
Нацiональна академiя наук України

����

����

�	
�

IНСТИТУТ

ФIЗИКИ

КОНДЕНСОВАНИХ

СИСТЕМ

✬

✫

✩

✪

Vasyl Baliha, Johannes Richter∗, Oleg Derzhko

ONE-DIMENSIONAL TASAKI-HUBBARD MODEL
IN PARAMAGNETIC LIMIT

∗Institut für theoretische Physik, Otto-von-Guericke-Universität Magdeburg,

P.O. Box 4120, 39016 Magdeburg, Germany

ICMP–16–08E

ЛЬВIВ

УДК: 537.9; 537.622

PACS: 71.10.-w, 75.10.Lp, 75.10.Jm

Одновимiрна модель Тасакi-Габарда у парамагнiтнiй

границi

В. Балiга, Й. Рiхтер, О. Держко

Анотацiя. Одновимiрна модель Тасакi-Габарда належить до кла-
су плоскозонних феромагнетикiв. Ввiвши безмежно мале зовнiшнє
магнiтне поле, ми дослiджуємо властивостi цiєї моделi у парама-
гнiтному режимi. Ми порiвнюємо i спiвставляємо цi властивостi з
властивостями звичайного парамагнетика Кюрi.

One-dimensional Tasaki-Hubbard model in paramagnetic limit

V. Baliha, J. Richter, O. Derzhko

Abstract. The one-dimensional Tasaki-Hubbard model belongs to the
class of flat-band ferromagnets. By introducing an infinitesimally small
external magnetic field, we examine the properties of the model in the
paramagnetic regime. We compare and contrast them to the properties
of the conventional Curie paramagnet.

Подається в Acta Physica Polonica A

Submitted to Acta Physica Polonica A

c© Iнститут фiзики конденсованих систем 2016
Institute for Condensed Matter Physics 2016



Препринти Iнституту фiзики конденсованих систем НАН України
розповсюджуються серед наукових та iнформацiйних установ. Вони
також доступнi по електроннiй комп’ютернiй мережi на WWW-сер-
верi iнституту за адресою http://www.icmp.lviv.ua/

The preprints of the Institute for Condensed Matter Physics of the Na-
tional Academy of Sciences of Ukraine are distributed to scientific and
informational institutions. They also are available by computer network
from Institute’s WWW server (http://www.icmp.lviv.ua/)

Василь Ярославович Балiга
Йоганнес Рiхтер
Олег Володимирович Держко

Одновимiрна модель Тасакi-Габарда у парамагнiтнiй

границi

Роботу отримано 6 вересня 2016 р.

Затверджено до друку Вченою радою IФКС НАН України

Рекомендовано до друку вiддiлом квантової статистики

Виготовлено при IФКС НАН України
c© Усi права застереженi

ICMP–16–08E 1

1. Introduction

In 1992 H. Tasaki considered the standard (repulsive) one-orbital Hub-
bard model with the Hamiltonian

H =
∑

σ=↑,↓

H0,σ +HU ,

H0,σ =
∑

(ij)

tij

(

c†i,σcj,σ + c†j,σci,σ

)

, tij > 0,

HU = U
∑

i

ni,↑ni,↓, U > 0 (1.1)

on the so-called decorated lattices which support a completely disper-
sionless (flat) lowest-energy one-electron band [1]. In one dimension the
introduced lattice is also known as the sawtooth chain or the ∆-chain
with a special relation between the hopping integrals along the straight
line t1 and the zigzag path t2: t2 =

√
2t1 > 0, see Fig. 1. It is well

known [1] that the ground state of the model is the fully polarized (i.e.,
saturated) ferromagnetic state, i.e., 〈S2〉n,N = (n/2)[(n/2) + 1], if the
number of electrons n equals N = N/2 or N − 1. For smaller numbers
of electrons, 1 < n < N − 1, we have 0 < 〈S2〉n,N < (n/2)[(n/2) + 1]
(nonsaturated ferromagnetism). Furthermore, limN→∞〈S2〉n,N /n2 = 0,
if n/N < 1/2. In other words, thermodynamically large systems exhibit
ground-state ferromagnetism for n/N = 1/2 but are paramagnetic for
0 < n/N < 1/2.
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Figure 1. (Color online) One-dimensional Tasaki lattice. Here t2 =√
2t1 > 0.

The Mielke-Tasaki mechanism for the ground-state ferromagnetism
can be explained as follows [1–5]. N states from the lowest-energy flat
band with the energy ε1 = −2t1 can be visualized as localized within a V-
shaped part of the chain (trapping cell), i.e., the flat-band states are given
by l†m,σ|0〉, l†m,σ = c†m−1,2,σ−

√
2c†m,1,σ+c†m,2,σ, m = 1, . . . ,N , see Fig. 1.

