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Phase transitions in the hard-core Bose-Fermi-Hubbard model
at non-zero temperatures in the heavy-fermion limit

1.V.Stasyuk, V.O. Krasnov

Abstract. The phase transitions in the ultracold Bose- and Fermi-
particles mixture in optical lattices using the Bose-Fermi-Hubbard model
in the mean field and hard-core boson approximations are investigated.
The case of infinitely small fermion transfer and the repulsive on-site
boson-fermion interaction is considered. The behavior of the BE con-
densate order parameter and grand canonical potential as functions of
the chemical potentials of particles at non-zero temperatures is analyzed.
The possibility of change of order of the phase transition to the super-
fluid phase in the regime of fixed values of the chemical potentials of
Bose- and Fermi-particles is established. The relevant phase diagrams
are built.
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1. Introduction

Development of physics of strongly correlated systems of particles is
connected during last years to a large extent with investigation of the
ultracold Bose- and Fermi-particles behaviour in optical lattices. The
main attention is paid to BE-condensation of Bose-atoms (originally ob-
served in 2002-2003 [1L2] in the system of 87 Rb atoms) as well as other
collective phenomena and phase transitions connected with this effect. A
model, which was named as the Bose-Hubbard model [3|4] has been pro-
posed for their description. Its analogue and generalization in the case
of atomic boson-fermion mixtures is the Bose-Fermi-Hubbard model [5].
Allowance for short-range on-site interparticle interaction of Hubbard
type, just as tunneling of particles between the neighbouring minima of
potential in the lattice, form a basis of both models.

In the simple cases, the BE condensation of Bose-atoms in optical
lattices occurs by the 2nd order phase transition from the Mott insu-
lator phase (MI phase) to the superfluid phase (SF phase). In a lot of
investigations based on the Bose-Hubbard (BH) model, the phase dia-
grams, determining the conditions of the SF phase existence at T' = 0
and at the non-zero temperatures for the cases of 1d, 2d, and 3d lattices
of different symmetry and structure, were built [6HI2]; the characteristic
features of the single-particle spectrum were investigated (see also re-
views [I3HI5]). Extension of model by inclusion of intersite interactions
enabled to describe an appearance of modulated phases, in particular a
supersolid (SS) phase [16/17]. On the other hand, it was established that
the order of a MI-SF transition can change at some conditions from 2nd
to the 1st one in the case when the excited vibrational states (that can
be occupied due to optical pumping) of Bose-particles in quantum wells
or additional (e.g. spin) degrees of freedom of bosons with S > 1 are
taken into account [I8H20]. The effect is caused by competition between
the energy gain at the appearance of BE condensate (which is formed
by particles in excited states) and the particles excitation energy.

The MI-SF phase transition takes place also in the boson-fermion
atomic mixture; it has been observed experimentally, in particular, in
the spin-polarized mixture of 87 Rb —4° K atoms [21H23]. The influence
of Fermi-atoms on condensation of bosons is an important problem that
remains to be a subject of attention. Interaction with fermions at the in-
crease of their consentration leads to the gradual fading of the coherence
of bosons and the decay of condensate fraction in SF phase in a certain
range of the values of thermodynamic parameters (chemical potential of
bosons or temperature). Such an interaction causes as well the change




2 IIpenpunt

of stability regions of SF and MI phases. It manifests, first of all, in the
shift of the MI-SF transition lines in the phase diagrams [24,27]. Due to
mentioned interaction, the so-called fermion composites appear, as was
shown at 7' = 0 in [28/[29]; they arise as a result of fermion pairing with
one or more bosons (or one or more boson holes) because of effective Ugp
attraction (or repulsion). One can change the value and even the sign of
the Upp interaction constant using the Feshbach resonance [30,31].

Description of equilibrium properties of the mixture of the Bose- and
Fermi-atoms in optical lattice, performed on the basis of the Bose-Fermi-
Hubbard (BFH) model in [32,[33] using the mean field approximation,
had given a possibility to obtain the phase diagrams at " = 0 and
determine the regions of existence of SF and MI phases, including the
phases with fermion composites. In the frames of similar approach, at
the exact treatment of boson-fermion interaction, the phase transitions
and the BE condensate appearance in the BFH model were investigated
at T # 0 [I2]. The consideration was performed in both cases in the
regime of fixed fermion concentration and the given values of the boson
chemical potential.

