( _x2 � x)	� p _x21� _x1 � x; p _x22� _x2 � x; _x1 � _x2( _x1 � x)( _x2 � x)�; (9)where 	 is an arbitrary regular function of the indicated positive argu-ments. The general structure of 	 determines the class of models whichwe take under consideration. Especially, the choice of 	 in the form	(n) = g1g2� p _x21� _x1 � x p _x22� _x2 � x�1�n� _x1 � _x2( _x1 � x)( _x2 � x)�n (10)corresponds to the n-rank tensor generalization of the vector model.
ICMP{96{13E 62. Single-time Lagrangian formalismThe Fokker action (1) is parametrically invariant with respect to eachof the parameters �1 and �2. Thus the two of eight functions x�1 (�1),x�2 (�2) to be found (one for each particles) remain undetermined withinthe variational problem. The structure of the function � allows to �xpartially this function arbitrariness in natural manner. Let us require ofthe condition (6) to be identity if �1 = �2. It means, �rstly, that bothworld lines are parametrized with a common evolution parameter, forinstance, with �1; and, secondly, that a simultaneity relation for points ofworld lines is set. Since the condition (6) can be treated as the equationof a past- or future-oriented light cone (it depends both on what is avalue of � = �1 and what point x1 or x2 is chosen to be the vertex ofthe cone), this parametrization can be called naturally the single-timedescription on the light cone. Following the Ref.[8] the Green's functionG� in the second term of the action (1) can be written down in the form:2�h��x01(�1)� x02(�2)�i���x1(�1)� x2(�2)�2� == �(�1 � �2).��� _x2(�2) � �x1(�1)� x2(�2)����: (11)Integrating explicitly this term over �2 one can reduce the functional (1)to the single-time actionI = � Z d� ~L (12)with the Lagrangian ~L � LjTK , whereL � 2Xa=1map _x2a + ~�=j _x2 � xj: (13)The Lagrangian ~L is de�ned on the �rst prolongation TK of the 7-dimensional con�guration manifold K � M 24 � M 4 � M 4 described bythe equation (6). The corresponding variational problem gives rise tosecond order di�erential equations and thus the transition to the usualHamiltonian description is straightforward.The action (12) is a parametrically invariant functional with respectto the common evolution parameter � . Hence the Lagrangian ~L (as wellas L) is a �rst order uniform function in particle velocities. This fact to-gether with the condition (6) enables the removal redundant degrees offreedom which correspond to the time variables x01; x02. An explicit elim-ination of these variables, both partial and complete (the latter leads to



7 Preprintthe ordinary Lagrangian description in the 6-dimensional con�gurationspace) breaks the manifest covariance of the description and makes thehamiltonization procedure cumbersome.It is more convenient to renew a manifest covariance by means oftransition to the Lagrangian description on the 8-dimensional con�gu-ration space M 24 . For this purpose an unconditional extremum problemis modi�ed in favour of an equivalent conditional extremum problem ofthe actionI 0 = � Z d� (L+ �x2) (14)with the Lagrangian (13) de�ned on TM 24 . Here the Lagrangian mul-tiplier � is introduced to take into account the condition (6) as theholonomic constraint (the boundary constraint �x0 > 0 is meant also).For the sake of construction of the Hamiltonian description it is de-sirable to put the Lagrangian (13) in a more convenient form. Let usparametrize the space M 24 by the collective variablesy� � 12 (x�1 + x�2 ); x� � x�1 � x�2 (15)(the external and internal variables respectively) in terms of whichx�a = y� + 12 (�)�ax�; a = 1; 2; �a = 3� a: (16)Taking into account the inequalities (8) and the di�erential consequenceof the constraint (6), i.e.,_x� x = 0; (17)the following positive function can be introduced and written down in afew ways:� � � _y � x = � _x1 � x = � _x2 � x > 0: (18)Then the Lagrangian (13) takes the following form:L = �F (�1; �2; �); (19)F � 2Xa=1ma�a +	(�1; �2; �); (20)where an interacting term 	, and thus the total expression F , may bean arbitrary function of positive arguments:�a �p _x2a.� =q _y2 + (�)�a _y � _x+ 14 _x2.�; a = 1; 2;� � _x1 � _x2=�2 = ( _y2 � 14 _x2)=�2: (21)