Neighboring traps have common sites (the sites m, 2, m = 1, . . . ,N , see
Fig. 1). The ground states for 1 < n < N − 1 electrons consist of sets of
independent clusters, where each cluster is built by connected occupied
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traps with electrons in the symmetric spin state (ferromagnetic cluster).
The many-electron ground-state states of H (1.1) constructed this way
do not feel the Hubbard repulsion U > 0 and belong at the same time to
the ground-state manifold of the noninteracting system with the energy
nε1. For n = N and n = N − 1 no isolated clusters exist, i.e., only a
single ferromagnetic cluster can be constructed. Therefore the ground
state is ferromagnetic with the maximal value of 〈S2〉n,N . For smaller
1 < n < N − 1 isolated clusters can appear and 〈S2〉n,N is less than its
maximal value S

2
max = (n/2)[(n/2) + 1].

Furthermore, one can calculate the number of the ground states, i.e.,
the ground-state degeneracy [5–7]. By mapping the ground states of n <
N electrons of the N -site Tasaki chain onto the spatial configurations of
n hard dimers on a 2N -site simple chain [6] one can find the ground-state
degeneracy gN (n):

gN (n) =
2N

2N − n
Cn
2N−n. (1.2)

Bearing in mind that the canonical partition function of n electrons
on the Tasaki chain of volume N = N/2 cells is Z(T, n,N ) =
gN (n)e−nε1/T , we immediately get from Eq. (1.2) the Helmholtz free
energy F (T, n,N ) = −T lnZ(T, n,N ),

F (T, n,N ) = −NT ln
(2− p)2−p

pp(2− 2p)2−2p
+ nε1, (1.3)

where p = n/N is the electron density. Alternatively, one can calculate
the grand-canonical partition function [6, 7]

Ξ(T, µ,N ) =

(

1

2
+

√

1

4
+ e

µ−ε1
T

)2N

(1.4)

and the grand thermodynamical potential

Ω(T, µ,N ) = −2NT ln

(

1

2
+

√

1

4
+ e

µ−ε1
T

)

. (1.5)

The thermodynamic functions in Eq. (1.3) and Eq. (1.5) are related by
the Legendre transformation F = Ω+µn after eliminating µ in the r.h.s.
of this equation using the relation n = −∂Ω/∂µ. Formulas (1.3) or (1.5)
give the contribution of the highly degenerate ground-state manifold to
thermodynamics of the considered Hubbard model. This contribution
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dominates for 0 ≤ p ≤ 1 or for µ ≈ ε1 in the low-temperature regime
[5–7].

In the present paper, we wish to extend the previous investiga-
tions [6, 7] switching on an infinitesimally small external magnetic field
h > 0 [8], i.e., the field is nonzero but it presents the smallest energy scale
in the problem. We are interested in the case 1 ≤ n < N − 1, that is the
case which yields paramagnetism in the thermodynamic limit n → ∞,
N → ∞, 0 < p = n/N < 1. Our aim is to study the peculiarities of
the one-dimensional Tasaki-Hubbard paramagnet compared to the con-
ventional spin-1/2 Curie paramagnet. These peculiarities arise (i) from
the degeneracy of the ground-state manifold, (ii) from the larger size
of the individual magnetic moments (which are proportional to the size
of the isolated ferromagnetic clusters), and (iii) from the distribution of
the size of the ferromagnetic clusters. For completeness, we give here the
Helmholtz free energy of the spin-1/2 Curie paramagnet

fC(T, h) = −T ln
sinh h

T

sinh h
2T

= −T ln

(

2 cosh
h

2T

)

. (1.6)

To this end, we consider finite chains consisting of N = 12, 16, 20, 24
sites. After characterizing the ground-state manifold for various numbers
of electrons n = 1, . . . , N/2, we calculate the canonical partition func-
tions and thermodynamic quantities. We compare the results with the
case h = 0, discuss the 1/N → 0 limit, and contrast the results for the
Tasaki-Hubbard and Curie paramagnets. The discussion of finite chains
allows also to check the obtained analytical results (obtained by taking
into account only the flat-band cluster states) by comparing them with
exact-diagonalization data for the full Hubbard model (i.e., taking into
account all eigenstates) for chains of N = 16 sites (finite U) and N = 24
sites (U → ∞).

