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Анотацiя. Ми обговорюємо вплив зовнiшнього електричного поля
на змочування твердої поверхнi рiдиною. Для цього ми використову-
ємо модель плину дворiвневих атомiв, у якiй змiна мiжатомних вза-
ємодiй через присутнiсть поля може бути знайдена з використанням
квантовомеханiчної теорiї збурень. Конструюючи функцiонал вели-
кого термодинамiчного потенцiалу, ми виконуємо стандартнi обчис-
лення рiвноважного кута змочування Юнга. Ввiмкнення електрич-
ного поля |E| > 0 може помiтно збiльшити кут змочування θ.

Wetting in the presence of the electric field: The classical den-
sity functional theory study for a model system

V.M. Myhal, O.V. Derzhko

Abstract. We discuss the effect of an external electric field on the wet-
ting of a solid surface by liquid. To this end, we use a model of the
two-level-atom fluid for which the changes in interatomic interactions
due to the presence of the field can be found using quantum-mechanical
perturbation theory. Constructing the grand potential functional, we per-
form the standard calculations of Young’s equilibrium contact angle. The
switching on of the electric field |E| > 0 may increase noticeably the con-
tact angle θ.
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1. Introductory remarks

Wetting of solid surfaces by liquids is important both from fundamen-
tal and practical points of view [1–4]. Liquid wets a solid surface, if the
Young equilibrium contact angle θ (i.e., the angle between the surface
of the liquid and the outline of the contact solid surface at thermody-
namic equilibrium) vanishes, i.e., θ → 0◦. The surface is nonwetted for
any θ > 0◦ and it becomes completely dry for θ → 180◦. The contact
angle may vary under the change of external parameters. If θ while in-
creasing crosses the value 90◦, the change from hydrophilicity (θ < 90◦)
to hydrophobicity (θ > 90◦) occurs.

An interesting problem in the theory of inhomogeneous fluids is to
examine a dependence of θ on external parameters starting from a mi-
croscopic picture within the frames of which one can follow how external
influences modify interparticle interactions. The classical density func-
tional method [5–11] provides such a possibility since it allows to cal-
culate the properties of a nonuniform fluid on the basis of interparticle
interactions.

It is well known that an external electric field is a simple and ef-
fective way to change wetting properties. The most drastic changes in
the presence of the electric field occur for ionic or polar liquids (see, for
example, Refs. [12–15]). However, even in the case of noble liquids the
electric field can affect the macroscopic properties via coupling to the
transition electric dipole moment of atoms.

In the present paper, we intend to follow starting from the micro-
scopic level how an external electric field affects the Young equilibrium
contact angle for a fluid of atoms. To this end, we consider a simple model
of two-level-atom fluid in which the interatomic interactions are changed
because of the presence of the field. Furthermore, within the frames of
the classical density functional theory approach we calculate the contact
angle θ which depends on the value of the electric field strength |E|.
We show that while the value of the electric field strength increases, the
contact angle may increase and cross 90◦. In other words, an increase of
the field may lead to hydrophobicity.

The outline of the paper is as follows. First, we justify the choice of
a grand potential functional which depends on an external electric field.
Then we report some results for the bulk properties of the system, as well
as for the density profiles for two-phase cases: liquid – vapor, substrate
(solid wall) – liquid, and substrate – vapor. Knowing the grand potential
allows us to find the surface tensions, and then, via the Young equation,
to obtain the required contact angle θ. Our main results are shown in
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Figure 1. Dependence of the contact angle θ on the temperature τ/τc(0).
τc(0) denotes the dimensionless critical temperature at E = 0, i.e.,
τc(0) = Tc(E = 0)/(E1 − E0). The lower curve (with squares) corre-
sponds to E = 0, the upper curve (with circles) corresponds to E = 0.2;
E = |E|r30/|p| is the dimensionless value of the electric field strength. For
further explanations see the main text.

Figs. 1 and 2. From these plots one can see that an increase of the value
of the electric field strength |E| increases the wetting temperature Tw

(i.e., the temperature Tw for which the contact angle θ vanishes), see
Fig. 1, increases the contact angle θ at fixed temperature, see Fig. 2,
may replace wetting by partial wetting, see Figs. 1, 2, and may lead to
a changeover from hydrophilicity to hydrophobicity, see Figs. 1, 2.

