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Анотацiя. Дослiджуються наслiдки формули гiпергеометричного
перетворення Мiньярi Скарпелло i Рiтеллi [Open J. Math. Sci. 2 84–92
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параметрiв i аргументiв. Встановлено зв’язок з особливими значен-
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ням Рамануджана та його розрахунками явних виразiв для деяких
функцiй 2F1.
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of certain 2F1 functions are discussed.

Подається в The Ramanujan Journal

Submitted to The Ramanujan Journal

c© Iнститут фiзики конденсованих систем 2023
Institute for Condensed Matter Physics 2023



Препринти Iнституту фiзики конденсованих систем НАН України
розповсюджуються серед наукових та iнформацiйних установ. Вони
також доступнi по електроннiй комп’ютернiй мережi на WWW-сер-
верi iнституту за адресою http://www.icmp.lviv.ua/

The preprints of the Institute for Condensed Matter Physics of the Na-
tional Academy of Sciences of Ukraine are distributed to scientific and
informational institutions. They also are available by computer network
from Institute’s WWW server (http://www.icmp.lviv.ua/)

Данiеле Рiтеллi
Микола Адрiанович Шпот

Елiптичний iнтеграл Лежандра, формули

гiпергеометричних перетворень i явнi вирази для

гiпергеометричних функцiй

Роботу отримано 1 грудня 2023р.

Затверджено до друку Вченою радою IФКС НАН України

Рекомендовано до друку вiддiлом Статистичної теорiї
конденсованих систем

Виготовлено при IФКС НАН України
c© Усi права застереженi

ICMP–23–05E 1

1. Introduction

The present article discusses the consequences and connections, that are
in many ways surprising, of the formula (8) below, proposed by Mingari
Scarpello and Ritelli (MSR) in [1]

This formula, as reported in [1, (13)], comes from a reformulation of
the elliptic integral

Z | =

∫ π

2

0

dϕ
3

√

1− c2 sin2 ϕ
(1)

studied by Legendre [2, Chap. XXVII, § III], in terms of the Gauss
hypergeometric function 2F1(

1

3
, 1
2
; 1; ·). Legendre, through a series of in-

genious transformations of variables one which is nowadays identified
as Cauchy-Schlömilch transformation1 succeeded to represent (1) as a
complete elliptic integral of the first kind K defined traditionally as

K(k) :=

∫ π

2

0

dϕ
√

1− k2 sin2 ϕ
, 0 < k < 1. (2)

We do not give the details of the procedure followed by Legendre in [2]
here, as they are presented in modern terms and notations in [1]. Instead
of that we briefly recall his final result, while in Appendix, we give a
quite precise translation of the relevant section of the original text by
Legendre.

Introducing the complementary modulus b′ via b′2+c2 = 1 and defin-
ing the parameter n = 3

√
b′ Legendre obtained2

Z | =
33/4

√

µ′√µµ′
K(k′) (3)

where

{µ, µ′} = 1∓ n+ n2 and k′2 =
1

2
−

√
3

4
· µ

′2 − 3n2

µ′√µµ′ . (4)

1See [3] for some relevant historical references. One of the main ingredients of
Legendre’s calculation has been the transformation x → z given by x2 + n2 = x z in
notation of [2, p. 180].

2This is a slight reformulation of the Legendre’s result Z | = 3√
µ′λ

F |k′ given

in p. 181 of [2] where we took into account that λ2 = 3µµ′ and F |k ≡ K(k). The
values µ, µ′ and k′ in (4) are precisely those of Legendre. In order to adhere to MSR
notation in the following, we renamed the Legendre’s b to b′.
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In terms of n, the factor in front of K(k′) reads

c(n) :=
33/4

√

µ′√µµ′
=

33/4
√

(1 + n+ n2)
√
1 + n2 + n4

, (5)

while the argument k′ of the elliptic integral K in (3) is defined by

a(n) := k′2 =
1

2
−

√
3

4
· 1 + 2n+ 2n3 + n4

(1 + n+ n2)
√
1 + n2 + n4

. (6)

On the other hand, as it was done in [1], the Legendre’s integral Z |

can be directly expanded in powers of c2 which leads to the identifications

Z |=
π

2
2F1

(1

2
,
1

3
; 1; c2

)

=
π

2
2F1

(1

2
,
1

3
; 1; 1− b′

2
)

=
π

2
2F1

(1

2
,
1

3
; 1; 1−n6

)

.

Representing the complete elliptic integral of first kind in (3) in terms
of Gauss 2F1 function via

K(k) =
π

2
2F1

(1

2
,
1

2
; 1; k2

)

(7)

we obtain, following [1],

2F1

(1

3
,
1

2
; 1; 1− b6

)

= c(b) 2F1

(1

2
,
1

2
; 1; a(b)

)

(8)

where the functions c(b) and a(b) are defined by (5) and (6), respectively,
with the replacement n 7→ b.

It is quite interesting to note that in the original calculation by Leg-
endre, the value of k′2 from (6) is associated with a sine squared of some

angle, namely, k′2 = sin2 θ′

2
= 1

2
(1− cos θ′).

On the other hand, we shall find in the following that for certain val-
ues of bn, the function a(bn) will correspond to xn, the squares of special
singular moduli kn labelled by integer numbers n in the singular value
theory. This implies that for the cases of n = 3, 6, 9, 12, 15, 24, 27, 75 we
should be able to associate the values of xn with appropriate trigonomet-
ric functions of θ′n. It would be interesting to find out which angles θ′n
correspond to associated singular moduli kn. An instance of such relation
is the known formula (12).

We are not sure that the connections of this kind are present in the
singular value theory and in associated calculations using Jacobi theta
functions or lattice sums.
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It is conceivable that the MSR relation (8) extends the family of
hypergeometric transformations due to Ramanujan, following from his
theories of elliptic functions to alternative bases — see [4], [5, Chap. 33],
and [6]3. From [4, p. 4184, Theorem 5.6], [5, p. 112, Theorem 5.6], [6,
(2.21)], we reproduce perhaps the most famous relation:

If α(p) :=
p3(2 + p)

1 + 2p
and β(p) :=

27p2(1 + p)2

4(1 + p+ p2)3
, (9)

then, for 0 ≤ p < 1,

2F1

(1

3
,
2

3
; 1;β(p)

)

= γ(p) 2F1

(1

2
,
1

2
; 1;α(p)

)

where γ(p) :=
1 + p+ p2√

1 + 2p
.

(10)
The relation (10) involves the same functions (of different arguments)

and has the same form as that in (20), which is obtained directly from
(8) via a quadratic transformation.

2. Structural properties of equation (8)

In [1, Theorem 2.2], it is asserted that the region of validity for the
hypergeometric transformation (8) is 0 < b < 1. However, below we
shall show that the relation (8) has a hidden symmetry with respect
to interchanges b ↔ b−1 and is valid indeed for all non-negative real
numbers b ∈ R+. Moreover, we check that (8) is correct for certain
complex values of b.

Although in [1, Theorem 2.2] the values of b are constrained to the
interval 0 < b < 1, it is interesting to look at the function a(b), which
is the argument of the Gauss function on the right of (8), without this
restriction. It has a very interesting shape displayed in Fig. 2, LEFT.

