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Анотацiя. Ми зосереджуємося на розглядi сфероцилiндричного
плину з досить довгою довжиною, в якому встановлено нематично-
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On the generalization of the Van der Waals approach for the
isotropic-nematic fluid phase equilibria of anisotropic fluids in
a disordered porous medium

M.F. Holovko, V.I. Shmotolokha

Abstract. We focus on spherocylinder fluids with sufficiently long par-
ticle lengths for which the nematic-nematic transition was established.
Strong influence of the type of interparticle attraction on the phase be-
haviour of anisotropic fluids in disordered porius media is established.
Three simple models for this aim are considered, namely the model with
the Lennard-Jones anisotropic attraction, the model with a modified
Lennard-Jones attraction and the model with an anisotropic square-well
potential. For all considered models, the phase diagram shifts to the
region of lower densities and lower temperatures as the porosity is de-
creased.
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1. Introduction

Since the discovery of liquid crystals by Planer [1] more than 150 years
ago and their rediscovery by Reinitzer [2] in the late 19th century, liq-
uid crystals have attracted interest due to the uniqueness of their ther-
modynamic, structural, optical and other properties. At present, one
can recognize liquid crystal behaviour in an ever-increasing number of
scenarios: apart from the common examples of solutions of soaps and
surfactants [3], lyotropic liquid-crystalline order in biomacromolecular
systems is ubiquitous in nature, including the phase behavior exhibited
by DNA [4], by stiff polymers such as polysaccharides [5], cellulose [6]
and protein fibers [7] and by rod-like viruses such as the tobacco mosaic
virus [8, 9] or the fd virus [10, 11]. The supramolecular α-helices formed
from self-assembly of polypeptides in solutions are also found to give rise
to a rich variety of mesogenic behaviour [12–15]. An essential require-
ment for the stabilization of a liquid crystal phase is that the molecules
be highly anisotropic in shape, as they are for hard sherocylinders widely
used for the description of isotropic-nematic transitions [16]. This phase
transition was first explained by Onsager [17] seventy years ago as a
result of competition between the orientational entropy that favors the
disordered phase and the entropy effect associated with the orientational
dependent excluded volume of spherocylinder-like particle that favours
order. In this approach the molecular shape characterised by repulsive
interactions is considered as the key to lyotropic liquid crystals in which
the appearance of anisotropic phases is controlled by the solute con-
centration (or the density of anisotropic molecules). It should be noted
that the Onsager theory is based on the low-density expansion of the
free energy functional truncated at the second virial coefficient level and
it is accurate for sufficiently long spherocylinders when the length of
a spherocylinder L1 → ∞ and the diameter D1 → 0 in such a way
that the non-dimensional concentration C1 = 1

4πρ1L
2
1D1 is fixed, where

ρ1 = N1

V
, N1 is the number of spherocylinders, V is the volume of the

system [16]. The application of the scaled particle theory (SPT) previ-
ously developed for a hard-sphere fluid [18,19] provides an efficient way
to incorporate higher order contributions neglected in the Onsager the-
ory [20–22]. Another mechanism of formation of liquid crystalline matter
can be connected with anisotropic attraction usually treated in molec-
ular mean-field approaches such as the Maier-Saupe theory [23, 24]. In
this approach the orientationally dependent attractive interactions are
considered as the key to the orientational order in thermotropic liquid
crystals controlled by the temperature. In many cases anisotropic flu-
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ids exhibit simultaneously lyotropic and thermotropic behaviour, which
can be presented in concentration-temperature phase diagrams [15, 25].
Due to this, both repulsive and attractive interactions between particles
should be taken into account. This leads to the Van der Waals picture
of fluids [26] in which the hard molecular core is treated as the refer-
ence system that determines the fluid structure while the attractions are
incorporated by the perturbation way [27–29]. The generalized Van der
Waals theory for anisotropic fluids was formulated by Cotter [30–32] and
by the Gelbart group [33,34]. By combining the Onsager theory with the
Van der Waals approach in the group of Jackson [15, 25] for the attrac-
tive hard spherocylinders four possible pairs of coexisting fluid phases
were predicted, namely vapor-liquid, vapor-nematic, liquid-nematic and
nematic-nematic phases. In our previous papers [35, 36] the Van der
Waals approach was generalized for the description of isotropic-nematic
phase equilibria of anisotropic fluids in a disordered porous medium.
For that case the Madden- Gland model [37] was used whereby a porous
medium is presented as a quenched configuration of randomly distributed
obstacles, for example the hard spheres in the simplest case. In accor-
dance with the Van der Waals picture in the considered approach a
hard spherocylinder fluid in a disordered porous medium is considered
as the reference system. For the description of this reference system, the
scaled particle theory has been used for the last decade extending the
description of a hard sphere fluid in a disordered porous medium [38–45]
and generalized for the study of the influence of porous media on the
isotropic-nematic transition in a hard spherocylinder fluid [36, 46, 48] in
disordered porous media and in hard spherocylinder-hard sphere mix-
ture in bulk [47] and in porous media [49]. However, in our previous pa-
pers [35,36] for the treatment of attractive interaction in the generalized
Van der Waals theory for anisotropic fluids in disordered porous media
we neglect coupling between anisotropic repulsion and attractive parts
in the anisotropic phase. In this paper we revise the theory presented
in [35, 36] and analyze the coupling between anisotropic and attractive
parts in the treatment of attractive interaction in the generalized Van
der Waals equation for anisotropic fluids in disordered porous media. In
addition, we will use our previous results [48] for a hard spherocylinder
fluid in a disordered porous medium obtained in the framework of the
scaled particle theory with the Carnahan-Starling [50] and the Parsons-
Lee [51,52] corrections for an accurate description of the reference system
at higher densities. In this paper we will focus on the consideration of
anisotropic fluids with spherocylinders with rather large elongations for
which in the nematic region a namatic-nematic transition is established.