Besides the CDW phase with modulation of the particle density or SS
phase with modulation of the condensate order parameter (such phases
are known for pure boson system in optical lattices),appearance of new
quantum phases is a specific feature of the boson-fermion mixtures. To
describe them, it is necessary to go out the standard mean field approxi-
mation and take into account explicitly the hopping dynamics of bosons
and fermions. Here, on the one side, the band transfer of fermions in-
duces an effective interaction Vg g (w, §) between bosons through fermion
field [34H36]. Depending on the wave vector ¢ value, that corresponds to
the possible instability, it can be a reason of phase separation or spatial
modulation accompanied by appearance of the mentioned CDW as well
as SS phases [37] On the other side, at the spin degeneracy, the reverse
effect is possible when pairing of fermions due to transfer of bosons is
induced [38H40]. Such an effect is analogous to the electron Cooper pairs
creation in the BCS model. The role of superfluid component in the
so-called SFy phase belongs in this case to the fermion pairs; the corre-
sponding phase diagrams were obtained in [41].

Integration over fermionic variables provides also an additional static
interaction between bosons, which promotes MI—SF transition or, to the
contrary, suppresses it. It depends on relation between masses of Bose-
and Fermi atoms (i.e., on the ratio of hopping parameters tg/tr). Phase
diagrams, obtained within the Gutzwiller approach, illustrate this effect
on the examples of “light” (a mixture of 87 Rb —4° K atoms) and “heavy”
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(a mixture of 2 Na —*° K atoms) fermions [35].

Another aspect of mutual influence of bosons and fermions is con-
nected with “polaron effect”, when due to influence of the fermion sur-
roundings the hopping parameter ¢t of bosons is reduced and at T =0
the region of SF phase becomes narrower [42]. At the same time, for
heavy fermions such a region broadens at the increase of 7" up to inter-
mediate temperatures [36], and after that the SF phase disappears.

The limiting case of heavy fermions (¢t — 0) was considered sepa-
rately in our previous work [43]. In this limit, the effective boson-boson
and fermion-fermion interactions do not appear, while the direct inter-
species interaction can be taken into account exactly. Contrary to the
majority of works devoted to the thermodynamics of BFH model, where
the consideration has been performed for the yup = const and ngp = const
case, our calculation was made in the regime of given values of chemical
potentials of bosons (up) and fermions (ur). The change of statistical
ensemble and transition to up and pp as independent thermodynamic
variables enabled to study more detailly the equilibrium states of BFH
model basing on the condition of the global minimum of the grand canon-
ical potential 2. We had used the mean field approximation and restrict
ourselves to the case of hard-core bosons, where the occupation of on-site
states conforms to the Pauli principle (ny = 0, 1). For Bose-atoms on a
lattice this is a limiting case (U — o0) of the Bose-Hubbard model. The
hard-core boson (HCB) model is rather frequently used [44H48]. It is re-
lated formally to the region 0 < 7 < 1, but can also describe the MI-SF
transition in the vicinity of points ug = nU, where n = 0,1,2, ..., for
finite values of U (when tp < U); at that time n < g <n+ 1 [II12].
We considered in [43] the spinless fermions having in mind a situation in
real systems, when the spin degeneracy is absent (for example, it is re-
moved by applying of external magnetic field). In such a case, the model
is a four-state one in the single-site limit.

As was shown in [43], there exist at T = 0 the regions of values of
the model parameters and chemical potentials, where the order of MI-SF
transition changes from the 2nd to the 1st one. It is a consequence of
competition between states with ip = 0 and fip = 1 (at T = 0) that
manifests itself in such a way in the case, when BE condensate appears.
Here the phase separation (into phases with different concentrations of
particles) takes place at the given average concentration of bosons.

It is necessary to stress in this connection, that in the most of previ-
ous works, including the mentioned above [43] the phase diagrams were
built starting from the instability condition of the SF phase. Using this
procedure, that defines the spinodal lines, one postulates a priory the
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second order of the MI-SF phase transition.