First of all, we observe that the function a(b) is constrained in the
interval [0, 1] for all −∞ < b < ∞. Thus, the function 2F1(

1

2
, 1
2
; 1; a(b))

converges (absolutely) for all b except of b = −1, for which a(−1) = 1
and it diverges (b = −1 corresponds to the maximum of the curve a(b)
in Fig. 2, LEFT and to the infinite peak of 2F1(

1

2
, 1
2
; 1; a(b)) in Fig. 2,

RIGHT).
Let us write the function a(b) in the form

a(b) =
1

2
−

√
3

4
r(b) where r(b) :=

b4 + 2b3 + 2b+ 1

(b2 + b+ 1)
√
b4 + b2 + 1

.

(11)

3The last reference presents a concise list of relevant hypergeometric identities in
pp. 522–524.
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Figure 1. LEFT: Coinciding functions a(b) (blue dots) and a(b−1)
(dashed yellow); asymptotics a(±∞) = (2 −

√
3)/4 — green horizon-

tal line. RIGHT: 2F1 functions in (8): 2F1(
1

3
, 1
2
; 1; 1 − b6) (blue) and

c(b) 2F1(
1

2
, 1
2
; 1; a(b)) (dashed yellow) — coincide only when b ≥ 0.

It is straightforward to see that r(b) = 1 when b = 1 and in the both
asymptotic limits b → ∞ and b → −∞. We have r(0) = r(±∞) = 1,
and hence, a(0) = a(±∞) = (2−

√
3)/4 (see Fig. 2, LEFT).

Moreover, we notice that the value a(0) = a(±∞) = (2 −
√
3)/4 =

sin2 π
12

= k23 , where (taking into account that 2±
√
3 = (

√
3± 1)2/2)

k3 = sin
π

12
=

√
3− 1

2
√
2

(12)

is the third (n = 3) singular modulus of the elliptic integral K(k3). Here
we refer to the singular value theory of elliptic integrals of the first kind
going back to seminal work of Selberg and Chowla [7], Watson4, and
Ramanujan [5].

The equality of the values a(0) and a(∞) is a special instance of a
more general symmetry: The function r(b), and hence a(b) are invariant
under the inversion of the parameter b, b↔ 1/b. We have a(b) = a(b−1)
for any real b ∈] − ∞,∞[, while for all non-negative b ∈ [0,∞[, the
function a(b) is constrained in the interval [0, (2−

√
3)/4]. The treatment

of the relation (8) with b > 1 will be considered in the section 4.1.
Further, the coefficient c(b) on the right of (8) obeys the transforma-

tion rule c(b) = b−2c(b−1) under the inversion of b.
Finally, we notice the different symmetries of the left- and right-hand

sides in (8) — see Fig. 2, RIGHT. On the left of (8) the function is even,

4G. N. Watson published a series of six papers on singular moduli in 1932–1937,
starting with [8].
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while on the right the symmetry with respect to b↔ −b is broken. Thus,
while the both functions coincide for b ∈ [0,∞[, the equality(8) cannot
hold for b < 0 as it stands.

The necessary condition for the validity of (8) is that the 2F1 func-
tions on the both sides of this equation converge. Thus, given that b ≥ 0,
this necessary condition is

|1− b6| ≤ 1 , whence b ∈ [ 0, 21/6] . (13)

We can simply do a mirror reflection of the b ≥ 0 branch of the
function c(b) 2F1(

1

2
, 1
2
; 1; a(b)) with respect to ordinate, by changing b→

−b in it, to find its counterpart for negative values of b and provide
an exact matching of both sides of (8). More explicitly, the symmetric
version of (8) for even functions on both sides of this equation would
read

2F1

(1

3
,
1

2
; 1; 1− b6

)

= c(|b|) 2F1

(1

2
,
1

2
; 1; a

(

|b|
)

)

(14)

where we merely replaced b by its absolute value |b| on the right.

However, we still remain with an interesting question related to an
inverse problem:

If we have the function G2(b) := c(b) 2F1(
1

2
, 1
2
; 1; a(b)) and consider it

with negative b and a(b) > x3 = (2−
√
3)/4 (dashed yellow curve in the

second quadrant of Fig. 2, RIGHT), how should we modify the left-hand
side of equation (8) to express the function G2 in terms of 2F1 functions
with different sets of parameters?5

As we shall see in subsequent sections, with b > 0 we have access
via (8) to arguments xn ≡ a(bn) and associated special values of elliptic
integral of the first kind of singular moduli kn =

√
xn with n ≥ 3. Finding

an answer to the above question would provide us with a counterpart of
the MSR relation capable of giving access to the basic cases n = 1 and
n = 2 of the singular value theory of elliptic integrals.

Our final note is, that with regard to the above question, there is
a subtlety: We encounter different situations depending of whether the
MSR relation is expressed in terms of b (the same as n in notation of
Legendre) or in terms of b′ (which appeared as b′2 = 1 − c2 just above
the equation (3) and has been originally denoted as b by Legendre).6

5See also the remark after the equation (18).
6In this respect the notation b in the MSR equation is unfortunate because it is

in conflict with the original b of Legendre with another meaning.
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In the case of the MSR relation in the form (8), matching the both
sides of equation at b < 0 is achieved by the simple change b 7→ |b|
implied by the symmetry (see Fig. 2, RIGHT and (14)).

On the other side, if we express the same relation in terms of b′ (which
is the content of [1, (27),(28)]), namely

2F1

(1

3
,
1

2
; 1; 1− b′2

)

=
33/4 2F1

(

1

2
, 1
2
; 1; a

(

b′1/3
)

)

√

(1 + b′1/3 + b′2/3)
√
1 + b′2/3 + b′4/3

, (15)

we see that with b′ < 0 there appear a dependence on complex number
b′1/3 in the right-hand side, the function 2F1

(

1

2
, 1
2
; 1; a

(

b′1/3
))

becomes
complex-valued. At the same time, the even function on the left remains
unchanged. There is no simple means to repair the equality as in the
previous case. The situation with b′ < 0 and complex b′1/3 requires a
special consideration.

3. Simplest special cases

Special cases related to simple specific values of the parameter b and the
function a(b) are:

• b = −1, a(−1) = 1: Having a zero parametric excess s = 1 − 1

2
− 1

2
,

the 2F1 function on the right of (8) diverges, the Gauss theorem7 for the
unit argument does not apply. At the same time, on the left, the 2F1

function of zero argument trivially becomes 1. The formula (8) does not
hold for b = −1, as well as for any other negative b.

• b = 0, a(0) = (2 −
√
3)/4: On the left-hand side of (8), the function

2F1(
1

3
, 1
2
; 1; 1) is exactly evaluated by the Gauss theorem7. On the right,

the argument of 2F1(
1

2
, 1
2
; 1; a(0)) belongs to the set of “exceptional”

points of the singular value theory of elliptic integrals of the first kind. We
have a(0) = x3 = k23 = (2 −

√
3)/4, where k3 = sin π

12
= (

√
3− 1)/2

√
2 .

And k3 is the third singular value of the modulus k of K(k) from the
special set {kn|n ∈ N}, for which K(kn) are expressible in terms of
products of Euler’s Gamma functions [7, 9, 10].