ICMP–19–04E 3

These two nematic phases have the different densities and are charac-
terized by different orientational ordering. We will show that the phase
diagram is very sensitive to the type of attractive inter particle inter-
action of considered model. We will show that a decrease of porosity
shifts the nematic-nematic transition to lower densities and lower tem-
peratures.

2. The generalized Van der Waals theory

As usual in the Van der Waals theory [26–29], the expression for the ther-
modynamic properties of a fluid have two different contributions. The
first one is connected with hard core repulsion which plays the role of
the reference system in the description. The second contribution comes
from the attractive part of interaction which is usually treated in a per-
turbation way. For example, the free energy of the fluid can be presented
as the sum

F

NkT
=

F0

NkT
+

F attr

NkT
(2.1)

where N is the number of particles, k is the Boltzmann constant, T is
the temperature, F0 is the free energy of a fluid of hard-body particles
and therefore represents a purely repulsive contribution, F attr is the
attractive part of the free energy.

2.1. Thermodynamics of a hard spherocylinder fluid in random
porous media. Application of the scaled particle theory

In this paper as the reference system we consider a hard spherocylinder
fluid in random porous media created by the randomly distributed hard
spheres. For the description of the thermodynamic properties of this ref-
erence system we will apply the scaled particle theory (SPT) developed
for this aim in our previous papers [36, 37, 48]. According to the SPT
approach we introduce into the spherocylinder fluid in a random porous
medium an additional spherocylinder with the scaling diameter Ds and
the scaling length Ls as

Ds = λsD1, Ls = αsL1 (2.2)

where D1 and L1 are the diameter and the length of the fluid sphe-
rocylinder, respectively. A key point of the SPT approach is based on
the derivation of the chemical potential of this additional scaled particle
and on the combination of the exact consideration of an infinitely small
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particle with thermodynamic consideration of a scaled particle of a suf-
ficiently large size. The excess of chemical potential for the small scaled
particle in a spherocylinder fluid in the presence of porous media can be
written in the form [36,37, 48]

βµex
s (αs, λs) = − ln p0(αs, λs)

− ln [1 −
η1

V1p0(αs, λs)

(π

6
D3

1(1 + λs)
3

+
π

4
D2

1L1(1 + λs)
2(1 + αs)

+
π

4
D1L

2
1(1 + λs)αs

∫

f(Ω1)f(Ω2)

sin γ(Ω1,Ω2)dΩ1dΩ2) ], (2.3)

where β = 1
kT

, η1 = ρ1V1 is the fluid packing fraction, ρ1 = N1

V
is the

fluid density, V1 is the spherocylinder volume, V is the volume of the
fluid,

p0(αs, λs) = exp [−βµ◦

s(αs, λs)] (2.4)

is the probability to find a cavity created by a scaled particle in the empty
matrix. It is defined by the excess chemical potential µ◦

s(αs, λs) of the
scaled particle in the limit of an infinite dilution of a fluid, Ω = (ϑ, ϕ)
denotes the orientation of particles which is defined by the angles ϑ and
ϕ, dΩ = 1

4π sinϑdϑdϕ is the normalized angle element, γ(Ω1,Ω2) is the
angle between orientational vectors of two molecules; f(Ω) is the singlet
orientational distribution function normalized in such a way that

∫

f(Ω)dΩ = 1. (2.5)

We note that hereafter we will use conventional notations [36–48], where
"1" is used to denote the fluid component, the index "0" denotes matrix
particles, while for the scaled particles the index "s" is used. For a large
scaled particle the excess chemical potential is given by a thermodynamic
expression for the work needed to create a macroscopic cavity inside a
fluid and can be presented in the form

βµex
s = W (αsλs) + βPVs/p0(αsλs) (2.6)

where P is the pressure of the fluid, Vs is the volume of the scaled particle.
In accordance with the ansatz of the SPT approach [35,36] W (αsλs) can
be presented in the form of expansion

W (αsλs) = ω00 + ω10λs + ω01αs + ω11αsλs +
1

2
ω20λ

2
s (2.7)
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The coefficients of this expansion can be found from the continuity of
the excess chemical potential given by the expressions (2.3) and (2.7) as

well as from the corresponding derivatives ∂µex
s /∂λs, ∂µ

ex
s /∂αs,

∂µex

s

∂λs∂αs

and ∂2µex
s /∂λ2

s at αs = λs = 0. After setting αs = λs = 1 we found the
relation between the pressure P and the excess chemical potential of a
fluid

β(µex
1 − µ0

1) = − ln(1 − η1/φ0) + A (τ(f))
η1/φ0

1 − η1/φ0

+ B (τ(f))
(η1/φ0)2

(1 − η1/φ0)2
+

βP

ρ1

η1
φ

(2.8)

where

A(τ(f)) = 6 +
6 (γ1 − 1)