Should be mentioned, that the ‘“’heavy” fermion case was already the
subject of attention. As was shown in [26132], the frozen fermions are
capable to prevent the occurrence of long-range correlations of superfluid
type and the appearance of BE condensate. There exists, however, the
critical fermion consentration below of which this effect is absent (R@™ ~
0,59 for d = 2; A¢™ ~ 0,31 for d = 3; see [26]). In our case, speaking
about “heavy” fermion, we have rather in mind the ultimately low values
of the hopping parameter tp.

Our aim in this work is a continuation of investigation, carried out
in [43], and extension to the non-zero temperature region. Basing on
the hard-core boson approach, we shall consider the changes in the (u/,
w) and (|to|, u) phase diagrams, obtained for T = 0 (where p = up,
@' = pr, to =tp(g=0)). The calculations will be performed, as in [43],
for the case of “heavy” fermions considering the boson hopping in the
mean field approximation. We shall also build the (T, u), (¢, @), and
(lto], p) phase diagrams which determine at 7" # 0 the regions of the
SF phase existence at various values of chemical potential of fermions.
The conditions at which the MI-SF transitions are of the 1st order in
this case, will be analyzed. We shell also pay an attention to the phase
separation problem.

2. Hamiltonian

We start from the Hamiltonian of the Bose-Fermi-Hubbard model writ-
ten in the form

H‘E;"g(”?_lHU';n?m —uzi:n?—u’zi:nﬁr
+ > tbfhi+ Y thala (2.1)

<i,j> <i,J>

Here U and U’ are constants of boson-boson and boson-fermion on-site
interactions; p and p’ are chemical potentials of bosons and fermions,
respectively (we consider here the case of repulsive interactions U >
0,U" > 0) and ¢(¢') are tunneling amplitudes of bosons (fermions) de-
scribing the boson (fermion) hopping between nearest lattice sites.

Let us introduce the Hubbard operators X" = |n,i)(m,i| and
X™™ = |, i){im, i| acting on the single-site basis of states

K2

(nt =n;nf =0)=n,i); (2 =n;nf =1)=n,i) (2.2)

K2
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where n? (nzf ) are occupation numbers of bosons (fermions) on the site i.

In the hard-core boson limit (U — oo) the basis consists of four states
|0) = 0,0), |6> =10,1)
1) =110, [1)=[11) (2.3)

In this case, when the restriction n = 0,1 and 7 = 0,1 on occupation
numbers is imposed,

bi=> Vi 1XP S VREF X o X4 x0T
1

a =Y X" = X004+ X]

K3
n
np =D nX(T Y RXTT = XX
n n

ni= X7 X0 4 x 1 (2.4)

K2
n

The Hamiltonian (21 in this new representation can be written as
=3 (AOXEO F X A X00 4 /\TXF) +3 by, (25)
i (i)
where
M=0 \=-mAg=—p;\y=—p—p +0U (2.6)

In the following , we shall consider the case of the so-called heavy
fermions, when the inequalities ¢’ < ¢t and ¢’ <« U’ are fulfilled, and
the fermion hopping between lattice sited can be neglected. On this
assumption we had put in (3] ¢;; — 0.

3. Mean field approximation (MFA)

To describe the transition into SF phase and appearance of BE conden-
sate, we introduce the order parameter ¢ = (b;) = (b;). In the case of
mean field approach a standard approximation

b b = (b +bi) — ¢
Ztijb;_bj = thQ Z(bj_ + bl) - NtogD2 (31)
ij i
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is used (here to =Y ti; = —|to|,to < 0)
Then, after separating the mean-field part of the Hamiltonian (2.1)
we shall have

Hyr = Z H; — Ntoyp®; H; = ZHerfT; (3.2)
7 pr
and
0) 1) [0) n |
0 top O 0 0y
0 0 -4 toy |0)
0 0 top —p—p'+U |[1)

In is easy to diagonalize the matrix Hp, written in the 4-state basis.
As a result, we get

Hi=Y ey X' (3.4)
p/

where p’ = 0/,1’,0/, and 1’ are indices which denote the state of new
basis and

2
50/71/ = —g :l: % + tg(ﬂQ,
p U (U — p)?
egp =W -5+t \/T + 1202 (3.5)

The partition function in MFA is equal to
Znrr = SpePHur — ofNte® ZN (3.6)
where
Zo = e P e 4 emPey e Pew (3.7)
Accordingly, the grand canonical potential is

Q]WF/N: |t0|cp2—91nZo (38)
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4. Phase diagrams

In our study, we consider the case of fixed chemical potentials of bosons
u and fermions /. The thermodynamic equilibrium conditions are de-
termined by grand canonical potential Q as function of u,p’ and T.
Equilibrium values of the order parameter ¢ should by found from the
global minimum condition of €.