Thus we have

2F1

(1

3
,
1

2
; 1; 1

)

=
3

24/3π2
Γ3

(1

3

)

,

7

2F1(a, b; c; 1) =
Γ(c)Γ(s)

Γ(c− a)Γ(c − b)
, c 6= 0,−1,−2 , . . . , s := c−a−b, Re s > 0.
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while c(0) = 33/4 and 2F1

(1

2
,
1

2
; 1;x3

)

=
31/4

24/3π2
Γ3

(1

3

)

.

It is easy to see that the equation (8) holds for b = 0, and this point has
to be included into its range of validity (cf. [1, p.88, top]).

We see that in the simplest possible special case b = 0 belonging to
the validity range of (8) just a simple application of the Gauss theorem to
the function 2F1(

1

3
, 1
2
; 1; 1) immediately yields the known singular value

of the elliptic integral K(k3) on the right! This is a non-trivial value
which has been obtained in the past several times using different tech-
niques [11, p. 555], [7, p.102], [9,12] while the problem of calculating the
related integrals goes back to Legendre [2, Chap. XI]. Though Legendre
has discovered the relation K(k′3) =

√
3K(k3) [2, p.60] (cf. (30)), he

was apparently not aware of the explicit value of K(k3).

• b = 1, a(1) = 0: Here the both 2F1 functions in (8) degenerate to
1, and, with c(1) = 1, the equation is trivially fulfilled. The value b = 1
also belongs to the validity range of (8) (cf. [1, p.88, top]). In fact, at
b = 1 the function a(b) has a very flat minimum, quite symmetric in a
close proximity to b = 1. Accordingly, the elliptic integral on the right
of (8) has also a very similar shape in the vicinity of b = 1.

When we escape from the interval 0 < b < 1 and go through b = 1
to b+ > 1, the argument of 2F1(

1

3
, 1
2
; 1; 1 − b6) becomes negative and

there is still numerical evidence that the relation (8) remains valid. With
1 < b ≤ 21/6, this function converges, while for b > 21/6 it is defined
via analytic continuation. This analytic continuation is provided by the
right-hand side of (8): The function 2F1(

1

2
, 1
2
; 1; a(b)) is convergent and

real-valued when b > 21/6, since its argument a(b) < 1 in this range.
The coefficient c(b) is also real and positive. Their product defines the
real-valued function 2F1(

1

3
, 1
2
; 1; 1− b6) with arguments less than −1.For

example, a direct substitution of b = 31/3 into (8) leads to the relation

2F1

(1

3
,
1

2
; 1;−8

)

=
3

2

(

5 · 31/3 − 7

6

)

1

4

2F1





1

2
,
1

2
; 1;

16−
√

6
[

32 + 35 · 31/3(5 · 31/3 − 7)
]

32



 .

• b = ∞, a(∞) = (2−
√
3)/4: Taking into account that limb→∞ a(b) :=

x3 = k23 (see (12)) and c(b→ ∞) ≃ 33/4b−2 we can verify the correctness
of the relation (17) from the next section in the asymptotic limit b→ ∞
precisely in the same way as in the case b = 0 just above.
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This is a simplest manifestation of the symmetry with respect to
interchanges b↔ b−1 noticed in sec. 2. In the next section we are going
to deduce a more generic statement related to this symmetry.

4. Alternative forms of (8)

In this section we transform the Gauss function 2F1(
1

3
, 1
2
; 1; 1 − b6) on

the left-hand side of (8) in order to produce some alternative versions of
this equation.

4.1. Linear Pfaff transformation

First of all, we use the linear Pfaff transformation [13, p. 60, (4)] [14, p.
68, (2.2.6)], [15, 7.3.1.3], [16, (15.8.1)]

2F1(α, β; γ, z) = (1−z)−α
2F1

(

α, γ−β; γ; z

z − 1

)

, |z| < 1,

∣

∣

∣

∣

z

1− z

∣

∣

∣

∣

< 1,

(16)
and obtain the following alternative representation of (8):

2F1

(1

3
,
1

2
; 1; 1− b−6

)

= b2c(b) 2F1

(1

2
,
1

2
; 1; a(b)

)

. (17)

There are not much modifications but they are important: in the argu-
ment of the Gauss function on the left, b6 is replaced by b−6, and this
allows consideration of b > 1. The additional factor b2 that appears in
front of c(b) moderates the asymptotic behavior c(b) ∼ b−2 at large b
and provides a finite b→ ∞ limit on the right.

When b ∈ [1, 21/6], the linear transformation (16) transforms negative
arguments of the original function 1− b6 ∈ [−1, 0] to positive arguments
of the transformed function 1−b−6 ∈ [0, 1

2
]. The both functions converge.

For b > 21/6, there is a mapping of 1−b6 < −1 to 1−b−6 ∈] 1
2
, 1]. Thus,

the original function 2F1(
1

3
, 1
2
; 1; 1− b6) with “large” negative arguments

is analytically continued to a convergent function 2F1(
1

3
, 1
2
; 1; 1 − b−6)

which appears in the modified version (17) of (8).
The validity of equation (8) is thus confirmed in the whole region b ∈

[0,∞[, which essentially extends the validity range 0 < b < 1 originally
announced in [1, Theorem 2.2].

In summary, we formulate the following theorem:

For any b ∈ R+ = {x ∈ R | x ≥ 0}, the function 2F1

(

1

2
, 1
2
; 1; a(b)

)

is the
same for two different8 values b and b−1 and relates to the hypergeometric

8Except for b = 1, when b and b−1 coincide.
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function 2F1(
1

3
, 1
2
; 1; 1− b6) and its Pfaff transform 2F1(

1

3
, 1
2
; 1; 1− b−6),

respectively, via

2F1

(1

2
,
1

2
; 1; a(b)

)

=











[c(b)]−1
2F1

(1

3
,
1

2
; 1; 1− b6

)

, 0 ≤ b ≤ 21/6;

[

b2c(b)
]−1

2F1

(1

3
,
1

2
; 1; 1− b−6

)

, b ≥ 2−1/6.

(18)
With indicated restrictions on the parameter b, all hypergeometric series
in (18) are convergent.

In the overlapping region b ∈ [2−1/6, 21/6], the both functions

2F1(
1

3
, 1
2
; 1; 1 − b6) and 2F1(

1

3
, 1
2
; 1; 1 − b−6) are convergent simultane-

ously.
For negative b, the statement (18) can be augmented by the equation

(14) where the function 2F1(
1

2
, 1
2
; 1; a(b)) has been forced to be even by

the replacement b 7→ |b|.
At the same time, the question put in the end of the section 2

remains open and means: If we consider the negative values of b in

2F1(
1

2
, 1
2
; 1; a(b)) without changing b to its absolute value, what should

be the right-hand side of the equation (18) in order for it to be satisfied
with b ∈]−∞, 0[ and (2−

√
3)/4 < a(b) < 1?