ICMP{96{13E 8Especially, for Eq.(10) we have	(n) = g1g2(�1�2)1�n�n: (22)Poincar�e-invariance of both the Lagrangian (19) and the constraint(6) leads to the existence of ten Noether's integrals of motion. Theseare the total momentum P� of the system and the angular momentumtensorJ�� = y�P� � y�P� +
�� ; (23)where
�� � x�w� � x�w�; (24)P� � @L@ _y� = �F10�1 + F20�2 + 2F�0� _y�� + 12�F10�1 � F20�2� _x�� ++ (F � �1F10 � �2F20 � 2�F�0)�x�; (25)w� � @L@ _x� = 12�F10�1 � F20�2� _y�� + 14�F10�1 + F20�2 � 2F�0� _x�� ; (26)and Fa0 � @F=@�a (a = 1; 2); F�0 � @F=@�.Besides, the Lagrangian (19) satis�es identity:_y �P + _x� w � L = 0 (27)which is the consequence of parametric invariance of the action (14).3. Canonical formalism with constraintsThe Lagrangian description in the con�guration space M 24 enables a nat-ural transition to the manifestly covariant Hamiltonian description withconstraints [20] on the 16-dimensional phase space T�M 24 . First of allconsider general features of such a description.Let us parametrize the space T�M 24 by the position variables y�; x�and conjugated momenta P�; w�, and introduce the standard Poissonbrackets [:::; :::]. Then the above integrals of motion P� and J�� be-come the generators of the canonical realization of the Poincar�e groupin T�M 24 .By virtue of the parametric invariance of the Lagrangian descriptionthe canonical Hamiltonian vanishes (as follows from the identity (27))and the dynamics of a system is determined by the Poincar�e-invariantconstraint which can be called as the mass-shell constraint in analogy tothe single-particle case.



9 PreprintBesides, the kinematical constraint (6) is carried into the Hamilto-nian description too, so that both these constraints are the primary ones.The constraint (6) allows to remove a redundant internal coordinate, forone x0. A conjugated momentum variable (w0 in present instance) isobviously unobservable and is sooner or later subject to elimination bymeans of a secondary constraint which can be found to provide a self-consistency of the description. Instead, it is more convenient to constructthe Hamiltonian description is such a form which uses at the beginningthe observables only. The latters are meant as quantities which do notdepend on the redundant momentum variable. Of course, there existarbitrariness in a choice of redundant variables. Nevertheless it is possi-ble to formulate the observability condition unambiguously. Namely, thefunction f(y; x; P; w) is observable if it satis�es the condition:[f; x2] � 0; (28)where sign \� " denotes an equality on the light cone (6). Integratingthe condition (28) one conclude that an observable can be an arbitraryfunction of the covariant arguments y�; x�; P� and v� � P �
��=P � x(see (24)) which form 15 independent quantities (because P � v � 0).The covariant particle coordinates x�a and the canonical generatorsP�; J�� are evidently the observables (in sense of the de�nition (28)).This means that the description in terms of observables only providesthe complete physically important information concerning the classicalmotion of a system. Hence it is natural to require of the Hamiltonianequations of observable motion to be expressed in terms of observablesonly. This requirement is ful�lled if the function on the left-hand side (l.-h.s.) of the mass-shell constraint is observable. Besides the x2 there exist4 independent Poincar�e-invariant functions of the observables. They areP 2; v2; P �x and v �x � w �x. Thus the general structure of the mass-shellconstraint is as follows:�(P 2; v2; P � x; v � x) = 0: (29)Since the � satis�es the condition (28), the corresponding Hamilto-nian equations of motion hold the constraint (6) and do not produceany secondary constraints. It follows from this fact that an extra con-straint for redundant momentum variable would arise as the primaryconstraint only and thus the set of equations (25), (26) would be twicedegenerated. For the present this extra constraint may be not taken intoaccount because of no its physical meaning while the constraints (29) and(6) are considered as the pair of �rst class constraints which determinecompletely the dynamics of the observables.