In the mean field approximation we have an equation

oQyr/N) 0 0Zy
p = 2nle— 552 =0 (4.1)
or
p/p/ 86;0/
2tole + Y (X >W =0 (4.2)
p’

Here the averages (X plpl> are expressed in terms of Boltzmann’s factors:
(X'} = 75 exp(—fey).

The equation ([£.2) has the trivial ¢ = 0 and nontrivial ¢ # 0 solu-
tions. For the second one the equation

1 _ <X1’1’> _ <X0’0’> . <Xf'f/> _ <XO~'6/> (43)

lto| 2 /uT2 + 122 2 /(U’ZMP + 122

is obtained. In the case of several solutions of this equation, one should
separate out those, which are related to minimum values of Qp/p.

If we substitute ¢ = 0 in the equation (3], we shall obtain the
condition of the second order phase transition to the SF phase (if such
a transition is possible). In general, it is a condition of instability of
normal (MI) phase with respect to the BE condensate appearance (in
phase diagrams it corresponds to the spinodal lines).

At ¢ = 0 the equation (L3) takes the form

1 B <X11> _ <X00> <X55> _ <XTT>
W = m + U= (4.4)

This equation is the same as obtained for the four-state model in [49]
from the condition of divergence of the boson Green’s function (cal-
culated in the random phase approximation) at w = 0,¢ = 0. This fact
confirms that the relation (44]) is the condition of instability of the phase
with ¢ = 0, being therefore an equation for spinodal line (the curve, that
determines the borders of the normal phase stability region).
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Figure 1. (T, p) phase diagrams for different values of u'; |tg| = 0.2,U’ =
1.0. Here and henceforth the solid (dashed) lines are the lines of the 1st
(2nd) order PT; the dotted and dashed lines correspond to spinodales.
All quantities having a dimension of energy are given in U’ units. To
shorten the notations we use in diagrams an abbreviation 7" for © = kT

ICMP-16-02E 9

Solutions of the equation ([4.4]) on the plane (T, 1) for different values
of i/ are shown in figures[I B and Bl.

Outside the [0, U’] interval for u/, the curves of spinodals have the
usual dome-like shape which gradually takes the symmetric form at the
|¢| increase.

Attaining to this area, the curves undergo an appreciable deforma-
tion, and when they enter inside, the regions with two temperatures of
instability corresponding to one value of u appear. With the change of T
the “re-entrant” transitions became possible. Hence, to get the real (T, i)
phase diagrams (figs. [} M) one need to investigate the grand canonical
potential behaviour in such regions.

Analysis, performed for the case T = 0 in [43], shows that in these
regions (especially when p/ > 0 and ¢/ < U’) the order of MI-SF tran-
sition can change from 2nd to the 1st one. From figures [Bl and [l one
can see how the shapes of curves for ¢(u) and Qpp/N(u) change with
the increase of temperature in the region of parameters values, where at
T = 0 we have the first order phase transition. Here are two variants
(see [43]).

The first one (7) realizes at the p' values 0 < p/ < [to] or U’ — |to] <
W < |to] in the case |to| < U’/2 and at the p’ values 0 < p/ < U"?/4|to|
or U' — U /4|te| < ¢/ < U’/2 in the case U’ > [to] > % The second
one (ii) takes place only in the case U’ > |to| > U’/2, when U’?/4|ty| <
w < U —U" /4|ty

In the first of them (variant (i)) the 2nd order phase transition is
replaced in the low temperature region by the 1-st order one. The line of
the latter passes on the (T, 1) plane (figure [2) to the left (right) of the
spinodal line at p/ < U’/2 (' > U’/2). It is seen from behaviour of ¢(u)
and Qp;p/N(p) curves in the mentioned intervals of chemical poten-
tials values (figureH)). At higher temperatures the reverse course of ¢(u)
function and “fishtail” of Qp;r/N gradually decreases and disappeares.
At certain temperature we reach the tricritical point, and the order of
phase transition changes to the second one. At the further increase of
temperature the curve of phase transition coincides with the spinodal
line. It is shown in figures [[l and 2] where solid lines are the lines of the
first order phase transitions.