4.2. Quadratic transformations

Applying the quadratic transformation [17, p. S.120, (46)], [15, 7.3.1.68]

2F1(α, β; 2β, z) = (1 − z)−α/2
2F1

(

α, 2β − α;β +
1

2
;− (1 −

√
1− z)2

4
√
1− z

)

(19)
to the left-hand side of (8) we obtain the relation

2F1

(1

3
,
2

3
; 1;− (1− b3)2

4b3

)

= b c(b) 2F1

(1

2
,
1

2
; 1; a(b)

)

(20)

valid for negative arguments9 z(b) = −4b−3(1 − b3)2 of the function

2F1(
1

3
, 2
3
; 1; z) corresponding to positive values of b.

It is remarkable that in distinction to (8) and (18), the equation
(20) is manifestly invariant under the inversion of b: It is easy to see
that z(b) = z(b−1) (see Figure 4.2) and bc(b) = b−1c(b−1), as well as
a(b) = a(b−1) which we noticed before. It is useful to express the original

9The similar Ramanujan-related formula (10) holds, by contrary, for strictly pos-
itive arguments of 2F1(

1

3
, 2

3
; 1; z).
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-2 -1 1 2

-4

-2

2

4

-2 -1 1 2

-6

-4

-2

Figure 2. LEFT: Blue-yellow curve: z(b) = −4b−3(1− b3)2 and z(b−1) =
−4b3(1− b−3)2, green horizontal line: z = 1. RIGHT: Functions in (20):

2F1(
1

3
, 2
3
; 1;−4b−3(1−b3)2) — blue, b c(b) 2F1(

1

2
, 1
2
; 1; a(b)) — dashed yel-

low.

equation (8) in terms of this function because in the following we will be
interested in its special evaluations.

We recall that the function 2F1(
1

3
, 2
3
; 1; z) is an important ingredient

of Ramanujan’s, theories of elliptic functions to alternative bases from
his notebooks [5] and attracted essential attention in subsequent works
— see p. 3. The formula (20) appears to have precisely the same general
form as the transformation (10) of Ramanujan.

In a following publication we shall also introduce other relations of
similar kind, where the function 2F1(

1

3
, 2
3
; 1; z) appears with different

functional dependence in its argument.
Using the quadratic transformation [17, p. S.120, (47)], [15, 7.3.1.69]

2F1(α, β; 2β; z)=
(1 +

√
1− z

2

)−2a

(21)

2F1

(

α, α − β +
1

2
;β +

1

2
;
(1−

√
1− z

1 +
√
1− z

)2
)

we obtain

2F1

(

1

3
,
1

3
; 1;
(1− b3

1 + b3

)2
)

=
(1 + b3

2

)2/3

c(b) 2F1

(1

2
,
1

2
; 1; a(b)

)

. (22)

Here appears a “supersymmetric” 2F1 function with equal numerator
parameters, α = β = 1/3, and a strictly positive, for any b, argument
obeying the symmetry b ↔ 1/b. However, the argument (1 − b3)2(1 +
b3)−2 > 1 for b < 0 and thus we remain, as before, within the region

ICMP–23–05E 11

b ≥ 0. Again, similarly as (20), the relation (22) is manifestly symmetric
with respect to inversions b↔ b−1.

In fact, the function 2F1(
1

3
, 1
3
; 1; z) from the last equation can be

alternatively obtained by applying the linear transformation (16) to the
function 2F1(

1

3
, 2
3
; 1; z) in (20).

We also observe that the right-hand side of the equation (22) has no
divergence for negative b in contrast to the previous cases — cf. Figs. 4.2,
4.2 and 2.

-2 -1 1 2

1

2

3

4

5

-1 1 2 3 4 5

0 � �

1 � �

� � �

� � 	


 � �

 � �

Figure 3. LEFT: Blue-yellow curve: (1 − b3)2/(1 + b3)2 and (1 −
b−3)2/(1 + b−3)2, green horizontal line: z = 1. RIGHT: Functions
involved in (22): 2F1(

1

3
, 1
3
; 1; (1 − b3)2/(1 + b3)2 — blue, 2−2/3(1 +

b3)2/3 c(b) 2F1(
1

2
, 1
2
; 1; a(b)) — dashed yellow.

One could try to do some similar transformations on the right-hand
side of (8), however, it is not clear which ones could lead to some esential
improvement or simplification.

5. Evaluation of elliptic integrals

(i) As a special case of the formula by Spiegel (1962) [18, I.] (see also [15,
7.3.9.35])

2F1

(1

2
, p; 3p;

3

4

)

=
(16

27

)p Γ(p)Γ(3p)

Γ2(2p)
(23)

we obtain the evaluation

2F1

(1

3
,
1

2
; 1;

3

4

)

=
Γ3(1

3
)

22/3π2
(24)
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and use it in the equation (8). Equating the argument of 1− b6 with 3/4
we obtain

b3/4 = 2−1/3 (25)

(the remaining five solutions are outside the validity range b ≥ 0 of (8)
being either negative or complex).

For this special value of b, the argument of the elliptic integral on the
right of (8) is10

a(2−1/3) := x27 =
1

4

(

2−
√

3− 100 · 21/3 + 80 · 22/3
)

(26)

and its coefficient c is given by

c(2−1/3) =
√
6 (8− 5 · 22/3) . (27)

Thus we obtain the evaluation

2F1

(1

2
,
1

2
; 1;

1

2
− 1

4

√

3 + 5(27/3 − 5)27/3
)

=
Γ3(1

3
)

24/3
√
3 (27/3 − 5)1/4 π2

,

(28)
or, in terms of the elliptic integral K,

K(k27) =
Γ3(1

3
)

π
√
3 (27/3 − 5)1/4 27/3

, (29)

where k27 =
√
x27 =

1

2

√

2−
√

3 + 5(27/3 − 5)27/3 .

To check whether this result belongs to the set of the so-called sin-
gular values of K we perform a numerical evaluation of the combination

(

K(k
′

)

K(k)

)2

=? n where, as usual, k
′

=
√

1− k2 , (30)

with k := k27. In case this combination equals n ∈ N, we have to deal
with the nth singular value K(kn) as a function of the special modulus
kn.

For the elliptic integral in (29) we obtain thus n = 27 and compare it
with the entryK[27] in the table of singular values given in [10, Appendix

10The appearance of the notation x27 here will become evident quite soon.
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A.3]. Equations (28) and (29) are alternative representations of this entry
given by

2F1

(1

2
,
1

2
; 1;x27

)

=
(22/3 + 2)2Γ3(1

3
)

12 · 22/331/4 π2
, (31)

V27 ≡ 4x27(1− x27) =
1

4
+ 25 · 21/3 − 20 · 22/3.

Indeed, with our explicit expression for x27 from (26) we reproduce
the value V27 in (31). Also, our result (28) is equivalent to that in (31)
up to the identification

(22/3 + 2)2

24/3 33/4
=

1

(27/3 − 5)1/4
(32)

confirmed analytically by Mathematica [19].