ICMP{96{13E 10Rather general above considerations lead to the Hamiltonian mechan-ics which embraces the class of particle systems as wide as the originalFokker or Lagrangian formalism does. Indeed, the mass-shell constraint(29) can be considered as an equality which determines implicitly one ofthe argument of � as a function of three other arguments. And so, thevariety of all possible models in both the original Fokker and resultingHamiltonian formalisms is given rise (except few degenerate cases) byan arbitrary function of three arguments.Now we follow step{by{step the hamiltonization procedure of an ar-bitrary time-asymmetric model which is given originally by means of itsFokker or Lagrangian formulation. For this purpose consider the rela-tions (25){(26) as the set of equations for the particle velocities to befound. In general case the rank defect of this set is 1 (as the consequenceof the parametric invariance of the description). In order to obtain themass-shell constraint in the desirable form (29) it is necessary to decreasethe rank of the set (25){(26) by 1. This is possible owing to the holo-nomicity of the constraint (6). Indeed, its di�erential consequence (17)sets an additional relation for velocities which can be taken into accounton the right-hand side (r.-h.s.) of Eqs.(25){(26). After this is done onecan easy to see that the indicated in Eq.(29) 4 arguments of the function� can be expressed in terms of 3 independent functions �1; �2; � (21)of coordinates and velocities. Especially,P � x = ��F10�1 + F20�2 + 2F�0� ; (30)v � x = �2�F10�1 � F20�2� ; (31)P 2 = 2Xa=1�Fa0�a + F�0�2�2a + 2�F10�1 + F�0��F20�2 + F�0�� ++ 2�F10�1 + F20�2 + 2F�0�(F � �1F10 � �2F20 � 2�F�0); (32)while the remaining quantity v2 obeys the relationv2 + (v �x)2P 2=(P �x)2 ++ ��P �x� P 2�P �x � 2F + �1F10 + �2F20 + 2�F�0� = 0; (33)where� � F10�1 F20�2 � F�02: (34)



11 PreprintEliminating �1; �2; � from the set of equations (30){(33) one can �ndthe mass-shell constraint in the form (29). Notice that besides the (30){(31) one can obtain one more relation which determines the unobservable(in sense of (28)) quantity P � w in terms of �1; �2; �. This makes itpossible to �nd the above mentioned subsidiary primary constraint whichhas not any physical meaning and thus will be omitted from furtherconsideration.The possibility to construct the mass-shell constraint (29) in an ex-plicit form depends on how successful can be excluded the quantities�1; �2; � from the relations (30){(33). For example, if the set of equa-tions (30){(32) permits the existence of a positive solution for �1; �2; �in terms of P �x; v �x; P 2, its substitution into the l.-h.s of (33) yields themass-shell constraint sought. In certain models the quantity � falls outthe equations (30),(31) and (33). In these cases the only solving of twothe equations (30) and (31) with respect to �1; �2 is needed what sim-pli�es the construction of the mass-shell constraint. The example of sucha model which corresponds to the arbitrary superposition of the scalar,vector and con�nement interactions is represented in Appendix A.Taking into account the complicated nonlinear structure of the equa-tions (30){(33), one can expect an existence of some critical points inthe phase (or prolonged con�guration) space, at which this set of equa-tions becomes degenerated or possesses a solution with unphysical (zeroor negative) values of �1; �2; �. At such points the equivalence be-tween the Lagrangian and Hamiltonian descriptions can break. Similarpeculiarities occur when consider the one-dimensional time-asymmetricmodels [16]. They correspond to the physical situations when particlescollide or reach the speed of light. One can hope that at least some ofsuch peculiarities would disappear in the three-dimensional counterpartsof these models.4. Transition to the three-dimensional HamiltoniandescriptionThe scheme of the transition from the manifestly covariant description ofa canonical system with constraints to its three-dimensional formulationis well known in literature [21,22]. It consists in the reduction of an orig-inal phase space to a space of less dimensions (to be the reduced phasespace P), determined by means of relevant number of pairs of second classconstraints. The latters serve also for constructing of the Dirac brack-ets [:::; :::]� which being restricted to the P induce on P the symplecticstructure, i.e., the nondegenerated Poisson brackets f:::; :::g. Final step