2
τ(f)

3γ1 − 1
−

p′0λ
φ0

(

4 +
3 (γ1 − 1)

2
τ(f)

3γ1 − 1

)

−
p′0α
φ0

(

1 +
6γ1

3γ1 − 1

)

−
p′′0αλ
φ0

−
1

2

p′′0λλ
φ0

+ 2
p′0αp

′

0λ

φ2
0

+

(

p′0λ
φ0

)2

, (2.9)

B(τ(f)) =

(

6γ1
3γ1 − 1

−
p′0λ
φ0

)(

3 (2γ1 − 1)

3γ1 − 1

+
3 (γ1 − 1)

2
τ(f)

3γ1 − 1
−

p′0α
φ0

−
1

2

p′0λ
φ0

)

, (2.10)

τ(f) =
4

π

∫

f(Ω1)f(Ω2) sinϑ12dΩ1dΩ2, (2.11)

γ1 = 1 + L1/D1, (2.12)

p′0λ = ∂p0(αs,λs)
∂λs

, p′0α = ∂p0(αs,λs)
∂αs

, p′′0αλ = ∂2p0(αs,λs)
∂αs∂λs

, p′′0λλ = ∂2p0(αs,λs)
∂λ2

s

,

are the corresponding derivatives at αs = λs = 0. We note that the prob-
ability p0(αs, λs) is related to two different types of porosity introduced
by us in [41–43]. The first one corresponds to geometric porosity

φ0 = p0(αs = λs = 0) (2.13)

characterizing the free volume of the fluid. The second type of poros-
ity corresponds to the case αs = λs = 1 and leads to thermodynamic
porosity

φ = p0(αs = λs = 1) = exp(−βµ◦

1) (2.14)
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defined by the excess chemical potential of a fluid particle µ◦

1 in the
limit of an infinite dilution. It characterizes the adsorption of the fluid
in an empty matrix. Using the Gibbs-Duhem equation which relates the
pressure P of a fluid to its total chemical potential µ1 = µid

1 + µex
1 one

derives the fluid compressibility in the following form

β

(

∂P

∂ρ1

)

T

=
1

(1 − η1/φ)

+ (1 + A(τ(f)))
η1/φ0

(1 − η1/φ) (1 − η1/φ0)

+ (A(τ(f)) + 2B(τ(f)))
(η1/φ0)

2

(1 − η1/φ) (1 − η1/φ0)
2 (2.15)

+ 2B(τ(f))
(η1/φ0)

3

(1 − η1/φ) (1 − η1/φ0)3
,

where µid
1 is the ideal part of chemical potential of the fluid particle. After

integration of the relation (2.15) over ρ1 one obtains the expressions for
the chemical potential and for the pressure in the SPT2 approach [36,
37,42–44,46]. The obtained expressions are correct at small densities but
at higher densities in accordance with (2.15) they have two divergences
which appear at η1 = φ and η1 = φ0 respectively. Since φ < φ0, the
divergence for η1 = φ occurs at lower densities compared to the second
one. From geometrical point of view, such a divergence should appear at
higher densities at η1 = φ∗, which should be between φ and φ0

φ < φ∗ < φ0 (2.16)

Different corrections and improvements of the SPT2 approach were pro-
posed in [35, 41, 43, 45]. In this paper we will stop at the SPT2b1 ap-
proximation which appears after replacing φ by φ0 everywhere in (2.15)
except the first term and after removing the divergence η1 = φ in the
corresponding expression for the chemical potential by expanding the
logarithmic term via the following modification

− ln (1 − η1/φ) ≈= ln (1 − η1/φ0) +
η1(φ0 − φ)

φ0φ(1 − η1/φ0)
(2.17)

The SPT2b1 approximation is accurate at small, intermediate and higher
fluid densities. The expressions for the chemical potential and for the
pressure within the SPT2b1 approximation can be presented in the fol-
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lowing forms [35, 45]

β
(

µex
1 − µ0

1

)SPT2b1
= σ(f) − ln(1 − η1/φ0) + (1

+ A(τ(f)))
η1/φ0

1 − η1/φ0
+

η1(φ0 − φ)

φ0φ(1 − η1/φ0)

+
1

2
(A(τ(f)) + 2B(τ(f)))

(η1/φ0)2

(1 − η1/φ0)2

+
2

3
B(τ(f))

(η1/φ0)3

(1 − η1/φ0)3
, (2.18)

(

βP

ρ1

)SPT2b1

=
1

1 − η1/φ0

φ0

φ
+

(

φ0

φ
− 1

)

φ0

η1
ln

(

1 −
η1
φ0

)

+
A(τ(f))

2

η1/φ0

(1 − η1/φ0)2
+

2B(τ(f))

3

(η1/φ0)2

(1 − η1/φ0)3
, (2.19)

where

σ(f) =

∫

f(Ω) ln f(Ω)dΩ. (2.20)

is the entropic term. From the thermodynamic relationship

βF

V
= βµ1ρ1 − βP (2.21)

we can obtain an expression for the free energy. The free energy of a
confined fluid is [35]

βF

N

SPT2b1

= σ(f) + ln
η1
φ

− 1 − ln(1 −
η1
φ0

)