(ii)Another interesting evaluation of 2F1(
1

3
, 1
2
; 1; z) is due to Ebisu [20,

(E
′′

.1)]:

2F1

(1

3
,
1

2
; 1;

1

5

)

=
2 2/3 3

√
5

20π2
Γ3

(1

3

)

. (33)

Again, solving the equation 1− b6 = 1/5 we obtain the relevant solution

b61/5 =
4

5
and b1/5 =

21/3

51/6
. (34)

With this value of b,

a(b1/5) = x75 =
1

2
− 5 + 4

√
5 + 2 · 101/3

(

1 +
√
5
)

4
(

5 + 21/3 55/6 + 102/3
)

√

15− 3 · 102/3 ,

(35)
and the coefficient c is

c(b1/5) =
33/4

√
5 (5− 102/3)1/4√

5 + 21/3 55/6 + 102/3
. (36)

With these data, we obtain from (8) the evaluation

2F1

(1

2
,
1

2
; 1;x75

)

=
2−1/3

10π2

(3

5

)1/4
(

5 + 2 · 101/3 + 102/3
)1/4

(37)

√

5 + 21/3 55/6 + 102/3 Γ3

(1

3

)

.
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In terms of the elliptic integral K,

K(k75) =
Γ3(1

3
)

20π21/3

(3

5

)1/4
(

5+2·101/3+102/3
)1/4

√

5 + 21/3 55/6 + 102/3 ,

(38)
where k75 =

√
x75 with x75 defined in (35).

Performing the numerical check (30) we see that the last two results
indeed correspond to the case n = 75 of the singular value theory and
has to be compared with the entry K[75] of the table [10, Appendix A.3]
where we find only the value of K[75] but no information on k75 or x75.
In [5, p. 192] and in the Table of singular moduli by Petrović [21] we find
a rather involved value of G75,

G75 = 3 · 25/12
(

√
5 + 1

2
101/3 +

√
5− 1

2
41/3 · 51/6 −

√
5− 1

)−1

, (39)

a special representative of the so-called class invariants Gn related to kn
via non-trivial relation

kn =
G−12

n

√
2

√

1 +
√

1−G−24
n

=
1√
2

√

1−
√

1−G−24
n . (40)

Hence it seems that our expression for k75 =
√

a(b1/5) with a(b1/5) from
(35) represents the simplest known explicit expression for the singular
modulus k75. We have checked, with the help of Mathematica [19], that
our result (35) indeed follows from (40) using (39).

From the value of K[75] in [10, Appendix A.3] we infer

2F1

(1

2
,
1

2
; 1;x75

)

=
(

5+2·101/3+
(

5+3
√
5
)

10−1/3
) Γ3(1

3
)

5 · 24/3 33/4π2
(41)

This result agrees with our expression in(37) provided that

5 + 2 · 101/3 +
(

5 + 3
√
5
)

10−1/3

3 · 5−1/4
√
5 + 21/3 · 55/6 + 102/3 (5 + 2 · 101/3 + 102/3)1/4

= 1 (42)

which is true, according to a calculation with Mathematica [19].

(iii) For our next example we introduce the golden ratio (see e. g. [22])

φ =
1 +

√
5

2
and its inverse φ−1 =

√
5− 1

2
. (43)

The value φ and its negative inverse −φ−1 = (1 −
√
5)/2 are solutions

to the quadratic equation x2 − x− 1 = 0.
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The entry (xxiii) on p. 53 of Ebisu’s book [23] represents an explicit
evaluation of 2F1(a, 1− a; 2− 3

2
a;−φ−1). With a = 2/3 it reduces to

2F1

(1

3
,
2

3
; 1;−φ−1

)

=
55/6

3
φ−1

Γ(1
3
)Γ(4

5
)Γ(6

5
)

Γ( 7

15
)Γ(2

3
)Γ(13

15
)Γ(4

3
)
. (44)

Eventually, we could use the formula (8) in the form (20) to proceed,
but it is interesting to transform the parameters of 2F1 appearing in (44)
to that of the original equation (8). This can be achieved by means of
the quadratic transformation [15, 7.3.1.49]

2F1

(

α, β;
α+β+1

2
; z
)

=
(√

1− z +
√
−z
)−2α

(45)

2F1

(

α,
α+β

2
;α+β;

4
√

−z(1− z)
(√

1− z +
√
−z
)2

)

and yields

2F1

(1

3
,
2

3
; 1;−φ−1

)

= φ−1
2F1

(1

3
,
1

2
; 1; 4

√
5− 8

)

. (46)

The argument of the last 2F1 function 4
√
5 − 8 = 1 − φ−6 as can be

easily checked. It has the same algebraic form as in (8) and thus identifies
b = φ−1 by inspection.

Finally, using b = φ−1 in (8) and taking into account (46) and (44)
we derive 2F1

(

1

2
, 1
2
; 1; a(φ−1)

)

in a closed form.
However, in doing this we follow Vidūnas [24] and express the gamma

functions from (44) in terms of a few basic functions Γ(1
3
), Γ(1

5
), Γ(2

5
),

and Γ( 1

15
) from the set [24, (5)] by means of the elementary relation

zΓ(z) = Γ(1 + z) and corresponding reduction formulas from [24, p.
269–270]. Thus we end up with

2F1

(1

2
,
1

2
; 1;

1

2
−
√
3

32

(

7+
√
5
)

)

=
2

π

3−21/205−1/3
√

2(1 +
√
5)

5 +
√
5 +

√

30− 6
√
5

Γ2( 1

15
)Γ(2

5
)

Γ(1
5
)Γ(1

3
)
.

(47)

Denoting the argument of the last Gauss function as x15 = 1

2
−

√
3

32

(

7+√
5
)

and expressing the right-hand side in terms of the golden ratio φ
we rewrite the last result in a compact and elegant form

2F1

(1

2
,
1

2
; 1;x15

)

=
3−21/205−7/12

2π

(

φ

√

φ
√
5−

√
3

)

Γ2( 1

15
)Γ(2

5
)

Γ(1
5
)Γ(1

3
)
.

(48)
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It is of interest to compare our findings in this example with expres-
sions given in [10, Appendix A.3] where the result for K[15] is given in a
quite different form. From [10, Appendix A.3] (see also [25, p. 350]), the
value

k15 =

√
3
(√

15− 1
)

−
√
15− 1

8
√
2

=

√
15
(√

3− 1
)

−
√
3− 1

8
√
2

(49)

can be inferred, which is symmetric with respect to an interchange of√
3 and

√
15 and appears to be simpler as

k15 =
1

4
√
2

√

16−
√
3
(

7 +
√
5
)

(50)

which follows from our last calculation.11

The value of the elliptic integral itself appears in [10, Appendix A.3]
as

K(k15) =

√

6
(

5 +
√
5
)

60

b( 1

15
) b( 4

15
)

b( 5

15
)

(51)

where the function b(p) is defined via [10, p. 76]

b(p) :=
Γ2(p)

Γ(2p)

√

tan(pπ) . (52)

Using this definition along with reduction formulae for Γ functions from
[24] it should be possible to reproduce our result (48) starting from
(51). We have checked the agreement between these two expressions
numerically.

6. Special values of Gauss hypergeometric functions

It is also possible to use the MSR relation (8) in a reverse direction, and
thus derive some special values of the Gauss function 2F1(

1

3
, 1
2
; 1; z) in

the cases when the elliptic integral on the right of (8) is known.
As an example let us consider the n = 9 singular value [9, p. 117], [26,

p. 259], [10, Appendix A.3], [25]

2F1

(1

2
,
1

2
; 1;x9

)

=
1 +

√
3

(2
√
3 π)3/2

Γ2

(1

4

)

(53)

11In [21], k15 has an essentially more complicated form.
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where x9 = k29 and k9 =

√
2− 4

√
3

1 +
√
3
.