2. Interatomic interactions and the grand potential
functional

In order to follow how the electric field affects the contact angle we have
to begin with writing down the interaction energy of neutral atoms with a
time-independent spatially uniform electric field. This might be a puzzle
since the atoms have no permanent electric dipole moment. Therefore, we
start from the first principles to show how the electric field modifies the
interatomic interactions. To be free of secondary complications, we shall
consider a simple model of a two-level-atom fluid. We assume that the
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Figure 2. Dependence of the contact angle θ on E = |E|r30/|p| at dif-
ferent temperatures τ = T/(E1 − E0): 0.6τc(0) ≈ 0.001 179 (curve 1
with squares), 0.7τc(0) ≈ 0.001 376 (curve 2 with circles), 0.8τc(0) ≈
0.001 572 (curve 3 with up-triangles), 0.9τc(0) ≈ 0.001 769 (curve 4 with
down-triangles), 0.95τc(0) ≈ 0.001 867 (curve 5 with diamonds), and
0.957 4τc(0) ≈ 0.001 881 (curve 6 with left-triangles). For further expla-
nations see the main text.

energy of excitation of the atom is E1 −E0, the atom does not have the
electric dipole moment in the ground state or in the excited state, and the
transition electric dipole moment between the ground and excited states
is p. We are interested in how the electric field E modifies the long-range
interatomic interactions, while the short-range interactions are described
by introducing the atom radius r0 = σ/2. After switching on the electric
field |E| > 0, one can calculate within the framework of the quantum-
mechanical perturbation theory with respect to the interaction with the
field the second-order results for the energy of a single atom, EN=1, or of
a group of two atoms at (a sufficiently large) distance R = |R12|, EN=2,
see Appendix and Ref. [16]. We find

EN=1 = E0 −
γ2
1

4
(E1 − E0) + . . . ,

EN=2 = 2E0

−

(

α2
12

2
+

γ2
1 + γ2

2

4

(

1 +
3α2

12

2

)

− γ1γ2α12

)

(E1 − E0) + . . . ,
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γi(E1 − E0) = 2|p||E|χi, α12(E1 − E0) =
|p|2

R3
Φ12, (1)

where χi and Φ12 are well known functions which depend on pi/|p| and
E/|E| or on p1/|p|, p2/|p|, and R12/|R12|, see Appendix and Ref. [16].
EN=1 and EN=2 given in Eq. (1) are the only results one must know
in order to find the second virial coefficient of the fluid. The statistical-
mechanical average contains also the averages over orientations of pi

(and therefore no preferential direction created by the field is expected).
Bearing in mind that we are interested in the lowest term in |E| only,
the orientational averages can be done using a cumulant expansion. After
straightforward but cumbersome calculations (for details see Appendix)
we find the second virial coefficient of the two-level-atom fluid [16]:

B2(T, |E|) = 4v − 2π

∫ ∞

σ

dRR2

(

exp

(

3a(|E|)σ3

2πTR6

)

− 1

)

≈ 4v −
a(|E|)

T
,

a(|E|) =
2π

9

(

1 +
2|p|2|E|2

(E1 − E0)2

)

|p|4

(E1 − E0)σ3

=
v(E1 − E0)ℵ2

48

(

1 + 2ℵ2E2
)

. (2)

Here v = πσ3/6, ℵ = |p|2/(r30(E1 −E0)) is the dimensionless parameter
which characterizes the two-level atom (in what follows we set ℵ = 1 for
convenience), E = |E|r30/|p| is the dimensionless value of the electric field
strength. For |E| = 0 one immediately recognizes in Eq. (2) the contri-
bution of van der Waals interactions to the second virial coefficient. For
|E| > 0 the interaction constant of van der Waals interactions increases in
accordance with the rescaling a(E = 0) → a(|E|) = a(E = 0)(1+2ℵ2E2).