+

(

1 −
φ0

φ

)[

1 +
φ0

η1
ln(1 − η1/φ0)

]

+
A(τ(f))

2

η1/φ0

1 − η1/φ0
+

B(τ(f))

3

(

η1/φ0

1 − η1/φ0

)2

. (2.22)

However, we should note that the SPT approach is not accurate enough
for higher fluid densities, where the Carnahan-Starling (CS) correc-
tion [50] should be included. As a result, the equation of state can be
presented in the form [48]

βPSPT2b1−CS

ρ1
=

βPSPT2b1

ρ1
+

β∆PCS

ρ1
, (2.23)
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where the first term is given by equation (2.19) and the second term is
the CS correction

β∆PCS

ρ1
= −

(η1/φ0)3

(1 − η1/φ0)
3 . (2.24)

Likewise, the chemical potential can be presented in the form

βµ0
1 = (βµ1)SPT2b1 + β(∆µ1), (2.25)

where the correction (∆µ1)CS can be obtained from the Gibbs-Duhem
equation

(β∆µ1)CS = β

∫ η1

0

dη1
η1

(

∂∆P

∂ρ1

)

(2.26)

As a result

(β∆µ1)CS = ln(1 −
η1
φ0

) +
η1/φ0

1 − η1/φ0
−

1

2

(η1/φ0)2

(1 − η1/φ0)2

−
(η1/φ0)3

(1 − η1/φ0)3
(2.27)

The free energy can also be presented in the form

βF0

N1
=

βF

N1

SPT2b1

+
βF

N1

CS

, (2.28)

where the first term is given by equation (2.22) and the second term can
be found from the relation (2.21)

(

β∆F

N1

)CS

= ln(1 − η1/φ0) +
η1/φ0

1 − η1/φ0
−

1

2

(η1/φ0)
2

(1 − η1/φ0)
2 . (2.29)

2.2. The contribution of attractive interactions

The contribution of attractive interactions to thermodynamic properties
of a fluid can be taken into account in the framework of the perturba-
tion theory like the Barker-Henderson theory [27] or in the framework
of optimized cluster expansions [28, 29]. However, the first term of the
perturbation related to the so-called high temperature approximation
(HTA) is identical in both approaches and in the considered case for the
free energy can be expressed as [25]

βF attr

V
=

1

2
ρ2
∫

uattr(r12,Ω1,Ω2)f(Ω1)f(Ω2)

g02(r12,Ω1,Ω2)dr̄12dΩ1dΩ2 (2.30)
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where uattr(r12,Ω1,Ω2) is the attractive part of the interparticle inter-
action, g02(r12,Ω1,Ω2) is the pair distribution function of the reference
system. Similar as in [25], we can introduce the orientation-dependent
contact distance σ(Ω1,Ω2,Ωr), where Ω1 and Ω2 are orientations of two
particles 1 and 2 and Ωr is the orientation of the intermolecular vec-
tor r̄12 between the centers of mass of these two particles. In terms of
σ(Ω1,Ω2,Ωr), the repulsive part of interaction urep(r12,Ω1,Ω2) for hard
core particles can be represented in the form

urep(r12,Ω1,Ω2) =

{

∞ for r12 < σ(Ω1,Ω2,Ωr)
0 for r12 > σ(Ω1,Ω2,Ωr)

(2.31)

and the pair distribution function of the reference system can be ap-
proximated as the pair distribution function of the hard sphere fluid in a
random porous medium with the same molecular volume as that of hard
spherocylinders

g02(r12,Ω1,Ω2) ≈ g02 (r12/σ(Ω1,Ω2,Ωr)) (2.32)

As a result, the expression (2.30) for the attractive contribution can be
presented in the form

βF attr

V
= −12ρ1βη1a, (2.33)

where

a = −
1

φ0V1

∫

f(Ω1)f(Ω2)uattr(r12,Ω1,Ω2)g02

(

r12
σ (Ω1,Ω2,Ωr)

)

r212dr12dΩ2dΩ1dΩr. (2.34)

The factor 1/φ0 excludes the volume occupied by matrix particles, V1 is
the volume of a particle, η1 = ρ1V1. In terms of parameter a the equation
of state and the chemical potential of the fluid have the typical Van der
Waals form

βP

ρ1
=

βP0

ρ1
− 12βη1a (2.35)

βµ1 = βµ◦

1 − 24βη1a (2.36)
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In this paper we present the attractive part of the interaction potential
in the form

uattr (r12,Ω1,Ω2) =

=











[

uattr
iso

(

r12
σ

)

+ uattr
aniso

(

r12
σ(Ω1,Ω2,Ωr)

)]

[ǫ0 + ǫ2P2 (cosϑ12)], r12 ≥

σ(Ω1,Ω2,Ωr)
0, r12 < σ(Ω1,Ω2,Ωr)

(2.37)

where uattr
iso

(

r12
σ

)

is the isotropic part of attraction, uattr
aniso

(

r12
σ(Ω1,Ω2,Ωr)

)

is the anisotropic part of attraction, P2 (cosϑ12) is the second Legendre
polynomial, ϑ12 is the angle between the principal axes of two interact-
ing particles, ǫ0 and ǫ2 characterised the strengths of the correspond-
ing isotropic and anisotropic attractive interactions. Following the tra-
ditional scheme [25] and using a dimensionless intermolecular distance
r∗ = r