ICMP{96{13E 12of the reduction procedure consists in parametrization of P by such vari-ables in terms of which the Poisson brackets take the standard form. Forthis purpose it is convenient to use the Shanmugadhasan method [21],that is, to perform in original phase space a canonical transformationwhich reduces the set of constraints to the canonical form. The latter isthat form in which at least one constraint of each pair of second classconstraints means the vanishing of that new canonical variable whichmust be eliminated. The remaining new variables parametrize the spaceP in desirable way, i.e., they are canonical with respect to the inducedPoisson brackets.When �rst class constraints are present, arbitrary (in principle) gauge�xing constraints of the same number can be added in order to usethe above reduction procedure. In this case a proper choice of gauge�xing constraints can simplify to a great extent the Sanmugadhasantransformation and/or a �nal description in the reduced space P.In our case the manifestly covariant Hamiltonian description on the16-dimensional space T�M 24 is based on three constraints. One of themis a �rst class constraint and two other form a pair of second class con-straints. Thus such a description can be reduced to the description onthe 12-dimensional phase space P. It has shown above that the dynamicsof such a system can be determined in physically equivalent way by thepair of �rst class constraints, namely, the mass-shell constraint (29) andthe holonomic constraint (6). During the reduction procedure this factallows to replace the above mentioned second class constraint of non-physical meaning by an arbitrary (not necessarily Poincar�e-invariant)gauge �xing constraint (y; x; P; w) = 0; (35)where  obeys the only condition[ ; x2] 6= 0: (36)The constraint (35), which together with the (6) removes a pair of re-dundant internal variables (for instance, x0 and w0), has purely formalmeaning because its explicit form does not in
uence both the dynamicsof a system and the structure of �nal three-dimensional description.In order to remove a redundant pair of external variables (for in-stance, y0 and P0) we need one more gauge �xing constraint which com-plements the mass-shell constraint and completes whole set of constraintsto the second class ones. This constraint breaks the parametric invari-ance of the description and �xes the evolution parameter in terms of



13 Preprintobservables. Therefore it can be de�ned as follows:�(y; x; P; v; t) = 0; (37)where the function � is only restricted by the conditions[�; �] 6= 0; (38)@�=@t 6= 0; (39)here and hereafter t denotes the evolution parameter �xed with the con-straint (37) unlike the undetermined parameter � .The gauge �xing constraint (37) (as well as the previous (35)) doesnot in
uence the dynamics of a system, but its choice (together with astructure of the constraints (29) and (6)) determines speci�c features of�nal description, namely, the reduced phase space P (as a submanifold ofT�M 24 ), the induced Poisson brackets, and a possible choice of variables,in terms of which these brackets take the canonical form. An explicitform of observables (i.e., the covariant particle positions, the generatorsof the Poincar�e group etc.) being functions of canonical variables of thespace P, depends on a choice of the constraint (37) too. Thus using thearbitrariness of this choice one can make the e�ective in
uence on thestructure of the �nal description.Notice, that the gauge freedom due to the parametric invarianceis also typical for other manifestly covariant approaches [23{25]. It of-fers wide opportunities for three-dimensional reformulations of these ap-proaches, for example, the obtaining of various forms of relativistic dy-namics, the constructing of the formulation in which a selected group ofdynamical variables gets a simpler description.In our case a special choice of the constraint (37) allows to avoidthe well-known no{interaction theorem [12], that is, to transit to sucha three-dimensional Hamiltonian description of time-asymmetric modelsin which the spatial covariant particle positions become the canonicalvariables. Indeed, following Darboux's theorem this is possible if andonly if the variables xia (a = 1; 2; i = 1; 2; 3) mutually \commute" (insense of the Poisson brackets on P), i.e.,fxia; xjbg � �[xia; xjb ]�jP= 0; i; j = 1; 2; 3; a; b = 1; 2 (40)(here sign \ { " is due to the choice of Minkowski metrics as in Sec.1).Taking the structure of the Dirac brackets into account, the condition(40) takes the form:�[xia; �][�; xjb]� [xia; �][�; xjb]�P= 0: (41)