Equation (2) allows us to construct an extrapolated equation of state
which already contains the liquid-vapor phase transition, and to find the
corresponding Helmholtz free energy and the grand potential, as well as
to extend the latter findings to a nonuniform case, see reviews [5–11] and
recent density functional theory studies of wetting [17–19]. We will start
from the following grand potential functional:

Ω[ρ(r)] = Fsr[ρ(r)] + Flr[ρ(r)] +

∫

dr1ρ(r1)(V (r1) − µ),

Fsr[ρ(r)] =

∫

dr1ρ(r1)
(

ln
(

Λ3ρ(r1)
)
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+
−1 + 6vρ(r1) − 4v2ρ2(r1)

(1 − vρ(r1))
2

)

,

Flr[ρ(r)] =
1

2

∫

|r1−r2|≥σ

dr1dr2ρ(r1)ρ(r2)

(

−
3a(|E|)σ3

2π|r1 − r2|6

)

, (3)

which accounts for the short-range repulsion Fsr[ρ(r)] of hard-core spher-
es having the diameter σ and the long-range attraction Flr[ρ(r)], which
depends on the external electric field. Moreover, V (r) is the external
potential and µ is the chemical potential. For Fsr[ρ(r)] we use the local
density approximation which would yield the Carnahan-Starling equa-
tion of state in the uniform limit, see Appendix. For Flr[ρ(r)] we use the
mean-field approximation. Such approximations completely neglect the
local correlation structure around an atom and more refined treatments
are known for both contributions, of the short-range repulsion [9,10] and
of the long-range attraction [20,21]. Nevertheless, the adopted treatment
is suitable for the purposes of the present study and more sophisticated
approximations go beyond the scope of the present paper.

In what follows we also need to know the explicit form for the external
potential V (r) which describes the interaction between the solid wall
(substrate) and the atoms of fluid. We assume that the solid wall, say,
for z < 0 is formed with uniformly distributed two-level atoms with
the density ρs, which interact with the fluid two-level atoms via the
same potential as in the fluid (see, e.g., Ref. [22]). The long-range (i.e.,
z ≥ σ) contribution of the semi-infinite planar solid wall to Vs(x, y, z) =
Vs(z) is calculated by integrating the long-range interatomic interaction
−3a(|E|)σ3/(2πR6) (cf. Eq. (2))

Vs(z) = ρs

∫ ∞

−∞

dx′

∫ ∞

−∞

dy′
∫ 0

−∞

dz′

×

(

−
3a(|E|)σ3

2π
√

(x− x′)2 + (y − y′)2 + (z − z′)2
6

)

= −
ρsa(|E|)σ3

4

1

z3
. (4)

In what follows we assume ηs = ρsv = 1 for convenience. Moreover, we
set Vs(z) = ∞ for 0 ≤ z < σ. Clearly, we have assumed that all three
phases are influenced by the electric field. Such a case is also experi-
mentally realizable, see Ref. [15], where the used experimental setup was
designed in such a way that the electric field was applied to all three
interfaces.
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The following remark about the elaborated theory is in order here.
As can be seen from the consideration above, the electric field enters
the theory only through the increase of the van der Waals interactions
constant which is simply multiplied by 1 + 2ℵ2E2. This means that the
electric field may be eliminated from the theory after introducing an
appropriate energy unit. For example, after introducing the critical tem-
perature Tc(|E|) as the energy unit all dimensionless quantities should
be already independent of the field. Calculations reported in the next
section confirm this observation. Of course, this feature would be not
present in more advanced consideration of the electric field.

The equation for the equilibrium density ρ(r) is given by
δΩ[ρ(r)]/δρ(r) = 0 [5–11]. Substituting its solution into Eq. (3) we get
the value of the grand potential of the nonuniform system under consid-
eration Ω(T, µ,V). Here V is the volume of the system [5–11].

3. Bulk and surface properties

Considering on the basis of Eq. (3) with V (r) = 0 the bulk properties,
when ρ(r) = ρ, we find the critical density ηc ≈ 0.130 44, the critical
temperature τc(E) ≈ 0.001 965 18ℵ2(1 + 2ℵ2E2), and the critical pres-
sure πc(E) ≈ 0.000 092 02ℵ2(1 + 2ℵ2E2) of the fluid at hand; here we
have introduced the dimensionless variables η = ρv, τ = T/(E1 − E0),
π = pv/(E1 −E0), see Ref. [16]. Within the adopted approach, the crit-
ical density is independent of the field but the critical temperature and
the critical pressure increase by the factor 1 + 2ℵ2E2. At temperatures
below the critical temperature Tc the fluid can be in the form of two
coexisting phases (liquid and vapor). In what follows we consider just
such temperatures T < Tc.