σ(Ω1,Ω2,Ωr)
one obtains

a = aiso + aaniso, (2.38)

where

aiso = −
4πσ3

φ0V1

∫

∞

0

ghs2 (r∗)uattr
iso (r∗) r∗2dr∗

[

ǫ0 + ǫ2

∫

f (Ω1) f (Ω2)P2 (cosϑ12) dΩ1dΩ2

]

(2.39)

aaniso = −
1

φ0V1

∫

dΩ1dΩ2f (Ω1) f (Ω2) [ǫ0 + ǫ2P2 (cosϑ12)]×

V exc
1 (Ω1,Ω2) 3

∫

∞

0

ghs2 (r∗)uattr
aniso (r∗) r∗2dr∗, (2.40)

V exc
1 (Ω1,Ω2) =

1

3

∫

dΩ2 [σ (Ω1,Ω2,Ωr)]
3

=
4

3
πD3

1+

+ 2πD2
1L1 + 2D1L

2
1 sinϑ (Ω1,Ω2) (2.41)

is the excluded volume formed by two spherocylinders with the orienta-
tions Ω1 and Ω2. As we can see aaniso is proportional to excluded vol-
ume V exc

1 (Ω1,Ω2) which appears due to the repulsive interaction. The
coefficient near V exc

1 (Ω1,Ω2) has the form of the integral of uattr
aniso (r∗).
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It means that aaniso characterizes the coupling between the repulsive
and attractive contributions. Now for the calculation of parameter a we
should define the pair distribution function of a hard sphere fluid in a
porous medium ghs2

(

r
σ

)

and the attractive part of the interaction poten-

tial uattr (r,Ω1,Ω2). As the first step for the description of ghs2
(

r
σ

)

the
interpolation scheme proposed in [53] can be used. In this scheme the
contact value obtained from the SPT theory [56] is combined with the
analytical result for the pair distribution function of the hard-sphere fluid
obtained in the Percus-Yevick approximation for the bulk case [57]. We
consider the interaction potential uattr (r,Ω1,Ω2) in more detail in the
next section. However, in the Van der Waals approach the pair distribu-
tion function g02 (r12,Ω1,Ω2) is approximated by its low-density limit [25]

lim
ρ1→0

g02 (r12,Ω1,Ω2) = exp [−βurep (r12,Ω1,Ω2)] , (2.42)

where the repulsive part of the potential urep (r12,Ω1,Ω2) is defined by
equation (2.31). As a result, in the Van der Waals approach the cal-
culation of the constants aiso and aaniso reduces to the calculations
of the mean values of the potentials uattr

iso (r∗) and uattr
aniso (r∗) corre-

spondingly. We note that the background of the Van der Waals ap-
proach is connected with the consideration of the potentials uattr

iso (r∗)
and uattr

aniso (r∗) in the form of Kac potentials uattr
iso (r∗) = γ3Φattr

iso (γr)
and uattr

aniso (r∗) = γ3Φattr
aniso (γr) whose range 1

γ
is very long compared to

the range of the repulsive potential urep
(

r
σ(Ω1,Ω2,Ωr)

)

and in the limit

γ → 0 the expressions (2.33),(2.35),(2.36) in the Van der Waals ap-
proximation (2.42) will be exact [54, 55]. However, as the next step of
the calculations we need to know the singlet distribution function f (Ω)
which can be found from the minimization of the total free energy of the
fluid presented as the sum (2.1). Such minimization leads to the integral
equation for the distribution function f (Ω).
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2.3. The integral equation for the singlet distribution function

The minimization of the total free energy with respect to f (Ω) leads to
a nonlinear integral equation for the singlet distribution function

ln f (Ω1) + λ +
8

π
C

∫

f (Ω2) sinϑ12dΩ2

+ βρ1ǫ0
4πσ3

φ0

∫

∞

1

uattr
iso (r∗) r∗2dr∗

×

∫

f (Ω2)P2 (cosϑ12) dΩ2 + βρ1ǫ2
8

π
L2
1D1

1

φ0

3

∫

∞

1

uattr
aniso (r∗) r∗2dr∗

∫

f (Ω2)×

× sinϑ12P2 (cosϑ12) dΩ2, (2.43)

where the constant λ can be found from the normalization condition
(2.5). The constant C can be presented as the sum

C = Crep + Cattr, (2.44)

where

Crep =

η1

φ0

1 − η1

φ0

[

3 (γ1 − 1)
2

3γ1 − 1

](

1 −
P

′

0λ

2φ0

)

+

η1

φ0
(

1 − η1

φ0

)

δ

(

6γ1
3γ1 − 1

−
P

′

0λ

φ0

)

(2.45)

is the contribution from the repulsive interaction part. The constant
δ = 3

8 is the Parsons-Lee [51, 52] correction introduced by us in [48].