2. Results

In what follows we consider the canonical description for finite chains
with N = 6, 8, 10, 12 trapping cells. Note that in previous papers [5–7]
on model (1.1) the focus was on grand-canonical description. In the pres-
ence of magnetic field the formula for Z(T, n,N ) must be modified. Con-
sider, for example, the case n = 4 and N = 6. According to Eq. (1.2)
for h = 0 we get g6(4) = 105, and therefore Z(T, 4, 6) = 105e−4ε1/T .
The ground-state degeneracy 105 comes from 6 spatial single-cluster
configurations (each spatial configuration has degeneracy 5), 6 spatial
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Figure 2. (Color online) Left panel: Temperature dependence of the en-
tropy per electron s(T, h, p) for h = 0.001 and p = 1/4 (red), p = 1/2
(black), and p = 3/4 (green). The results for N = 6, 8, 10, 12 cells are
shown by dotted, short-dashed, long-dashed, solid curves, respectively.
The bold magenta curve corresponds to the Curie paramagnet. Right
panel: Dependence of the residual entropy per cell S(T = 0, h, n,N )/N
on 1/N for h = 0 (thin curves) and h > 0 (thick curves) for electron
concentrations p = 1/4 (red), p = 1/2 (black), and p = 3/4 (green).
Note that the thick red and green curves coincide. The results in the
thermodynamic limit for h = 0 are shown by symbols on the ordinate
axis (i.e., at 1/N = 0).

configurations “3-site cluster + 1-site cluster” (each spatial configuration
has degeneracy 8), and 3 spatial configurations “2-site cluster + 2-site
cluster” (each spatial configuration has degeneracy 9). If h > 0 the men-
tioned states have different energies resulting in the new formula for
Z(T, h, 4, 6):

Z(T, h, 4, 6) = e−
4ε1
T

×
[

6
(

e
2h
T + e

h
T + 1 + e−

h
T + e−

2h
T

)

+6
(

e
3h
2T + e

h
2T + e−

h
2T + e−

3h
2T

)(

e
h
2T + e−

h
2T

)

+3
(

e
h
T + 1 + e−

h
T

)2
]

. (2.1)

The calculation of the Helmholtz free energy per electron fTH(T, h, p) =
−T lnZ(T, h, n,N )/n and of other thermodynamic quantities is straight-
forward now and can be done using a software for analytical calculations.
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Figure 3. (Color online) Temperature dependence of the specific heat
per electron c(T, h, p) for h = 0.001 and p = 1/4 (red), p = 1/2 (black),
and p = 3/4 (green). The results for N = 6, 8, 10, 12 cells are shown by
dotted, short-dashed, long-dashed, solid curves, respectively. The bold
magenta curve corresponds to the Curie paramagnet. By symbols we
show exact-diagonalization data for the Hubbard model (1.1) with U =
4, N = 16, n = 4 (circles) and U → ∞, N = 24, n = 3 (triangles).

Figure 4. (Color online) Field dependence of the magnetization per elec-
tron m(T, h, p) for T = 0.001 and p = 1/4 (red), p = 1/2 (black), and
p = 3/4 (green). The results for N = 6, 8, 10, 12 cells are shown by
dotted, short-dashed, long-dashed, solid curves, respectively. The bold
magenta curve corresponds to the Curie paramagnet.
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Figure 5. (Color online) Temperature dependence of the susceptibility
per electron χ(T, h, p) multiplied by T for h = 0 and p = 1/4 (red),
p = 1/2 (black), and p = 3/4 (green). The results for N = 6, 8, 10, 12
cells are shown by dotted, short-dashed, long-dashed, solid curves, re-
spectively. The bold magenta curve corresponds to the Curie paramag-
net. By symbols we show exact-diagonalization data for the Hubbard
model (1.1) with U = 4, N = 16, n = 4 (circles) and U → ∞, N = 24,
n = 3 (triangles).

Our results are reported in Figs. 2 – 6. The temperature depen-
dence of the entropy and of the specific heat are presented in Figs. 2
and 3, respectively. For zero field, h = 0, we know [5–7] that the
huge ground-state degeneracy leads to a nonzero residual entropy, i.e.,
S(T, h = 0, n,N )/n = [ln gN (n)]/n 6= 0, as well as a vanishing specific
heat, i.e., C(T, h = 0, n,N ) = 0. By switching on h the degeneracy of the
ground-state manifold is partly lifted, however, the degeneracy remains
huge such that a nonzero residual entropy (although reduced) survives,
see Fig. 2. Trivially, for the ordinary Curie paramagnet the ground state
at h > 0 is the single ferromagnetic state, i.e., there is no residual en-
tropy. The finite-size dependence sketched in the right panel of Fig. 2
gives evidence that the residual entropy is present for N → ∞.