Let us explain how to get the contact angle θ. First we calculate the
liquid – vapor surface tension γlv. To this end, we consider a nonuniform
fluid at T < Tc in the form of two phases in equilibrium with the planar
interface. For computation purposes, it is useful to assume that the fluid
is within the cylindric vessel of the radius R → ∞ and the height L,
direct the z axis of the coordinate system along the cylinder axis, and
take the origin of the coordinate system in the middle of the height.
Moreover, we know the pressure p(T ) and the chemical potential µ(T )
of the two-phase system at hand. We put V (z) = 0, but seek for the
solution for the equilibrium density ρ(z) which depends on the height
z. The solution for the density profile ρ(z) gives the value of the grand
potential of the two-phase fluid in the cylinder Ω(T, µ(T ), πR2L). The
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surface tension follows from the relation

γlv(T ) = (Ω(T, µ(T ), πR2L) + p(T )πR2L)/(πR2).

The interface surface tensions substrate – liquid γsl or substrate –
vapor γsv are calculated along the same lines, however, one has to take
into account the potential of substrate Vs(r) (4), which is situated, say,
at z = 0. We initialized the system in the cylindric vessel with the
liquid density (i.e., ρ(z) = ρl) or the vapor density (i.e., ρ(z) = ρv) if
z ≫ 0. Then we find the equilibrium density ρ(z), the grand potential
Ω(T, µ, πR2L/2), and, as a result, the values of γsl(T ) or γsv(T ).

Finally, the contact angle θ is defined by Young’s equation

γsv − γsl − γlv cos θ = 0. (5)

Equation (5) completes the calculation of the contact angle θ(T, |E|)
starting from the interparticle interactions.

Next, we turn to our findings. Density profiles are shown in Figs. 3
and 4. Some dependences of the dimensionless surface tensions Γ =
γσ2/(E1 − E0) and those of the contact angle θ on the dimensionless
value of the electric field strength E are reported in Table 1. The results
in Figs. 3, 4 and Table 1 refer to a particular representative value of the
dimensionless temperature τ ≈ 0.001 769 (this is 0.9τc(0), where τc(0)
denotes the dimensionless critical temperature without the field, i.e., at
E = 0). The results for the contact angle θ(τ, E) obtained on the basis
of Eq. (5) are reported in Figs. 1 and 2. Bearing in mind a plausible
experimental setup when the electric field is switching on at constant

Table 1. Dependence of the dimensionless interface surface tensions Γlv

(liquid – vapor), Γsl (substrate – liquid), Γsv (substrate – vapor), and
the contact angle θ (in degrees) on the dimensionless value of the electric
field strength E at the temperature τ = 0.9τc(0) ≈ 0.001 769.

E Γlv Γsl Γsv θ
0 0.000 168 9 −0.000 281 8 −0.000 200 9 61◦

0.1 0.000 219 6 −0.000 281 7 −0.000 195 9 67◦

0.2 0.000 391 2 −0.000 264 9 −0.000 179 9 77◦

0.3 0.000 725 7 −0.000 193 9 −0.000 151 9 87◦

0.4 0.001 264 6 −0.000 029 5 −0.000 114 7 94◦

0.5 0.002 041 6 0.000 260 7 −0.000 075 3 99◦
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Figure 3. Liquid – vapor density profile η(z) at the temperature τ =
0.9τc(0) ≈ 0.001 769: E = 0 (solid), E = 0.2 (dashed), and E = 0.5
(dotted).

Figure 4. Density profile η(z) near substrate (at z = 0) at the temper-
ature τ = 0.9τc(0) ≈ 0.001 769 without the electric field E = 0 (solid
curves 1 and 2), at E = 0.2 (dashed curves 3 and 4), and at E = 0.5
(dotted curves 5 and 6). Curves 1, 3, and 5 correspond to the case of
liquid near substrate, curves 2, 4, 6 correspond to the case of vapor near
substrate.

ICMP–16–13E 9

temperature, we present all calculations at fixed T , or more precisely, in
the units proportional to Tc(E = 0), but not Tc(|E|).

