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Формування просторово-часових структур в реакцiї
окислення монооксиду вуглецю. Роль дифузiї

I.С. Бзовська, I.M. Мриглод

Анотацiя. Дослiджуються механiзми формування просторово-
часових структур у каталiтичнiй реакцiї окислення CO з
урахуванням процесiв дифузiї на неоднорiднiй поверхнi Pt(110),
яка мiстить структурно вiдмiннi дiлянки, що утворюються пiд
час СО-iндукованого переходу вiд реконструйованої 1 × 2 фази
до об’ємної 1 × 1 фази. Показано, що система може втрачати
стiйкiсть двома шляхами: або через бiфуркацiю Хопфа, що веде до
утворення в системi часових структур – автоколивань, або через
бiфуркацiю Тюринга, що призводить до формування регулярних
просторових структур. При одночаснiй реалiзацiї обох сценарiїв у
системi спостерiгаються просторово-часовi структури для величини
покриття θO. Розподiл θCO залишається практично однорiдним у
просторi та незалежним вiд геометрiї поверхнi.

Spatiotemporal pattern formation in CO oxidation reaction.
The role of diffusion

I.S. Bzovska, I.M. Mryglod

Abstract. The spatiotemporal pattern formation in the catalytic carbon
monoxide oxidation reaction with taking into account the diffusion pro-
cesses over the Pt(110) surface, which may contain structurally different
areas, is studied. These areas are formed during CO-induced transition
from a reconstructed phase with 1 × 2 geometry of the overlayer to a
bulk-like (1×1) phase with square atomic arrangement. It is shown that
the system may lose its stability in two ways – either through the Hopf
bifurcation leading to the formation of temporal patterns in the system,
namely oscillations, or through the Turing bifurcation leading to the for-
mation of regular spatial patterns. At simultaneous implementation of
both scenarios spatiotemporal patterns for oxygen coverage θO are ob-
served in the system. The distribution of θCO is almost homogeneous in
space and independent of the surface geometry.
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Introduction

In recent times, spatiotemporal pattern formation in spatially extended
systems, such as reaction-diffusion systems, has been extensively stud-
ied [1–4]. In these systems the concentration of one or more substances
distributed in space can change under the influence of two processes:
local chemical reactions in which the substances are transformed into
each other, and diffusion which causes the substances to spread out over
a surface in space.

Among chemical systems, the catalytic oxidation of CO on platinum
(110) is one of the most prominent examples of a reaction-diffusion sys-
tem showing a variety of complex spatiotemporal patterns [5–8]. For
this system various experiments on pattern formation have been car-
ried out. Pattern formation was monitored by means of photoemission
electron microscopy (PEEM) [9–11]. The experimental parameters were
chosen such that the reaction was oscillatory and, furthermore, uniform
oscillations were unstable and a complex state of spiral-wave turbulence
spontaneously developed.

An orientation of the catalyst surface in such systems has a decisive
influence on the occurrence of oscillations and surface patterns [3, 5, 6].
The clean Pt(110) top surface layer reconstructs into a 1 × 2 “missing
row” structure. This reconstruction can be reversibly lifted by adsorption
of CO molecules. Because oxygen adsorption is favored on the unrecon-
structed 1 × 1 phase, periodic switching between two states of different
catalytic activity can occur, resulting in temporal oscillations of the reac-
tion rate. Local spatial coupling across the catalytic surface is provided
by surface diffusion of adsorbed CO and oxygen. Under such oscillatory
conditions, the interplay between reaction and diffusion processes can
lead to the development of spatiotemporal patterns.

Formation of spatiotemporal patterns occurs under two main
symmetry-breaking instabilities as the Hopf and the Turing ones [12,13].
An interaction and competition of these bifurcations have been con-
sidered for different reaction-diffusion systems, including Belousov-
Zhabotinsky autocatalytic reaction [14], the FitzHugh-Nagumo model
[12, 13], etc. In these models a variety of modes has been received, in-
cluding mixed modes – spatial patterns modulated in time.

In this paper we study the mechanism of spatiotemporal pattern
formation in the carbon monoxide oxidation reaction on the surface of
Pt(110). A simple three-variable model has been developed to account
for most of the dynamic features of the reaction. Analysis of instabilities
in time and space of the system is based on methods of linear stability
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theory and numerical modelling. It is shown that under certain values of
parameters in the system there are patterns provided by linear analysis
and similar to those observed in the experiment.

The paper is organized as follows. A model of the catalytic oxidation
reaction of carbon monoxide and the linear stability theory are intro-
duced in the following section. In Sec. III, the results of our calculations
and a discussion of the obtained results are shown. Cases of homoge-
neous and inhomogeneous surfaces are described in detail. The paper
ends with conclusions in Sec. IV.