ICMP{96{13E 14These relations can be treated as equations for the function � sought.Their solution� = �(y; x; P0; t); (42)where the function on the r.-h.s. is an arbitrary function of indicatedarguments, can be chosen to satisfy the conditions (38), (39), what makesit possible the transition to the relevant reduced description.The three-dimensional Hamiltonian description in terms of covari-ant variables is desirable in various aspects. For example, it simpli�esthe introduction of the interaction with external �elds and allows theposition representation on the quantum-mechanical level. But this de-scription is not convenient for solving a two-body problem, because itdoes not provide a relevant separation of external and internal degrees offreedom. Below we propose the transition to another three-dimensionaldescription in which the desirable separation is achieved using relativisticcentre-of-mass variables.5. Three-dimensional Hamiltonian description interms of relativistic centre-of-mass variablesWe look for variables in terms of which the motion of a two-particlesystem as a whole can be separated naturally from its internal evolution.It is convenient to start this search in the framework of the manifestlycovariant Hamiltonian description (in T�M ). We note, that the abovede�ned external and internal variables y�; P� and x�; w� do not solve thistask. Indeed, the manifestly covariant Hamiltonian equations of motionfor external variables y�,_y� � [y�; �] = @�=@P�; (43)predict an intricate external evolution due to the general structure of thefunction � (29) including a particle interaction. It is desirable to replacethe y� by another variables Q� which describe the motion of a systemas a whole like the motion of single particle with 4-momentum P�, i.e.,_Q� � P�: (44)Such variables can be introduced by means of a canonical transformationin T�M 24 ,(y�; P�; x�; w�) 7! (Q�; P�; ��; !�); (45)



15 Preprintwhich does not change the total 4-momentum P� and provides a de-pendence of the function � on new external variables through the P 2only.The transformation (45) can be naturally determined by means ofthe generating function:W (y; P; x; !) = P�y� + !��(P=jP j)��x�; (46)where jP j � pP 2, and k�(P=jP j)��k 2 SO(1; 3) obeys the condition:���P � = ��0 jP j: (47)The matrix � describes the Lorentz transformation into the centre-of-inertia reference frame. The condition (47) �xes the � up to an arbitrarymatrix of spatial rotation (which can depend on P ). Missing details wenote that this arbitrariness allows to get as the result of a followingreduction procedure various Hamiltonian forms of dynamics (see, forexample, [22,26]).Let us choose � as the pure boost, i.e.,k���k = 






 P0jP j PjjP jPijP j �ij + PiPjjP j(jP j+P0) 






 : (48)Then we obtain the �nal description in the framework of the Bakamjian-Thomas (BT) model, that is, the three-dimensional Hamiltonian descrip-tion in the instant form of dynamics formulated in terms of the centre-of-mass variables.Let us write down explicitly the canonical transformation generatedby the function (46),y� = Q� � 12S�����@���=@P�; (49)x� = ��� �� ; w� = !����; (50)whereS�� � � �� � �� 
�� = ��!� � ��!�; (51)and express the constraints (6) and (29) in terms of new variables:�2 = 0; ��0 > 0; i:e:; �0 � �j�j = 0; (52)P 2 �M2(S0�S0�; �0; ��!) = 0: (53)The function M in the l.-h.s. of Eq.(53) is the positive solution of theequation:�(M2;M2S0�S0�; M�0; ��!) = 0 (54)
ICMP{96{13E 16and has a sense of the total mass of the system. Under the general anal-ysis of the description (when � is meant arbitrary) the mass M can beconsidered as an arbitrary function of the indicated scalar combinationsof the internal canonical variables ��; !�. It is obvious that the mass-shell constraint (53) satis�es the condition (44) regardless of the internaldynamics of the system. So, we have the desirable separation of variables.Now we perform the transition to the three-dimensional Hamiltoniandescription following the scheme proposed in Sec.4. Let choose the gauge�xing constraint (37) in the following form:Q0 � t � y0 + tr(�
 @�T=@P0)� t = 0; (55)while the constraint (35) is meant arbitrary.Following the Sanmugadhasan method [21] we perform the canonicaltransformation(Q0; Qi; P0; Pi; �0; �i; !0; !i) 7!7! ( �Q0; Qi; P0; Pi; ��0; �i; !0; �i) (56)which is determined by the generating function:~W = P0(Q0 � t) + PiQi + !0(�0 � �j�j) + �i�i: (57)It has the following explicit form:�Q0 = Q0 � t; ��0 = �0 � �j�j; �i = !i � �!0�i=j�j (58)(the remaining variables do not change). This transformation reducesthe set of constraints to the canonical form (i.e., two the constraints(52) and (54) among four ones read: ��0 = 0 and �Q0 = 0). Besides,due to the explicit dependence of the transformation (56){(58) on t, theHamiltonian H = P0 appears. A following reduction of the descriptiononto the 12-dimensional phase space P parametrized by the canonicalvariables Qi; Pi; �i; �i (i = 1; 2; 3) is straightforward and leads to theBT model [27] with the well-known canonical generators of the Poincar�egroup,H = P0 = pM2 +P2; Pi;Ji = " kij QjPk + Si;Ki = �tPi + QiH + (P� S)iM +H ;: (59)Here S � ��� is the total spin (the internal angular momentum) of thesystem, andM(�;�) is the total mass of the system which determines its