Density profiles in Fig. 3 show a diffused boundary between two
phases, liquid and vapor, which becomes sharper as E increases (com-
pare the solid and dotted curves). This can be explained by an increase
of the interatomic attraction as E > 0 which results in an increase of
Tc and therefore the fluid at the fixed temperature τ = 0.9τc(0) turns
out to be farther from the critical region. Some structure around the
solid substrate seen in Fig. 4 is due to the hard-core-sphere repulsion:
It manifests itself for 1 ≤ z/σ ≤ 2 [23]. It is better pronounced in the
case of a more dense liquid phase (curves 1, 3, 5) and almost disappears
for vapor (curves 2, 4, 6). Furthermore, from Fig. 1 one concludes that
the wetting temperature Tw increases after the field has been switched
on. From Fig. 2 one concludes that the contact angle grows with the
increasing of the field strength. For temperatures close to Tw < Tc the
change of θ is rather steep. Moreover, θ may cross 90◦ indicating that
the hydrophilic surface (θ < 90◦) becomes hydrophobic (θ > 90◦). For
example, for τ/τc(0) = 0.728 4 the contact angle crosses 90◦ as E varies
from 0.005 to 0.010. Clearly, the actual value of θ follows from Eq. (5)
and hence is determined by the interplay of surface tensions γlv, γsl, and
γsv at a given temperature and electric field strength magnitude.

4. Discussion and conclusions

Let us discuss the obtained results. For the case of the considered two-
level-atom fluid, a nonzero electric field increases the long-range attrac-
tion in the system. This leads to an increase of the critical temperature of
the fluid Tc(|E|) > Tc(E = 0) and therefore, after the field is switched on
at constant temperature the two-phase state gets farther from the criti-
cal region. All surface tensions increase with the increase of the field, see
Table 1. According to Eq. (5), γlv > 0 influences the value of cos θ but
not the change of its sign. As can be seen from Table 1, γsl grows and
changes its sign as the field increases. As a result, cos θ may change its
sign and the hydrophilic surface (cos θ > 0) change to the hydrophobic
one (cos θ < 0). We adopted a very simple model for the substrate. The
external potential Vs(r) representing the substrate may be made smaller
(e.g., by a decrease of ηs). Then the role of the substrate diminishes: It
behaves as a hydrophobic surface even in the absence of the field and
is less sensitive to the presence of the field. However, qualitatively the
effect of the field remains the same: The contact angle grows with the
increase of the field.
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It is also in order to make here a remark concerning the electric-field-
strength scale. This scale is defined by |E0| ≡ |p|/r30 and is of the order
of 1010 volts per meter. Such large values of |E0| may be expected, since
we deal with atomic-scale electric fields. However, if the temperature is
very close to (just below) the wetting temperature Tw < Tc even small
electric field strengths can produce noticeable changes in θ.

According to our study, the treatment of the electric field effects on
the basis of the Lennard-Jones fluid (see, e.g., Refs. [17,24]) should imply
a change of the Lennard-Jones potential parameters to be in agreement
with the increase of the van der Waals interactions constant by 1 +
2ℵ2E2. Finally, the elaborated scheme can be also applied to examine
the wetting in the presence of excited atoms which may appear as a
result of resonance irradiation [25].

To summarize, we applied a classical density functional theory to a
simple two-level-atom fluid to examine the effect of an external electric
field on the wetting properties. In the considered model the electric field
couples to the transition electric dipole moment of atoms resulting in
the increase of the long-range interatomic attraction in the system. Just
below the wetting temperature the electric field can increase noticeably
the contact angle and lead to a passage from hydrophilicity to hydropho-
bicity. Our calculations may refer to the noble fluids in a strong electric
field.
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Appendix: The second virial coefficient of the two-
level-atom fluid (2)

For the sake of being self-contained, in this appendix, we provide some
details necessary to understand the initial grand potential functional, see
Eq. (3).

We consider N two-level atoms at sufficiently large interatomic dis-
tances |Rij | = |Ri − Rj |, adopt the dipole approximation and use a
convenient spin-1/2 representation [26] to write the electron subsystem
Hamiltonian as

H(R1, . . . ,RN) =
N

2
(E0 + E1) + (E1 − E0)

N
∑

i=1

szi

+
1

2

N
∑

i,j=1(i6=j)

Cijs
x
i s

x
j +

N
∑

i=1

Bis
x
i , (A1)

where E0 and E1 are the energies of the ground and excited states,

Cij ≡ 4αij (E1 − E0) = 4
|pi||pj |

|Rij |3
Φij ,

Φij = sin θpi
sin θpj

cos
(

φpi
− φpj

)

+ cos θpi
cos θpj

−3
(

sin θpi
sin θnij

cos
(

φpi
− φnij

)

+ cos θpi
cos θnij

)