The variant (i) differs form the first one in position of the first order
phase transition line that is placed here inside the region of SF phase.
At T = 0, it separates this region on two parts which are characterized
by different mean occupation of fermion states. Sequence of graphs in
figure[d illustrates a gradual disappearing of reverse course of ¢(u) (as
well as corresponding feature of 2(u)) at the temperature increase. The
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Figure 3. (T, ;1) phase diagram for different values of p/; |tg| = 0.8, U’ =
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Figure 4. First order phase transition lines on the (T, u) plane for dif-
ferent values of u/; |to| = 0.8,U’ = 1.0. The case U"?/4|ty| < u' <
U' —U"?/Alto| at U'/2 < |to| < U'.

transition line terminates in a critical point that is located within the SF
phase area (figure B). The transitions from this phase into the normal
(MI) one are of the 2-nd order. Temperatures of critical points become
lower when 1/ shifts to the centre of [0, U’] interval (see figureH)); in this
limit the 1st order phase transition at 7' # 0 disappears.

One can see from figures Pland [ that in almost all cases for 0 < p/ <
U’ interval there are regions where “re-entrant” transitions take place. In
these cases the SF phase exists as intermediate one between temperature
regions where the normal phase is stable.

Let us consider now, besides previously analyzed, the phase diagrams
(1, ) at nonzero temperatures. We begin with the case of low temper-
atures when the regions of p/ (and p) values with phase transitions of
the 1-st order are present. The (¢, ) diagrams possess here a different
form for |tg| < U’/2 and U’/2 < |tg| < U’. The transformation of such
diagrams, obtained numerically, at the increase of T' is shown in figures[1l
and Bl As can be seen, a gradual shortening of the 1st order PT lines
in the first case, as well as a breaking of such a line at 7" # 0 in the
region U" — |to| < p < |to| and subsequent reduction of the mentioned
PT regions at higher T' in the second case, take place.

In the region of temperatures above the critical and tricritical ones
the phase transition lines coincide with spinodales; the transitions, as
such, are of the 2nd order. Borders between phases are determined in
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this case by the equation (5.4) where

<Xnn> = ZO_1 |<p:0 eiﬁ)\ﬁ <Xﬁﬁ> = Zo_l |<,9:0 e~ Pra
1

T
e S (4.5)
n=0

n=0

and A, and A; are specified in (1.5).

In the case U'/2 < |tg| < U’, the obtained numerically at low tem-
peratures (', 1) phase diagrams are presented in figure [l The change
of shape of the SF phase region during gradual raising of temperature,
starting from © = 0,1U’, is shown in figure [@ This region is simply
connected at T = 0. However, as is seen from p’ versus p plots, at
certain (critical) temperature ©,. the change of topology of phase dia-
grams takes place. The SF phase region becomes biconnected (it occurs
at O, =2 0,341U' when |tg| = 0,8U"). Such a splitting into two parts
is realized at point with coordinates u = /' = 0,5U’. For these values
of chemical potentials we have at ©. the second order phase transition
from the SF to MI phase.

At the further increase of temperature the separated regions of SF
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Figure 8. Phase diagrams (i, ) for |tg] = 0.2. The case 0 < [to| < U'/2.

phase move away one from another and become narrower. Finally, they
disappear at ©Y = |to|/2. This temperature is obtained from the equa-
tions

1 1 Bu
— = —tanh 2C 46
ltol  p 2 (4.6)
or
1 1 Blp-U")
— = tanh 4.7
tol  p—U T2 (47)

at large negative or positive values of u’. The temperature ©Y has a mean-
ing of maximum temperature at which the SF phase in the pure hard-
core boson case disappears (in the mean-field approximation). When
W <0, |u'|> U, the fermions are practically absent (7i; ~ 0), while
at ' >0, |u'| > U’ the almost all lattice sites are occupied by fermions
(my ~ 1). In both limits the fermions have no influence on phase tran-
sition in boson subsystem shifting only the critical value of the boson
chemical potential. Phase transitions curves in the (T, u) plane have a
form of domes, which are symmetrical with respect to 4 = 0 or u = U’
points (where the maxima of domes are located).
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Figure 10. (Jto|, ) phase diagrams for ¢/ = 0.2,U’ = 1.0. The case
o<y <U' /2.