17 Preprintdynamics in the reduced space P. In our case M is the positive solutionof the equation:�(M2; �M2�2�2; �M�; ����) = 0; (60)which we call the mass-shell equation (here � � j�j; � � j�j).Besides the canonical realization of the Poincar�e group, the proposedin Sect.4 reduction scheme permits to obtain the covariant coordinatesof particles x�a as functions of the canonical variables, what makes itpossible to build particle world lines in the Minkowski space M 4 . Usingconstraints in the r.-h.s. of Eqs.(15) and (48){(51) it is easy to get thex�a explicitly,x�a = X� + ��T(P=M)��� e�a(�;�); (61)whereX0 = t; (62)X i = Qi � (P� S)iM(M+H) (63)are the well-known Pryce centre-of-inertia variables [28], ande0a = 12 (�)�a��; eia = 12 (�)�a�i + ���i=M; a = 1; 2; �a = 3� a: (64)The formulae (61){(64) correspond to the special choice of general ex-pressions for the covariant coordinates which is proposed in Refs.[29,30]for a space-time interpretation of the BT model.It is worth to note that the spatial particle positions xia are notmutually involutive (in sense of Poisson brackets on P), i.e.,fxia; xjbg 6= 0: (65)It means that the BT description of time-asymmetric models is notcanonically equivalent to their Hamiltonian description in terms of cova-riant variables (although their dynamics is the same in both the descrip-tions). This situation takes place even in the free-particle case: when westart from the Lagrangian description on the light cone (taking 	 = 0in (20)), we come to the BT description of two free particles in whichthe function of the total mass M has a nonstandard form and the par-ticle positions are not \commutative". This description is considered inAppendix B and its relation to the standard Hamiltonian description ofthe free particles in the instant form of dynamics is found.
ICMP{96{13E 186. Reduction of the relativistic two-body problem toquadraturesIn the BT model the 12-dimensional phase space P can be expandednaturally onto the external and internal subspaces P = Pex�Pin, wherethe Pex is parametrized by the external variables Qi; Pi and the Pin isparametrized by the internal variables �i; �i.Due to Poincar�e-invariance of the description it is su�cient to choosethe centre-of-inertia reference frame in whichP = 0; K = 0; (66)so thatQ = 0; X = 0; (67)and then to consider the subspace Pin only. At this point the problem isreduced to the rotating-invariant problem of some e�ective single body.The corresponding phase trajectory lies in the plane which is orthogonalto the S. For its description it is naturally to use the polar coordinates,� = ���; � = ���� + S�'=�; (68)here S � jSj; the unit vectors ��; �' are orthogonal to the S, they formtogether with S a right triplet of vectors and can be decomposed in theusual manner in terms of the Cartesian unit vectors i; j, i.e.,�� = i cos'+ j sin'; �' = �i sin'+ j cos'; (69)where ' is the polar angle.In terms of this denotations the mass-shell equation (60) reads:�(M2; �M2(�2�2� + S2); �M�; ����) = 0; (70)and the covariant coordinates of particles (61){(64) take the form:x0a = t + 12 (�)�a��; (71)xa = � 12 (�)�a + ���=M� ��� + �S�'=M: (72)Using the equation (70) the internal radial momentum �� can beexpressed in terms of �; M; S and then following the Hamilton-Jakobimethod a solution of the Hamilton equations can be locally found inquadratures,t � t0 = Z d� @��(�;M; S)=@M; (73)' � '0 = � Z d� @��(�;M; S)=@S: (74)



19 PreprintThe function ��(�;M; S) usually consists of few branches and describesthe projection of the phase trajectory onto the subspace of the radialvariables (�; ��) � P� � Pin. Thus the quadratures (73), (74) give alocal solution of the problem only, i.e., within the domain of values of �in which some branch of the function �� exists. In order to obtain theglobal solution it is necessary to sew up local solutions in such a way thatthe resulting curve in Pin should be a continuous and preferably smoothcurve. Generally such a phase trajectory can consist of few isolated con-tinuous components, and physical meaning of some of them turns outto be not clear. This situation occurs often in various relativistic models[9,16] and needs a care when constructing their Hamiltonian description.Finally we give the direct prescription how to obtain the mass-shellequation when the dynamics of a time-asymmetric model is given orig-inally in the framework of the Fokker or Lagrangian formalism. In thiscase the function � in the l.-h.s. of Eq.