×
(

sin θpj
sin θnij

cos
(

φpj
− φnij

)

+ cos θpj
cos θnij

)

, (A2)

Bi ≡ γi (E1 − E0) = −2|pi||E|χi,

χi = sin θpi
sin θE cos (φpi

− φE) + cos θpi
cos θE, (A3)
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θpi
, φpi

, θnij
, φnij

, θE, φE are the angles that determine the orientation
of the transition electric dipole moment of the i-th atom pi, the unit
vector nij = Rij/|Rij|, and the electric field E. The first two terms
in Eq. (A1) describe a system of noninteracting two-level atoms, the
third one represents the dipole-dipole interaction between them, and the
last one corresponds to the interaction with the field. To find the ef-
fective long-range interactions, one has to calculate the eigenvalues of
the Hamiltonian given in Eq. (A1). Although this calculation is straight-
forward within the used spin-1/2 representation for not too large N , in
what follows we are interested in the case of small fields, and therefore we
may use the standard quantum-mechanical perturbation theory assum-
ing the interaction with the field to be small, i.e., γi ≪ 1. A correction
to the ground-state energy of a single atom (N = 1, the third term in
Eq. (A1) drops out) appears in the second order and is given by the
formula for EN=1 in Eq. (1). For N = 2 it is reasonable to assume in
addition that α12 ≪ 1 (after such an assumption one gets the usual van
der Waals interactions for E = 0) and the second-order correction to the
ground-state energy of two atoms is given by the formula for EN=2 in
Eq. (1).

Let us turn to statistical mechanics. Presenting the grand partition
function in the exponential form,

Ξ ≡
∞
∑

N=0

zNZN = exp

(

V
∞
∑

l=1

zlbl

)

,

Vb1 = Z1, Vb2 = Z2 −
1

2
Z2
1 , . . . , (A4)

where z is the activity and V is the volume of the system, we obtain the
cluster expansion for the grand potential

−
Ω

TV
= zb1 + z2b2 + . . . , (A5)

which results in the virial equation of state

p

T
= ρ + B2ρ

2 + . . . , B2 = −
b2
b21
, (A6)

where ρ denotes the density of the system. For the required canonical
partition functions one has

Z1 =
V

Λ3

〈

exp

(

−
EN=1

T

)〉

,

Z2 =
V

2Λ6

∫

|R12|≥σ

dR12

〈

exp

(

−
EN=2

T

)〉

, (A7)
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where Λ stands for the thermal de Broglie wavelength, EN=1 and EN=2

are defined in Eqs. (1), (A2), (A3), and the angle brackets mean the
average over the orientations of transition dipole moments

〈(. . .)〉 =

∫

dΩp1
. . .

∫

dΩpN
(. . .),

∫

dΩpi
=

1

4π

∫ 2π

0

dφpi

∫ π

0

dθpi
sin θpi

. (A8)

Bearing in mind that we assume the field to be small, the orienta-
tional average (A8) can be done using cumulant expansion 〈expx〉 =
exp

(

〈x〉 +
(

〈x2〉 − 〈x〉2
)

/2 + . . .
)

. Keeping the terms up to O(E2) only,
we would need the following averages:

〈χ2
i 〉 =

1

3
, 〈Φ2

12〉 =
2

3
,

〈χ1χ2Φ12〉 =
1

9

(

1 − cos2 θn12

)

, 〈χ2
i Φ12〉 =

1

45

(

8 + 6 cos2 θn12

)

. (A9)

Equations (A4), (A7), (A9) give the explicit result for b1 [16] and the
formula for b2 as a two-fold integral [16] which besides the integration
over R = |R12| contains the integration over θR12

, see Eq. (A7). Intro-
ducing the variable y = cos θR12

one can do the integration over y again
with the help of the cumulant expansion with the accuracy up to the
terms O(E2). The obtained cluster integrals give for the second virial
coefficient B2 in Eq. (A6) the formula for B2(T, |E|) in Eq. (2).

Next, instead of the virial equation of state (A6), (2) we introduce
an extrapolated equation of state

p

T
= ρ

1 + vρ + v2ρ2 − v3ρ3

(1 − vρ)3
− ρ2

a(|E|)

T
(A10)

and treating Eq. (A10) as an input after some simple standard assump-
tions arrive at the initial grand potential functional given in Eq. (3).
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