An additional information about the phase transition picture in the
model can be obtained from the (|¢o|, ) diagrams. Such diagrams at
given T were built using the set of (T, ) and (¢, ) phase diagrams;
some examples are presented in figures [I0] and [I11

The sequence of graphs in figure [IQ illustrates the changes in condi-
tions of existence of SF and MI phases as well as gradual disappearing of
the 1st order PT line at the temperature increase (what is in accordance
with previous data). Comparing with diagrams related to the |tg| < U’/2
case, we present in figure [[1] the diagrams for U’/2 < |to| < U’. There
exists a one-to-one correspondence between them at the replacement
@' — U’ — i/ and the mirror reflection 4 — U — p. Phase transitions
of the 1st order take place here between SF phase and: i) normal (MI)
phase with low concentration of fermions (below half-filling) at u > U’/2;
ii) normal (MI) phase with high concentration of fermions (above half-
filling) at p < U’/2.

The case p/ = U’/2 is here a special one. The corresponding (|to|, 1)
phase diagrams at different temperatures are shown in figure For this
value of p/, the PT at T # 0 is of the second order. SF region shifts to
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Figure 12. (|to|, ) phase diagrams at the non-zero temperatures (left)
and for T = 0 (right). The case p/ = U’ /2

higher values of |tg| at the increase of T, becomes wider (along a p axis
direction) at the beginning, but narrows after that and disappears at
high enough temperatures. Such a behaviour is in agreement with (7", 1)
diagram at p = U’/2 (see figure [I3)).

The symmetric case when p = U’ /2 (corresponding to the half-filling
of bosons (mp = 1/2)) is worth of separate investigation. Consideration
of thermodynamics of the model greatly simplifies here.

The energies of local states (BH) in such a case are:

U’ U\ 2
50’,1’:—Ii (I) + 5%,

v’ U\®
€1 = -+ e + (Z) + 122 (4.8)

Respectively, for partition function we have:
Zo=2 (eBTU + eﬁ;ﬂefiU*) cosh (B (U'/4)? + t(2)<p2>, (4.9)

and for equation for order parameter

1 o (O (0 X0
ol 2/(0 /A7 + 5 X |

sinh (3 TR+ 1777 (¢4 + o' e4)

T /A7 + 1322 Z
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Figure 13. (T, i) phase diagram in the case u' = U’/2

After substitution the expression (£9) we obtain the following equation
t
(U']4)? + t3p? = % tanh (ﬁ (U"/4)? + t?)gD?) (4.11)

using this equation, the non-zero solution for ¢ can be found.
As a result, we can consider the behaviour of radical
(U'/4)? 4+ 3¢* = Q as function of temperature. The quantity @ is
a descending function of temperature ® = 1/, but it does not reach the
zero with the temperature increase and terminates at the Qi = U’/4
value, which corresponds to the point, at which the ¢ parameter goes to
zero. Starting from this we can make two conclusions:

1. Non-zero solutions for ¢ exist only when Qi < @, i.e. when

Ito] > U'/2.

2. The value Q@ = Qmin corresponds to the spinodal temperature
which is determined by the equation

t
U’ /4= % tanh BU’ /4 (4.12)
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(it follows from (AII)) when ¢ = 0). This leads to expression

U'/4
Arth=Y—

2[to]

espinod. - (413)

From equation (£II) one can see that order parameter ¢ is a grad-
ually decreasing function of temperature, which tends to zero when
e — 6spinod.

It is important to stress, that the order parameter ¢ and temperature
O, do not depend on chemical potential of fermions . It holds true for
whole region of the ' values (not only for the 0 < p/ < U’ interval, but
also for 4/ < 0 and ' > U’). In considered case, the fermion subsystem
has an effect on temperature of transition to the state with BEC only
through interaction U’ with bosons. Here, the critical value U.,,, = 2|to|
exists. When U’ exceeds such a value, SF phase in symmetrical case
= U'/2 disappears (see figure [I4)).

The foregoing shows that at the temperature ©;pinoq4. is the same as
that one, at which the SF phase region splits into two separate parts
(such an effect was discussed above). The phase transition to SF phase
in this case, is of the second order.