Cattr = βρ1ǫ0
8

π
L2
1D1

1

φ0
3

∫

∞

1

uattr
aniso (r∗) r∗2dr∗ (2.46)

is the contribution from the attractive part of interaction. Instead of
the solution of the integral equation (2.43), in literature the researchers
usually used for f (Ω) the trial function in the Onsager [17], Odijk [58]
or other forms with parameters calculated from the minimization of the
free energy. Such a procedure leads to algebraic equations but it usually
overestimates the orientational ordering in the fluid [16]. Instead of such
a procedure, in this paper we will solve the integral equation (2.43) using
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the scheme presented in [59]. We note that in the case when ǫ2 = 0 the
equation (2.43) has the same structure as the corresponding equation

ln f (Ω1) + λ +
8

π
C

∫

f (Ω2) sinϑ12dΩ2 = 0 (2.47)

obtained by Onsager [17] for a hard spherocylinder fluid in the limit L1 →

∞, D1 → 0 while the dimensionless density of the fluid c = 1
4πρ1L

2
1D1 is

fixed. In this limit C → c. From the bifurcation analysis of the equation
(2.47), the existence of two characteristic points was found [60]

Ci = 3.290, Cn = 4.191 (2.48)

which define the high density of a stable isotropic fluid and the minimal
density of a stable fluid in the nematic state. In accordance with (2.44),
the constant C is defined by the sum of two terms. The first term due to
(2.45) depends on the packing fraction η1 and has a positive value. The
second term C2 describes the attractive contribution and is proportional
to the inverse temperature β = 1

kT
. This term has a negative value.

3. Results and discussions

In this section we will apply the theory developed in the previous section
for the description of the phase behaviour of anisotropic fluids in disor-
dered porous media at fixed value γ1 = 1 + L1

D1

. The calculated phase

diagrams will be presented in terms of dimensionless variables: T ∗ = kT
ǫ0

for the temperature and η1 = ρ1V1 for the packing fraction. The rich-
ness of nematic-liquid-vapour phase behaviour for a hard spherocylinder
fluid with an attractive interparticle interaction were demonstrated for
the bulk case [25] and in porous media [35, 36]. One of the most strik-
ing features of this phase behaviour is the appearance of a region of
nematic-nematic phase separation for high particle elongations, namely
at L1

D1

> 50. We note that in the Onsager limit when L1 → ∞, D1 → 0

and C1 = 1
4πρ1L

2
1D1 is fixed, η1 = ρ1V1 → 0 since in this limit V1 → 0.

The nematic-nematic region involves the coexistence of a low-density
vapor-like anisotropic state of lower orientational order with a high-
density liquid anisotropic state of higher orientational order. As for the
usual vapor-liquid transition, both phases are bounded by the critical
point at higher temperatures which exists in the nematic region. In this
paper we will focus on the influence of the types of interparticle attraction
and the presence of porous media on the nematic-nematic phase separa-
tion. As mentioned recently in [15], the position of the isotropic-nematic
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transition is determined principally by the length of spherocylinders and
coexistence between the isotropic and the low-density nematic phases
N1 is not affected by incorporation of anisotropy into the attractive in-
teractions. The enhanced anisotropic attractive interaction only shifts
the nematic-nematic coexistence curves to higher temperatures and also
shifts the isotropic-nematic-nematic triple point temperature to a higher
temperature. But the form of the phase diagram does not change. Due to
this, similar as in [15], here for simplification we put ǫ2 = 0. In this case
we come back to the integral equation (2.43) for the singlet distribution
function and the coexistence curves can be found from the conditions of
thermodynamic equilibrium

µ1

(

ρ11, T
)

= µ1

(

ρ21, T
)

P
(

ρ11, T
)

= P
(

ρ21, T
)

, (3.1)

where µ1

(

ρ11, T
)

and P
(

ρ11T
)

are the chemical potential and the pres-
sure of the fluid correspondingly, ρ11 and ρ21 are the fluid densities of
two different phases 1 and 2. The numerical solution of the equations
(3.1) is realized using the Newton-Raphson algorithm. We start our in-
vestigation from the simple model of a hard spherocylinder fluid with
an attractive interaction in the form (2.37), in which uattr

iso

(

r
σ

)

= 0 and

uattr
aniso

(

r
σ(Ω1,Ω2,Ωr)

)

has the Lennard-Jones-like form

uattr
aniso

(

r

σ (Ω1,Ω2,Ωr)

)

=

=







4ǫ0

[

(

σ(Ω1,Ω2,Ωr)
r

)12

−
(

σ(Ω1,Ω2,Ωr)
r

)6
]

, r > σ(Ω1,Ω2,Ωr)

0, r < σ(Ω1,Ω2,Ωr)

(3.2)

For simplification we put ǫ2 = 0. For the case considered
∫

∞

1

uattr
aniso (r∗) r∗2dr∗ = −

8

9
(3.3)

The phase diagram for a hard spherocylinder fluid with the Lennard-
Jones-like attraction is presented in figure 1 for the bulk case at L1

D1

= 80.
We remember that the potential (3.2) was used by us in our previous
papers [35,36], in which, however, for simplification the excluded volume
V exc
1 (Ω1,Ω2) in the expression (2.40) was approximated by its value for

the isotropic case

V exc
1,iso (Ω1,Ω2) =

4

3
πD3

1 + 2πD2
1L1 + πD1L

2
1 (3.4)

ICMP–19–04E 15

40

50

60

70

80

90

100

0.120 0.123 0.126 0.129 0.132 0.135 0.138

Bulk
L/D=80

T*

Figure 1. Phase diagram for a hard-spherocylinder fluid with an
anisotropic Lennard-Jones attraction.