(70) is determined by the struc-ture of the function F (�1; �2; �) (20). Taking the relations (30){(34) intoaccount one can represent the corresponding mass-shell equation in thefollowing form:S2=�2 + �F�0 � ( 14M2 � �2�)�=M� (M=� �� 2F + �1F10 + �2F20 + 2�F�0) = 0; (75)where �1; �2; � must be found from the set of equations:Fa0�a + F�0 = ba � ( 12M + �(�)a��) �; a = 1; 2; (76)b21�21 + b22�22 + 2b1b2� + 2M�(F � �1F10 � �2F20 � 2�F�0) = M2: (77)ConclusionThe formalism of the Fokker-type action integrals has arisen as one ofearly approaches to RDIT. In spite of the closed relation of this approachto the �eld theory its application to the description of concrete physicalsystems is held up by di�culties due to nonlocality of the equationsof motion. Alternatively a variety of other approaches which are moresimilar mathematically to the nonrelativistic mechanics appears. Theymake it possible the construction of much simpler (including exactlysolvable) but usually phenomenological models of relativistic systems ofinteracting particles.The class of time-asymmetric two-particle models proposed here canbe considered as the compromise approach which lies on the frontier
ICMP{96{13E 20between the �eld theory and the relativistic mechanics of directly inter-acting particles and possesses some their advantages.First of all, there exists a subclass of the time-asymmetric Fokker-type integrals which permits a �eld-theoretical interpretation of the par-ticle interaction and thus it can lead to tractable models of various phys-ical systems. There is also an important possibility to modify these in-tegrals in order to take semiphenomenologically into account such �elde�ects which by now can not be deduced from the �rst principles (forexample, the phenomenon of quark con�nement).Second, the time-asymmetric models are descriptionally 
exible. Itis possible to reformulate them into the framework of the Lagrangianand Hamiltonian formalisms (both in the manifestly covariant and three-dimensional forms) using the covariant coordinates or the centre-of-massvariables. These opportunities are useful for the study of the models andenable their comparison with other models known in literature.Third, all the time-asymmetric models are exactly solvable: theirequations of motion are integrable in quadratures without use of anyexpansions in 1=c nor coupling constant. We plan in next works thestudy of some most physically interesting models.Author is much grateful to Professor R.Gaida and V.Tretyak for deeptheir interest in this work and helpful discussion.Appendix A. The model of particle system withscalar, vector and con�nement interactionsLet us choose the function 	(�1; �2; �) in the l.-h.s. of Eq.(20) as follows:	 = ��1�2 + �� + 
 (A.1)where �; �; 
 are arbitrary constants. The �rst and second terms onthe r.-h.s. of Eq.(A.1) correspond to the scalar and vector �eld-typeinteractions with the coupling constants � and � respectively, and thethird term describes the con�nement interaction (when 
 > 0). In thenonrelativistic limit this model leads to the potential U = (�+�)=r+
r,where r is the distance between particles.Calculating F 0a and F 0� for this case and substituting them into thel.-h.s. of Eq.(33) one can see that the latter does not depend on �. Thecorresponding set of equations (30){(31) takes the form:(ma + ���a + ��a)=�a = ba � �( 12P � x+ (�)�av � x); (A.2)



21 Preprintand it can be easy solved with respect to �a:�a = (b�a � �)ma + �m�a(b1 � �)(b2 � �)� �2 : (A.3)Finally, the substitution of �a (A.3) into the l.-h.s. of (33) gives themass-shell constraint� = �f + �int = 0; (A.4)where�f = 14P 2 � 12 (m21 +m22) + (m21 �m22) v � xP � x + v2 (A.5)is the free-particle term, and�int = � 2�m1m2 + �(P 2 �m21 �m22)�P � x � 2
� b1b2�P � x � ���� (�2 � �2)2�m1m2 + (b1 � �)m22 + (b2 � �)m21�P � x�(b1 � �)(b2 � �)� �2� (A.6)describes the interaction.Appendix B. The free-particle systemThe free-particle mass-shell constraint �f = 0 (see Eq.(A.5)) takes withinthe framework of BT description the form14M2 � �2 � 12 (m21 +m22) � � (m21 �m22)� � �M� = 0: (B.1)Besides, the requirement of �1; �2 to be positive restricts the phase spaceto the domain in whichj� � �j < 12M�: (B.2)The mass-shell equation is cubic with respect to the function of thetotal mass M(�;�). Its solution has a complicate form and does notcoincide with the standard total mass of the free-particle system in theBT model [31]. Nevertheless following the reduction scheme proposed inSec.4 and integrating the equations of motion (with use (B.2)) we cometo correct particle world lines.Here we do not display this analysis which represent rather metho-dological interest. Instead, we construct the canonical transformation ofthe internal variables (�;�) 7! (r;k) which reduces the free-particle totalmass to the standard form.