Fortunately, Mathematica [19] is able to solve the equation a(b) = x9.
The root lying in the interval (0, 1) is

b9 =
1

2

(

1 +
√
3−

√

2
√
3

)

. (54)

Another real root is b−1

9 = 1

2

(

1 +
√
3 +

√

2
√
3
)

> 1.12 Both these roots

are relevant for the MSR equation cast in the form (18).
With b = b9, we obtain from (8) and (53)

2F1

(1

3
,
1

2
; 1; y9

)

=

√

1 +
√
2/ 4

√
3

2π3/2
Γ2
(1

4

)

(55)

where the argument

y9 =
3√
2

(

13·31/4 + 23·3−1/4
)

− 36− 21
√
3 =

23/2 · 33/4
5−

√
3 + 21/2 · 33/4

.

(56)
The parameters of the last 2F1 function are of the form (α, β; 2β), and

we can apply to this function the quadratic transformations [15, 7.3.1.64–
69]. In particular, the transformation (21) leads to the beautiful result

2F1

(1

3
,
1

3
; 1;

√
3 + 2

3
√
3

)

=
33/8

21/12(2π)3/2
(
√
3− 1)1/6 Γ2

(1

4

)

(57)

where the argument of the Gauss function is essentially simpler than
that in (55)— (56).

The Pfaff transformation (16) of the last 2F1 function yields the fol-
lowing instance of the analytic continuation of the function 2F1(

1

3
, 2
3
; 1; z):

2F1

(1

3
,
2

3
; 1;

−3
√
3− 5

4

)

=

√√
3− 1

21/4 · 31/8 2π3/2
Γ2

(1

4

)

. (58)

12 It is interesting to note that the negatives of the roots b9 and b−1

9
are the real

solutions of the equation a(b) = x1 with x1 = 1

2
corresponding to the case n = 1: we

have b1 = −b9 and b−1

1
= −b−1

9
. Though, with b1 < 0, the case n = 1 is not covered

by (8) (see Figure 2), the MSR equation involves some relation between the cases
n = 1 and n = 9, which still has to be uncovered.



18 Препринт

6.1. A digression: Berndt-Chan-Ramanujan evaluations

At this point it is interesting to recall two explicit determinations of 2F1

appearing in the parer by Bernd and Chan [27, p.280] and in Brendt’s
book [5, pp. 327–8] as corollaries of an entry from Ramanujan’s note-
books:

If p = p9 :=

√

6
√
3− 9− 1

2
, (59)

then

2F1

(1

2
,
1

2
; 1;α(p9)

)

=

√
π

√

6
√
3− 9 Γ2(3

4
)

(60)

and

2F1

(1

3
,
2

3
; 1;β(p9)

)

=

√
π

21/4 · 31/8
√√

3− 1 Γ2(3
4
)

(61)

where

α(p9) =

(√
2− 4

√
3

1 +
√
3

)2

= x9 and β(p9) =
3
√
3− 5

4
, (62)

while functions α(p) and β(p) are defined in (9), as before.

With the indicated identification α(p9) = x9, the evaluation (60) is
equivalent to that in (53), the singular 2F1 value in the case n = 9.

The two functions from (60) and (61) satisfy the equation (10) with
the coefficient

γ(p9) =
35/8

21/4
√√

3 + 1
. (63)

Expressing the original equation (61) in the style of (53) and (58) we
write

2F1

(1

3
,
2

3
; 1;

3
√
3− 5

4

)

=

√√
3 + 1

21/4 · 31/8(2π)3/2 Γ2

(1

4

)

(64)

which is very similar to (58) obtained via MSR equation.
Applying the Pfaff transformation (16) on the left of the last equation

we obtain a companion evaluation to that in (57):

2F1

(1

3
,
1

3
; 1;

√
3− 2

3
√
3

)

=
33/8

21/124π3/2
(
√
3 + 1)1/6 Γ2

(1

4

)

. (65)

We learn from the above findings that in the case n = 9 the relations
(8) and (10) transform the elliptic integral 2F1(

1

2
, 1
2
; 1;x9) into different,
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albeit “similar” 2F1 functions with arguments of the form a±b with real a
and b. These pairs of companion functions appear in (58) and (64). Their
Pfaff transformations yield again the Gauss functions with arguments of
the same general form — see (57) and (65).

Just for curiosity’s sake we calculate the ratios of these pairs of func-
tions. These are

2F1

(

1

3
, 2
3
; 1; −3

√
3−5

4

)

2F1

(

1

3
, 2
3
; 1; 3

√
3−5

4

)

=
√
3−1 and

2F1

(

1

3
, 1
3
; 1;

√
3+2

3
√
3

)

2F1

(

1

3
, 1
3
; 1;

√
3−2

3
√
3

)

=21/3
(
√
3−1

)1/3
.

7. Some instances of complex b

7.1. b = eiπ/6

In [28, p. 1895, Theorem 3.1], Mingari Scarpello and Ritelli derived an
explicit expression for an analytic continuation of a special Gauss hyper-
geometric function of argument 2. We transcribe it in the form

2F1(α, β; 2β, 2) = (−i)α
√
π

Γ(β + 1

2
)

Γ(α+1

2
)Γ(β + 1

2
− α

2
)
, α > 0. (66)

In the special case of α = 1

3
and β = 1

2
this reduces to

2F1

(1

3
,
1

2
; 1; 2

)

=
(−i)1/3√π
Γ(2

3
)Γ(5

6
)

= e−i π

6

3

27/3π2
Γ3

(1

3

)

, e−i π

6 =

√
3− i

2
.

(67)
In (8), the argument of the function 2F1(

1

3
, 1
2
; 1; 1 − b6) becomes 2

when b satisfies the equation b6 = −1 whose solutions are b = ±ei
π

2

and b = ±e±iπ
6 . A numerical check shows that the main equation (8) is

satisfied only with the solution b̃ = ei
π

6 . For this value of b, the argument
of the Gauss function on the right of (8) is

a(b̃) = a
(

ei
π

6

)

=
1

16

(

8 + 3
√
2− 5

√
6
)

. 0 . (68)

Considering the present example we face a situation which differs
from that encountered before: As we saw in Fig. 2, real non-negative
values of b lead to small positive arguments a(b) lying in the interval
[0, (2−

√
3)/4]. The upper bound of a(b) has been attributed to the case

n = 3 of the singular value theory. In the interval a(b) ∈ [0, x3] with
x3 = (2 −

√
3)/4 we found several other instances of singular moduli

squared, a(bn) ≡ xn, with n = 9, 15, 27, 75, — all of them greater than
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3. In the previous example we had a hint (see footnote 12) that to the
smallest n’s, n = 1 and n = 2, will correspond negative b’s and associated
singular moduli a(bn) in the interval

(

(2 −
√
3)/4, 1

)

, in some way related
to certain cases with n > 3.