The comparison of figure 1 with the corresponding results obtained in
[35, 36] in the framework of approximation (3.4) demonstrates that for
the calculation of the attractive interaction part the inclusion of the non-
approximated expression (2.41) for the excluded volume formed by two
spherocylinders is very important and can change completely the phase
diagram. Probably Lennard-Jones-like model overestimates the role of
anisotropy for interparticle attraction at large distances. Due to this, we
introduce the second model which is a slightly modified version of the
original Lennard-Jones model. In this model we cut attraction between
particles at r∗ = γ1 = 1 + L1

D1

and we shift the interaction potential to

the value uattr
aniso (r∗ = γ1). In consequence, in the second model

uattr
aniso

(

r

σ (Ω1,Ω2,Ωr)

)

= 4

[

1

(r∗)
12 −

1

(r∗)
6

]

− 4

[

1

γ12
1

−
1

γ6
1

]

, 1 < r∗ < γ1

= 0, r∗ < 1, r∗ > γ1 (3.5)
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Figure 2. Comparison of the phase diagram for a hard-spherocylinder
fluid with the modified anisotropic Lennard-Jones attraction (solid line)
and that with an anisotropic Lennard-Jones attraction in the isotropic
approximation (3.4) for the attractive contribution (dotted line).

As a result, instead of (3.3) we will have
∫

∞

1

uattr
aniso (r∗) r∗2dr∗ = −

8

9
+

4

3γ3
1

(

1 −
1

3γ6
1

)

+
4

3γ6
1

(

γ3
1 − 1

)

(

1 −
1

γ6
1

)

. (3.6)

The phase diagram for a hard spherocylinder fluid with a Lennard-Jones-
like attraction modified in the form (3.5) for the bulk case for L1

D1

= 80 is
presented in figure 2. This is a typical phase diagram with an isotropic-
nematic transition with coexistence of two nematic phases with different
densities. For comparison, in figure 2 the phase diagram for the same
model of a hard spherocylinder fluid with the Lennard-Jones attraction
in the form (3.2) with simplification (3.4) for the excluded volume is
also presented. We can not see a big difference between phase behaviors
in these two cases. The influence of porous media on the phase behav-
ior of a hard spherocylinder fluid with Lennard-Jones-like attraction in
the form (3.5) in the bulk case and the presence of porous media mod-
eled by randomly distributed hard spheres with the packing fractions
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Figure 3. Phase diagrams for a hard spherocylinder fluid with the
modified anisotropic Lennard-Jones attraction in a disordered porous
medium.

η0 = 0.1, 0.2, 0.3 is illustrated in figure 3 for the case L1

D1

= 80. We can
expect an appearance of two nematic states with different densities. A de-
crease of matrix porosity φ0 = 1− η0 (or increase of packing fraction η0)
shifts this transition to lower densities and lower temperatures. However,
the model with a modified Lennard-Jones attraction similar as the model
with the original Lennard-Jones attraction has the same anisotropy of
attraction for different distances only due to r∗ = r

σ(Ω1,Ω2,Ωr)
. In a real

situation, parallel configuration of two spherocylinders has the largest at-
traction. Due to this, a simple model was formulated to incorporate such
attraction [16, 61] - an attractive square-well potential around the hard
core of spherocylinders, the so-called anisotropic square-well potential,
in which the potential uattr (r,Ω1,Ω2) has the form

uattr (r,Ω1,Ω2) =

{

−ǫ0, γ1D1 > r > σ (Ω1,Ω2,Ωr)
0, r < σ(Ω1,Ω2,Ωr), r > γ1D1

(3.7)

This will be the third model which we will use in this paper for
the description of phase behavior of a hard spherocylinder fluid with
anisotropic attraction. We note that this potential was used in G. Jack-
son’s group for the investigation of phase behavior of a hard spherocylin-
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Figure 4. Phase diagrams for a hard spherocylinder fluid with an
anisotropic square-well attraction in a disordered porous medium.

der fluid using the Onsager trial function for the singlet orientational
distribution function f (Ω1) [15, 25]. After application of the potential
(3.7) for the attractive constant a we will have

a = −
ǫ0

φ0V1

[

4

3
πγ3

1D
3
1 −

∫

dΩ1dΩ2f (Ω1) f (Ω2) V exc
1 (Ω1,Ω2)

]

(3.8)

The phase diagram for a hard spherocylinder fluid with attraction in
the form (3.7) in the bulk case and in the presence of porous media at
L1

D1

= 150 is presented in figure 4. As we can see, the phase diagrams for
the case considered and for a hard spherocylinder fluid with a modified
Lennard-Jones attraction are very similar qualitatively but the temper-
atures of transition between two nematic phases are two or three orders
higher in the case of anisotropic square-well attractive potential com-
pared with the modified Lennard-Jones potential. In both models a de-
crease of porosity shifts the nematic-nematic transition to lower densities
and lower temperatures. Finally, in figure 5 the temperature dependence
of the nematic order parameter

S2 =

∫

f (Ω)P2 (cosϑ) dΩ (3.9)
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Figure 5. The temperature dependence of the nematic order parameter
in coexisting nematic phases for a hard spherocylinder fluid with an
anisotropic square-well attraction in a disordered porous medium.

in coexisting nematic phases for a hard spherocylinder fluid with
anisotropic square-well attraction is presented. As we can see, the ori-
entational ordering in a high density nematic phase N2 is near 1 in the
entire temperature region. In the low-density nematic phase N1 the or-
der parameter S2 monotonically increases with the temperature. In the
critical point Tc both curves meet each other. With increasing porosity
the order parameter decreases.