The specific heat at nonzero h shows already a nontrivial dependence
on temperature and agrees with exact-diagonalization data for model
(1.1) at low temperatures, see Fig. 3. Moreover, finite size-effects are
small (results for N = 6, 8, 10, 12 almost coincide). As p increases, de-
viations from the Curie-paramagnet case become more pronounced (peak
becomes lower and broader) and C(T, h, n,N ) → 0, when p → 1. That
indicates that less excited states are accessible in the Tasaki-Hubbard
system.
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The low-temperature magnetization curves in Fig. 4 show that it is
easier to magnetize the Tasaki-Hubbard paramagnet with p > 0 than the
Curie paramagnet, i.e., Tasaki-Hubbard paramagnet shares properties
with a superparamagnet. This is in agreement with results for the initial
(zero-field) susceptibility shown in Fig. 5.

Finally, we discuss the ground-state magnetic properties of the
Tasaki-Hubbard paramagnet at h = 0. To this end, we calculate the aver-
age square of the total spin 〈S2〉n,N [7,9]. The direct way to get 〈S2〉n,N
is to use its definition. For the considered example n = 4, N = 6, in
30 states S

2 has the value 6, in 48 states S
2 has the value 9/2, and in

27 states S
2 has the value 4. Therefore 〈S2〉4,6 = 24/5. An alternative

way to get 〈S2〉n,N is to calculate first the (normalized) number of clus-
ters with l electrons, n(l), and then to sum up

∑n
l=1 n(l)(l/2)[(l/2)+ 1],

see Ref. [9]. For the considered example, n(1) = 48/105, n(2) = 54/105,
n(3) = 48/105, and n(4) = 30/105 resulting again in 〈S2〉4,6 = 24/5. The
latter approach is convenient in the percolation setup, since the cluster-
size distribution n(l) can be obtained either analytically or numerically.
Thus, in the one-dimensional case, 〈S2〉n,N /N = 3p(2 − p)/[8(1 − p)]
in the thermodynamic limit [9]. A third possibility to get 〈S2〉n,N is
to exploit the Curie law for the temperature dependence of the ini-
tial susceptibility, χ(T, h = 0) = C/T , since for Curie constant holds
C = 〈S2〉n,N /3. Using the latter approach we arrive at

〈S2〉n,N = 3T 2∂
2 lnZ(T, h, n,N )

∂h2

∣

∣

∣

∣

h=0

. (2.2)

In Table 1 we collect our findings for 〈S2〉n,N , n = 1, . . . ,N − 1 which
coincide with the ones for N = 6, 8 presented earlier in Ref. [7]. In Fig. 6
we show the results for 〈S2〉n,N obtained by Eq. (2.2) demonstrating that
(i) ferromagnetism disappears for 0 < p < 1 as N increases (main panel)
and (ii) 〈S2〉n,N /N approaches 3p(2−p)/[8(1−p)] (bold black curve) [9]
as N increases (inset).

3. Conclusions

To summarize, in the present study we have extended the analysis of
Refs. [6, 7] for the Tasaki-Hubbard chain: We switch on an infinites-
imally small external magnetic field and show how previous findings
become modified. At small electron densities the system is a paramag-
net. However, it differs from the conventional Curie paramagnet, rather
it resembles a superparamagnet with a huge degeneracy of the ground
state and a size-distribution the ferromagnetic clusters. Comparison to
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Figure 6. (Color online) Main panel: Dependence of the averaged (over
ground states) total spin squared 〈S2〉n,N per its maximal value S

2
max =

(n/2)[(n/2)+1] on the electron density p. The results for N = 6, 8, 10, 12
cells are shown by dotted, short-dashed, long-dashed, solid curves, re-
spectively. Inset: Dependence of the averaged (over ground states) total
spin squared 〈S2〉n,N per cell on the electron density p. The bold black
curve corresponds to the N → ∞ result obtained in Ref. [9], see the
main text of the paper.

Table 1. Values of 〈S2〉n,N for Tasaki chains with different number of
electrons and cells as they follow from Eq. (2.2).

n 1 2 3 4 5 6 7 8 9 10 11

N = 6 3
4

5
3

81
28

24
5

35
4

N = 8 3
4

21
13

117
44 4 165

28 9 63
4

N = 10 3
4

27
17

51
20

48
13

225
44 7 39

4
72
5

99
4

N = 12 3
4

11
7

189
76

60
17

19
4

81
13

357
44

32
3

405
28 21 143

4
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exact-diagonalization data shows that the elaborated approach is appro-
priate for description of the low-temperature properties of the Tasaki-
Hubbard-chain paramagnet. While with modest efforts the calculation of
Z(T, h, n,N ) can be extended for larger N , exact-diagonalization com-
putations for n = 6 (n = 5) electrons and N = 8 (N = 12) cells if U is
finite (if U → ∞) are at the nowadays limits.
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