ICMP{96{13E 22Let� = k � � m21 �m222M �� : (B.3)The substitution of (B.3) into (B.1) leads to the bisquare equation forM , 14M2 � 12 (m21 +m22) + (m21 �m22)24M2 � k2 = 0; (B.4)which has four solutions. They are:M(k) = 2Xa=1 "aka0 � 2Xa=1 "apm2a + k2; (B.5)where "a = �1 (a = 1; 2). The only one of them is of physical meaning(if "a = 1). Let us show that nonphysical solutions can be dropped whenrequiring positivity ofM and taking (B.2) into account. Hereafter we setm1 > m2. Using (B.2) and (B.3) in (B.1) one can obtain the inequalities14M2 �m2a �� �2 �� �jkj+ m2a �m2�a2M �2 ; a = 1;a = 2; (B.6)which after simple calculations and use of (B.5) become as follows:("1k10 � "2k20)("aka0 + jkj) � 0; a = 1; 2: (B.7)Requiring the positivity ofM and taking (B.7) into account we concludethat "a = 1 what corresponds to the standard form of the free-particletotal mass.Now taking an explicit expression for M(k) into account one canwrite down the Eq.(B.3) in the following form:� = k+ �2(k20 � k10)�� == @@� �k � �+ �2 (k20 � k10)�� � @W (�;k)@� : (B.8)Thus the W (�;k) is the generating function of the transformationsought, and we immediately obtain:r = @W (�;k)@k = � + �2� 1k20 � 1k10��k: (B.9)Eqs.(B.8) and (B.9) which determine this transformation in an unexplicitform, make it possible to express all dynamical quantities in terms of



23 Preprintnew variables. Especially the expressions for the functions ea; e0a (64)determining the covariant coordinates of particles can be written downas follows:ea(r;k) = (�)�a�k�a0M r+ e0aka0 k� ; a = 1; 2;e0a(r;k) = 12 (�)�a��(r;k); �a = 3� a; (B.10)where the function �(r;k) has a cumbersome form but is not essentialfor next calculations.The covariant coordinates of particles (61){(63), (B.10) run out thestandard description of the free particles in the framework of the BTmodel [31] unlike the canonical generators (59) and the total mass (B.5)(with "a = 1). Nevertheless the description obtained here reproducescorrectly the free-particle dynamics. In order to proof this statement weperform (following [31]) the canonical transformation from the centre-of-mass variables Q;P; r;k to the particle canonical variables qa;pa (a =1; 2). This transformation is de�ned by the generating function~W (q1;q2;P;k) = 2Xa=1 ka0M qa�P + (q1�q2) ��k+ (P�k)PM(M+H)�: (B.11)It reduces the canonical generators (59), (B.5) to the standard free ex-pressions in the instant form ot dynamics, i.e.,H = 2Xa=1 pa0 � 2Xa=1qm22 + p2a; P = 2Xa=1pa;J = 2Xa=1qa � pa; K = �tP + 2Xa=1qapa0; (B.12)The covariant coordinates of particles (61){(63), (B.10) in terms of newvariables read:x0a = t+�a; xa = qa +�apa=pa0; (B.13)where �a are some functions of canonical variables. These formulaedescribe correct (straight) free-particle world lines, each of them isparametrized by the time t although shifted in time by �a in comparisonwith the standard description.
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