Now, the complex value b̃ of the parameter b satisfying (8) does not
belong to the established region of validity of this equation, b ≥ 0. The
associated argument a(b̃) is negative and thus does not match the picture
reproduced in Fig. 2. This argument cannot be associated to any integer
n because the check (30) for n yields the complex number ñ ≃ 11+6.93i.
With b = b̃ = ei

π

6 , our equation (8) looks like

2F1

(1

3
,
1

2
; 1; 2

)

=
33/4

2
√
2

√
3− i

(2 +
√
3)1/4

2F1

(1

2
,
1

2
; 1;

1

16

(

8 + 3
√
2− 5

√
6
)

)

.

(69)
Remembering that the Pfaff transformation (16) converts small neg-

ative arguments of Gauss functions into small positive ones we apply this
transformation to the right-hand side of the last equation. The resulting
relation is

2F1

(1

3
,
1

2
; 1; 2

)

=
33/4

√
2

√

8− 3
√
2 + 5

√
6

√
3− i

(2 +
√
3)1/4

2F1

(1

2
,
1

2
; 1;x12

)

,

(70)

x12 =
5
√
6− 3

√
2− 8

5
√
6− 3

√
2 + 8

,

where x12, the square of the singular modulus k12 associated to n =
12 in (30) appears. In the present form, k12 =

√
x12 appears in the

handbook by Brychkov, [29, 7.2.16.21]. The case n = 12 is given also
in [29, 7.2.16.18] with k12 = (5 − 2

√
6)(3 − 2

√
2) with reference to [30]

where we find k12 = (
√
3−

√
2)2(

√
2−1)2 in Table 1, and in [10, Appendix

A.3]. For the corresponding Gauss function that appears in (70) we have

2F1

(1

2
,
1

2
; 1;x12

)

=
31/4

223/6π2

(
√
3 + 2

√
2 + 1

)

Γ3
(1

3

)

. (71)

Substituting the explicit expressions (67) and (71) for involved Gauss
functions into (70) we obtain

e−iπ
6

3

27/3π2
Γ3

(1

3

)

=
3
√
2

√

8− 3
√
2 + 5

√
6

√
3− i

(2 +
√
3)1/4

1

223/6π2
(72)

(
√
3 + 2

√
2 + 1

)

Γ3

(1

3

)
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which reduces after several evident cancellations to

e−iπ
6 =

√
3− i

2

√
3 + 2

√
2 + 1

(2 +
√
3)1/4

√

8− 3
√
2 + 5

√
6

(73)

and we finish with

1 =

√
3 + 2

√
2 + 1

(2 +
√
3)1/4

√

8− 3
√
2 + 5

√
6
. (74)

MATHEMATICA tells us that the last expression is indeed an ingenious
representation of unity, and thus we confirm the numerically suggested
validity of equation (8) with b = ei

π

6 along with its implications discussed
in the present section.

Further numerical calculations indicate that it is possible to find other
complex values of b = ei

π

m with m > 6 for which the equation (8) is
satisfied. On the other hand, there were no such matches when m was
chosen to be less than 6.

7.2. b = e
i

π

12

There is a numerical evidence that the equation (8) is satisfied with
b = ei

π

12 , and in this special case we are able to perform analytical
calculations. A direct substitution yields

2F1

(1

3
,
1

2
; 1; 1− i

)

= c
(

ei
π

12

)

2F1

(1

2
,
1

2
; 1; a

(

ei
π

12

)

)

(75)

with

c
(

ei
π

12

)

=
(−1)23/12 33/4

(1+
√
3)1/4

√

1+
√

2+
√
3

(76)

and

a
(

ei
π

12

)

=
1

8

[

4−
√

6
(

9
√
6 + 14

√
3− 16

√
2− 21

)

]

. 0.

Similarly as we did in the previous case, we apply the Pfaff trans-
formation (16) to the Gauss function on the right. This leads to an
expression involving a tabulated elliptic integral with n = 24,

2F1

(1

3
,
1

2
; 1; 1− i

)

=
c
(

ei
π

12

)

√

1− a
(

ei
π

12

)

2F1

(1

2
,
1

2
; 1;x24

)

, (77)
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where

x24 =

√

6
(

9
√
6 + 14

√
3− 16

√
2− 21

)

− 4
√

6
(

9
√
6 + 14

√
3− 16

√
2− 21

)

+ 4
. (78)

Petrović [21] quotes an alternative representation of k24 whose square is

x24 =
(

√

6 + 3
√
3−

√

5 + 3
√
3
)4(

√

2 +
√
3−

√

1 +
√
3
)4

. (79)

In turn, in [10, Appendix A.3] we find13

x24 =
(1− u

1 + u

)2

where u = (
√
2 + 1)(

√
3− 1)

√√
3−

√
2 . 1

(80)
along with

K(k24) =
1 + u

2
K(k6) where k24 =

1− u

1 + u
& 0 . (81)

The elliptic integral associated with n = 6 is [26, p. 259, Table 1], [29,
7.2.16.13], [10, Appendix A.3, p. 331]

K(k6) =

√
v

48
√
π
Γ
( 1

24

)

Γ
(11

24

)

, where k6 = (2−
√
3 )(

√
3−

√
2 ) ,

(82)
and we introduced the notation

v :=
√
6 (

√
2− 1)(

√
3 + 1)(

√
3 +

√
2 ) . (83)

Thus we have on the right-hand side of (77)

2F1

(1

2
,
1

2
; 1;x24

)

=
(1 + u)

√
v

48π3/2
Γ
( 1

24

)

Γ
(11

24

)

, (84)

explicit expressions for u and v are given in (80) and (83).
Finally, with some simplifications provided by Mathematica [19] we

obtain the evaluation

2F1

(1

3
,
1

2
; 1; 1− i

)

=
(7− 4

√
3)1/8

16π3/2

[

1 +
√
3 + i(1−

√
3)
]

Γ
( 1

24

)

Γ
(11

24

)

.

(85)

13There is a misprint in the expression for u in [10, Appendix A.3]: There, the
middle factor is given with a plus sign.
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The linear transformation (16) of the last 2F1 function produces its
counterpart with the complex conjugate argument, 2F1(

1

3
, 1
2
; 1; 1+i). The

both Gauss functions 2F1(
1

3
, 1
2
; 1; z) with z = 1± i and |z| =

√
2 > 1 are

given by (85) via analytic continuation, similarly as in the case (66).
However, quadratic transformations [15, 7.3.1.64–68] for functions

2F1(α, β; 2β, z) produce the results for convergent 2F1 series of real ar-
guments. Thus, an application of the transformation [15, 7.3.1.64]

2F1(α, β; 2β, z) = (1− z)−α/2
2F1

(α

2
, 2β − α

2
;β +

1

2
;

z2

4(z − 1)

)

(86)

in (85) yields a Gauss function with the argument z = −1:

2F1

(1

6
,
2

3
; 1;−1

)

= 21/3
(7− 4

√
3)1/8

8π3/2
Γ
( 1

24

)

Γ
(11

24

)

. (87)

In turn, its Pfaff transformation (16) leads us to the formula

2F1

(1

6
,
1

3
; 1;

1

2

)

=

√
2

8π3/2
(7− 4

√
3)1/8 Γ

( 1

24

)

Γ
(11

24

)

. (88)

The parameters of the Gauss functions in the last two summation for-
mulas (87) and (88) do not fit the classical Kummer theorems and their
generalizations discussed in [31]. An identical result follows on direct ap-
plication of the quadratic transformation (19) to equation (85), so that
we have an intersting chain of equalities

2F1

(1

6
,
1

3
; 1;

1

2

)

= 2F1

(1

3
,
2

3
; 1;

1

4

(

2−
√
2
)

)

= (89)
√
2

8π3/2
(7− 4

√
3)1/8 Γ

( 1

24

)

Γ
(11

24

)

.