Starting from the expression ([@4) for grand canonical potential, we
can calculate by means of differentiation the mean boson and fermion

]
0,75+ ®spinod/U
0,50 1
0,25+
I It /"
0,00 T 1 T T T T
0,0 0,5 1,0 1,5

Figure 14. The temperature O 4pinoq. as function of [¢]. Dotted line cor-
responds to the temperature ©0 = kT7.
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concentrations
_ 10Qmr 1 0QumF
=—— ; =—— ; 4.14
np N 8# ;0 NE N 8,&’ ) ( )
As a result, using (B.8)) and ([@.2]), we obtain
1 i 147
g =~ — H . <X00_X11>
2 4 /p2/4+ 232
_ f‘—Z)U’ (x99 _ x1)
4,/ U ZM) + 1%902
g = <X6/6/ n X“’> (4.15)

The order parameter ¢ should be excluded from these expressions by
substitution its equilibrium value (¢ = 0, for MI phase and the solu-
tion of equation ({I0), for SF phase). Finally, we shall get the averages
figp and np as functions of chemical potentials p and u' as well as the
temperature.

The concentrations change jump-like on the lines of the 1-st order
PT. Their values on these lines are presented in figures [[5] and [I6] in the
form of i (p') and np(u') plots. For each given ' the limiting values 7}
and nyg (ﬁ;? and ﬁ;), obtained at the tending to the PT line from the
one and another side (that is, from the MI and SF phases), are drawn.

The values of the jumps Anpg = ﬁ; —np and Anp = ﬁ; — g
change with temperature decreasing in size at the rising of T'. There
exist two separate intervals of p/ with a such jump-like behaviour of
concentrations; they join together and form the one (0 < ¢/ < U’) in the
limit T — 0 in the case U’/2 < |to| < U’ (fig. [IT)). At high temperatures
the jumps Anp p disappear (along with the PT order change from the
1st to the 2nd one).

Existence of jumps of Bose- and Fermi-particles concentrations (when
crossing the PT line between MI and SF phases) can be considered as a
manifestation of possibility of the phase separation in the system, when
the concentrations are fixed at the intermediate values. At that time,
the separation would consist in segregation into regions with MI and
SF phases. At low temperatures, when |to| < U’/2 and p/ = 0, the
MI phase is filled mainly by fermions, while in the SF phase the BE
condensate is characterized by intermediate concentration of bosons, and
concentration of fermions is low. In the «//2 < |to] < U’ and p/ < U’
case, the intrinsic character of phases is another: in MI phase the boson
concentration dominates, while in SF phase the BE condensate with
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Figure 15. (np, ) diagrams illustrating the values of boson concentra-
tion g on the lines of the 1st order PT.
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intermediate concentration of bosons exists on the background of high
fermion concentration. In this situation the phase segregation effect is
a consequence of an on-site repulsion (U’ > 0) between bosons and
fermions.

5. Conclusions

We have considered in this work the thermodynamics of the mixture of
the Bose- and Fermi-atoms in optical lattice basing on the Bose-Fermi-
Hubbard model and restricting ourselves to the case of “heavy” fermions
(that corresponds to the tp — 0 limit) as well as the repulsive on-site
boson-fermion interaction (U’ > 0). The approach of spinless fermions
and hard-core bosons is used; the initial model reduces in this case to
the four-state one. Our aim was to study the conditions, at which the
MI-SF phase transition in such a model occurs. In the procedure we
have employed, the U’ interaction is taken exactly into account (using
the formalism of Hubbard operators acting on the single-site basis of
states). The boson hopping between the lattice sites is considered within
the mean field approximation.

Investigation was performed in the thermodynamical regime of fixed
values of chemical potentials of bosons (1) and fermions (u'). Equilib-
rium values of the order parameter ¢ = (b) = (b*) (related to the BE
condensate) were found from the global minimum condition of grand
canonical potential ). Starting from equation for ¢, we have considered
the conditions of instability (at 7" # 0) of the normal (MI) phase with
respect to condensation of bosons. As a results, the spinodal curves were
calculated. Outside the [0, U’] interval for 1/, the curves of spinodals have
the usual dome-like shape. Attaining to this area, the curves undergo an
appreciable deformation, and when they enter inside, the regions with
two temperatures of instability, corresponding to one value of u, appear.
With the change of T the “re-entrant” transitions became possible. To
get the real (T, u) phase diagrams, we investigated the grand canonical
potential behaviour in such regions.