4. Conclusions

In this paper we present the improved version of the generalized Van
der Waals equation for anisotropic fluids in disordered porous media
formulated by us in our previous paper [35, 36]. As usual, in the Van
der Waals approach the expressions for thermodynamic properties of
a fluid have two different parts. The first one is connected with hard
core repulsive interactions and is based on analytical expressions for the
equation of state and for the chemical potential of a hard spherocylin-
der fluid in random porous media obtained in the framework of the
scaled particle theory. In particular, in the present paper the analytical
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expressions for the pressure and the chemical potential of a hard sphero-
cylinder fluid in a random porous medium obtained in the SPT2b1 ap-
proximation with Carnahan-Starling and Parsons-Lee corrections were
used [48]. The second term of the generalized Van der Waals equation
is connected with the mean value of the attractive interparticle inter-
action. The important improvement of the generalized Van der Waals
equation is connected with taking into account the coupling between
repulsive and attractive contributions in the treatment of attractive in-
terparticle interaction. We note that this important aspect was neglected
in our previous papers [35, 36]. From minimization of the free energy of
the fluid we obtained a nonlinear integral equation for the singlet distri-
bution function which describes the orientational ordering in the fluid.
Due to the coupling between attractive and repulsive contributions, the
excluded volume V exc

1 (Ω1,Ω2) introduces the terms corresponding to
the isotropic and anisotropic contributions. In the simple case when in
the potential of interparticle interaction Uattr (r12,Ω1,Ω2) the term cor-
responding to Maier-Saupe interaction (ǫ2 = 0) is absent, the integral
equation for the singlet distribution function has the same form (2.47)
as a respective equation for a hard spherocylinder fluid obtained by On-
sager [17]. However, a corresponding constant C in this equation is pre-
sented as the sum of two terms connected with repulsive and attractive
contributions. In this paper we focused on the consideration of sphero-
cylinders with rather large elongations, for which the isotropic-nematic
phase transition appears in the region of quite small densities. Due to
this, the corresponding gas-liquid transition is located completely in the
nematic region and can be treated as a nematic-nematic transition. We
showed that the phase diagram is very sensitive to the type of attrac-
tive interparticle interaction. In this paper we consider three such simple
models with ǫ2 = 0, namely hard spherocylinders with Lennard-Jones-
like attraction in the form (3.2), hard spherocylinders with the modified
Lennard-Jones attraction in the form (3.5) and hard spherocylinders
with an anisotropic square-well attraction in the form (3.7). The phase
diagram for the first model with Lennard-Jones attraction presented in
figure 1 is considerably different from the results [35,36] obtained in the
framework of the isotropic approximation (3.4) for the excluded volume
V exc
1 (Ω1,Ω2) formed by two spherocylinders. More or less similar results

with [35,36] for phase behaviour were obtained for the modified version
of Lennard-Jones attraction with cutting and shifting of Lennard-Jones
attraction at distances r

σ(Ω1,Ω2,Ωr)
= γ1 = 1 + L1

D1

. It means that the

original Lennard-Jones model significantly overestimates the role of at-
traction at distances larger than γ1. The third model is the model with
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the anisotropic square-well potential (3.7). This model manifests in a
qualitatively similar phase behaviour as the model with the modified
Lennard-Jones attraction. Both models demonstrate the existence of a
nematic-nematic phase separation but the temperatures of this transi-
tion are two or three orders higher for the model with the square-well
attraction than in the case of the modified Lennard-Jones version. The
temperature of transition increases significantly with increasing lengths
of spherocylinders. Similar effect was not observed for the model with
modified Lennard-Jones attraction. It was shown that the higher-density
nematic phase is more ordered than the lower-density nematic phase. In
both models a decrease of porosity (or increase of packing fraction of
matrix particles) shifts the nematic-nematic transition to lower densities
and lower temperatures. With increasing porosity the ordering in both
nematic phases decreases. Finally, we note that all the expressions in
this paper till equation (2.40) are presented really in the high tempera-
ture approximation (HTA), which includes the pair distribution function
of the reference system ghs2

(

r
σ

)

. In this paper we present this pair dis-
tribution function in the low-density limit (2.42) which corresponds to
Van der Waals approach and all calculations after this were done in this
approximation. We note that in our previous paper [62] for the descrip-
tion of phase behavior of a simple fluid we used the HTA approach and
the pair distribution functions for the hard sphere fluid in a random
porous medium ghs2

(

r
σ

)

were obtained from the numerical solution of
the replica Ornstein-Zernike (ROZ) equation for this model. The results
obtained demonstrate good aggrement between the calculated liquid-
vapour phase diagrams of a Lennard-Jones fluid in a hard sphere matrix
and the corresponding computer simulation data. For the description of
the pair distribution function of the reference system the interpolation
scheme [53] which combines the contact value obtained from the SPT
theory with the analytical results for the pair distribution function in the
bulk case with an effective density can also be used. In our future studies
we plan to extend such approaches to the case of anisotropic fluids in
random porous media. In addition, we plan to use the theory developed
for interpretation of liquid-crystalline states of polypeptide solutions and
other biological systems in porous media [63].
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