Finally, we notice the result

2F1

(1

3
,
1

3
; 1; 2

√
2− 3

)

=

√
2

8π3/2

(2 +
√
2

4

)1/3

(7− 4
√
3)1/8 Γ

( 1

24

)

Γ
(11

24

)

(90)
which follows from the second equality in (89) by Pfaff transformation
(16).

8. Summary and outlook

In the present communication we we have presented a study of the hyper-
geometric transformation (8) recorded by Mingari Scarpello and Ritelli
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in 2018 [1] and having its roots in the work of Legendre. We essentially
extended its validity range for real non-negative parameters b as com-
pared to the one declared in the original paper [1]. We showed that the
MSR relation (8) holds also for certain complex values of b.

An interesting question have been raised in this connection: how
should we modify the left-hand side of the equation (8) to express the
function c(b) 2F1(

1

2
, 1
2
; 1; a(b)) with negative b in terms of 2F1 functions

depending on some other sets of parameters and arguments that differ
from those in 2F1(

1

3
, 1
2
; 1; 1 − b6)? The resulting function has to be no

more even in b!
Moreover, it would be highly desirable to provide an analytic contin-

uation of (appropriately modified) equation (8) to the complex plane.
We have shown how the equation (8) gives access to singular values of

elliptic integrals of the first kind and their singular moduli kn for n ≥ 3.
Sometimes, besides reproducing the known results, we obtained certain
new alternative representations of K(kn) itself and their arguments kn.

It was also shown how the MSR relation works in the reverse direc-
tion, which opens a possibility to discover some new explicit determina-
tions of Gauss 2F1 functions from the information available for singular
values of elliptic integrals.

Interesting relationships arise in comparison with a similar hyperge-
ometric transformation due to Ramanujan.

Another interesting question is raised:
If we start with some known explicit values of the function

2F1(
1

3
, 1
2
; 1; z), do they necessarily couple to certain singular values of

elliptic integrals K(kn)?
Or, could it be possible that the knowledge the Gauss function

2F1(
1

3
, 1
2
; 1; z) at certain argument z would yield some unknown value

of the elliptic integral K not necessarily belonging to the established set
of singular values K(kn)?
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Appendix

LEGENDRE [2, Chap. XXVII, § III]:

On the integral Z =

∫

dϕ
3

√

1− c2 sin2 ϕ
.
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Note: Z is an indefinite integral. The definite integral over the interval
(0, π/2)

∫ π

2

0

dϕ
3

√

1− c2 sin2 ϕ

is termed “complete” and is denoted by Z | by Legendre.

147. With 3

√

1− c2 sin2 ϕ = x, we have14 c2 sin2 ϕ = 1 − x3 and
c2 cos2 ϕ = x3 − b2 (where b2 := 1− c2); thus1

Z = −3

2

∫

xdx√
1− x3 ·

√
x3 − b2

.

The product (1− x3)(x3 − b2) = (1 + b2)x3 − x6 − b2. With b := n3 and
x2 + n2 = xz, we shall have first

Z = −3

2

∫

x−
1

2 dx√
1 + n6 + 3n2z − z3

;

and, from the accepted change of variables we draw

x+ n = x
1

2

√
z + 2n,

x− n = x
1

2

√
z − 2n,

2x
1

2 =
√
z + 2n+

√
z − 2n,

2x−
1

2dx =
dz√
z + 2n

+
dz√
z − 2n

.

Hence, the transformed integral over z is

Z =
3

4

∫ −dz√
z + 2n ·

√
1 + n6 + 3n2z − z3

+

3

4

∫ −dz√
z − 2n ·

√
1 + n6 + 3n2z − z3

,

and it is seen that these integrals depend only on elliptic functions.
To calculate the first one,

P =
3

4

∫ −dz√
z + 2n ·

√
1 + n6 + 3n2z − z3

,

14Misprint in [2].
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I observe that 1+n6+3n2z−z3 = (1+n2−z)(1−n2+n4+(1+n2)z+z2).
Thus, with

z =
1 + n2 − 2ny2

1 + y2
,

we obtain

P =
3

2

∫

dy
√

λ2 + 2λµ cos θy2 + µ2y4
,

µ = 1− n+ n2, λ2 = 3(1 + n2 + n4) = 3µ(µ+ 2n)

cos θ =

√
3

2

(1− n2)2 − 2n(1− n+ n2)

(1− n+ n2)
√
1 + n2 + n4

=

√
3

2

µ2 − 3n2

µ
√

µ2 + 2nµ
;

If we additionally define γ =
√

λ
µ · tan ω

2
and k2 = sin2 θ

2
= 1

2
(1 −

cos θ), we obtain

P =
3

4
√
λµ

F (k, ω).

The relation between ϕ and ω is such that ω is null at two integration
limits, when ϕ = 0 and ϕ = π

2
. Thus, the quantity P does not enter into

the complete integral

Z | ≡
∫ π

2

0

dϕ
3

√

1− c2 sin2 ϕ
.

For the next integral

Q =
3

4

∫ −dz√
z − 2n ·

√
1 + n6 + 3n2z − z3

,

we do the change of variables

z =
1+ n2 + 2ny′2

1 + y′2
,

which leads us to the transformation

Q =
3

2

∫

dy′
√

λ′2 + 2λ′µ′ cos θ′y′2 + µ′2y′4
,

in which

λ′2 = 3(1 + n2 + n4) = 3(1 + n+ n2)(1 − n+ n2) = 3µ′(µ′ − 2n),

µ′ = 1 + n+ n2,

cos θ′ =
3(µ′2 − 3n2)

2λµ′ =

√
3

2
· µ′2 − 3n2

µ′
√

µ′2 − 2nµ′

ICMP–23–05E 27

Defining, as usual, γ′ =

√

λ′

µ′ · tan
ψ

2
and k′2 = sin2

θ′

2
=

1

2
(1− cos θ′)

we obtain

Q =
3

4
√
λµ′ F (k

′, θ) ;

thus, the integral of interest is given by

Z =
3

4
√
λµ

F (k, ω) +
3

4
√
λµ′ F (k

′, θ) .

Moreover, the modules k and k′ are not complements of each other, and
have no other relations between them than those which result from the
equations

k2 =
1

2
−

√
3

4
· µ

2 − 3n2

µ
√
µµ′ , k′2 =

1

2
−

√
3

4
· µ

′2 − 3n2

µ′√µµ′ ;

µ = 1− n+ n2, µ′ = 1 + n+ n2, n = 3
√
b .

When ϕ = π
2
, we have ω = 0 and ψ = 2π; thus the complete integral

Z | =

∫ π

2

0

dϕ
3

√

1− c2 sin2 ϕ
=

3√
µ′λ

K(k′) .
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intégrale la série hypergéométrique,” in Annales scientifiques de
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