The conditions were found at which the PT lines do not coincide
with spinodals and the transitions become of the 1st order (instead of
the 2nd one). The corresponding phase diagrams (T, 1) were built. Two
different cases realize here. In the first one the 1st order PT line delimits
the regions of MI and SF phases; the region of existence of SF phase is
wider than limited one by spinodals. Such a line terminates at certain
temperature in the tricritical point, transforming into the line of the 2nd
order PT. In the second case the 1st order PT line is placed entirely
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within the SF phase region and terminates at raising of temperature in
the standard critical point (with coordinates p., Te.). At T = 0, it divides
this region into parts with BE condensate of different type: SF) region,
where all fermion states are filled, and SF(1) region, where fermions are
absent [43]. The difference between these two types of BE condensate
disappears gradually in case of nonzero temperatures. When T > T,
there exists the only one BE condensate with intermediate fermion con-
centration, that varies continuously as function of p.

The described above features of (T, u) phase diagrams manifest
themselves as contraction and further vanishing (at the increase of T)
of the 1st order PT lines in the phase diagrams, built on the (u', p)
plane. At temperatures above the tricritical ones only the 2nd order PT
lines (the spinodals) remain. The SF regions, which are disconnected at
[to] < U’/2, gradually narrow and more off one from another, disappear-
ing finally at 7' = T?. In the case U’/2 < [to| < U’, there exists only one
SF region at low temperatures, but during raising of 7' the change of
topology of phase diagram (u/, p) occurs. The SF phase region becomes
biconnected and such a splitting into two parts is realized at point with
coordinates p = ' = 0,5U". For these values of chemical potentials we
have at ©® = O, the second order phase transition from the SF to MI
phase. Similarly to the previous case, at the further increase of tempera-
ture the separate SF regions become narrower and disappear at the same
temperature T°.

We have also investigated the symmetric case y = U’/2 (which corre-
sponds to the boson half-filling (mp = 1/2). Consideration of thermody-
namics of the model greatly simplifies here. The order parameter ¢ and
critical temperature ©. do not depend on chemical potential of fermions
1/ in this case. The fermion subsystem has an effect on temperature of
transition to the state with BE condensate only through interaction U’
with bosons. Here, the critical value U/, = 2[to| exists. When U’ exceeds
such a value, SF phase in symmetrical case p = U’/2 disappears.

An additional insight into the physics of considered phase transitions
in the boson-fermion mixture give the (|to|, ) phase diagrams. Contrary
to the standard hard-core boson model, where the diagrams of such
a type are reflection-symmetric with respect to the point p = 0, in
our case this symmetry is broken. Due to interaction of bosons with
fermions, the ( [|to|, 1) diagrams are now symmetric with respect to
transformation 4 — U’ — p, ¢/ — U’ — p/. SF phase can exist when
hopping parameter |to| exceeds the minimum value |tg|min. The latter is
determined by position of chemical potential of fermions p’ and increases
at the temperature growth. Along with that, the SF region widens at
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the beginning, but becomes narrower after that and disappears at high
enough temperatures. Such an effect for mixtures with “heavy” fermions
has been mentioned in [36] in the case of half filling.

The jumps of concentration g at crossing of the 1st order PT line
during transition between MI and SF phases are an indication of pos-
sibility of the phase separation in the system (when one could fix the
intermediate value of boson concentration). Segregation on SF and MI
regions will take place in such a situation.

Direct comparison of calculated phase diagrams with the available
data for the BFH model, concerning the equilibrium states and phase
transitions, and obtained in the another thermodynamical regime (of
fixed fermion concentration iy besides the given chemical potential p
of bosons), is a special task. Some discussion of this problem and the
examples of cases, where such a comparison was possible, were given
in [43] for T' = 0 limit.

It should be stressed, at the same time, that application of the
i =const and p/ =const regime enabled to describe the effect of fermions
on the transition to the SF phase in a mixed system (consisting of hard-
core bosons and “heavy” fermions) and show that such a PT becomes
of the 1st order in the some regions of chemical potential values and
at low temperatures. The BE condensation is influenced in this case by
competition between states with the high and low fermion occupancy.
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