1. Model and theory

Let us consider a model of the catalytic oxidation reaction of carbon
monoxide that takes the diffusion processes over the Pt(110) surface
into account. For this, diffusion terms were included into the system
of kinetic differential equations describing the dynamic behavior of the
model [15, 16]:

dθCO

dτ
= D1△θCO + pCOkCOsCO(1 − θq

CO
) − dθCO − krθCOθO,(1)

dθO
dτ

= D2△θO + pO2
kO(s1×1θ1×1 + s1×2(1 − θ1×1))

× (1 − θCO − θO)2 − krθCOθO, (2)

dθ1×1

dτ
= D3△θ1×1 + k5

(

[

1 + exp

(

u0 − θCO

δu

)]

−1

− θ1×1

)

. (3)

Equation (1) describes the change in the number of adsorbed CO with
taking into account the chemical reaction with adsorbed oxygen, desorp-
tion of CO with desorption constant d and diffusion of CO. Equation (2)
describes the diffusion of oxygen, its dissociative adsorption and changes
due to CO oxidation reaction. Equation (3) is the kinetic equation for

the surface transformation. Function

[

1 + exp

(

u0 − θCO

δu

)]

−1

is a non-

decreasing and smooth function of θCO at the interval [0,1], which allows
us to describe the transformation of the reconstructed 1×2 surface struc-
ture to the 1× 1 structure depending on the amount of CO coverage [6].
For an inhomogeneous surface, the laplacian term △θ1×1 in equation
(3) originates from the contribution of the interfaces between different
surface geometries to the total system energy [8]. Consequently, the co-
efficient D3 describes the energy costs of such interfaces. In this model
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the precursor-type kinetics of CO adsorption is accounted for by the ex-
ponent q = 3 in the right hand of equation (1). It makes the model more
realistic since the inhibition of adsorption of CO and O2 is asymmet-
ric and preadsorbed CO blocks oxygen adsorption but not vice versa. A
more detailed explanation and values of the parameters used in further
calculations are presented in Table 1 [6].

Table 1. Parameters of the model

T 540 K Temperature

pO2
9.75 × 10

−5 Torr O2 partial pressure

kCO 4.2× 10
5 s−1Torr−1 Impingement rate of CO

kO 7.8× 10
5 s−1Torr−1 Impingement rate of O2

d 10.21 s−1 CO desorption rate

D1 10−7 cm2s−1 CO diffusion rate

D2 10−10 cm2s−1 O diffusion rate

kr 283.8 s−1 Reaction rate

sCO 1 CO sticking coefficient

sO,1×2 0.4 Oxygen sticking coefficient
on the 1× 2 phase

u0, δu 0.35, 0.05 Parameters for the structural phase
transition

k5 1.61 s−1 Phase transition rate

System (1)–(3) can be transformed by the substitution

t = krτ, D1,2,3 = D1,2,3/kr, pCO = pCOkCOsCO/kr,

pO2
= pO2

kOs
1×2

O
/kr, d = d/kr, k5 = k5/kr

into the following dimensionless form:

dθCO

dt
= F1(θCO, θO) = D1△θCO + pCO(1 − θ3CO) − dθCO − θCOθO,(4)

dθO
dt

= F2(θCO, θO, θ1×1) = D2△θO + pO2
(1 + θ1×1)(1 − θCO − θO)2

− θCOθO, (5)

dθ1×1

dt
= F3(θCO, θ1×1) = D3△θ1×1

+ k5

(

[

1 + exp

(

u0 − θCO

δu

)]

−1

− θ1×1

)

. (6)

sO = s1×1

O
θ1×1 + s1×2

O
(1− θ1×1) = s1×2

O
(1 + θ1×1) under the assumption

that for Pt(110) we have s1×1

O
/s1×2

O
≃ 2.
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The system of differential equations (4) − (6) with partial deriva-
tives can not be solved analytically. Therefore, analysis of the system
instabilities in time and space has been based on methods of the lin-
ear stability theory and numerical simulations. The system of equations
(4)–(6) in the linear approximation for the deviations from steady state
δθi(r, t) = θi(r, t) − θi,s(r) looks like

∂

∂t
δθi(r, t) =

3
∑

j=1

(

∂Fi

∂θj

)

θk=θk,s

δθj(r, t) + Di△δθi(r, t), (7)

i, j = CO,O, 1 × 1.

Stability of the system has been investigated using the method
of normal modes concerning periodic in space perturbation (normal
mode) with the wavelength λ. For this, we do the following substitu-
tion δθi(r, t) ∼ eωt+ikr, where k = 2π/λ is a wave number, and we
obtain the following linear system of equations

3
∑

j=1

[

(

∂Fi

∂θj

)

θk=θk,s

−Dik
2δij − ωδij

]

δθj = 0, i = 1, 2, 3. (8)

Stability analysis requires the solution of the secular equation

det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∂Fi

∂θj

)

θk=θk,s

−Dik
2δij − ωδij

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (9)

from there we get an equation for ω(k):

ω3 − b(k)ω2 + c(k)ω − d(k) = 0, (10)

where we have introduced the next notations:

b(k) = σ − k2(D1 + D2 + D3),

c(k) = Σ − k2[D1(a22 + a33) + D2(a11 + a33) + D3(a11 + a22)]

+ k4(D1D2 + D1D3 + D2D3),

d(k) = ∆ − k2
3
∑

i=1

Diηi + k4(a11D2D3 + a22D1D3 + a33D1D2)

− k6D1D2D3.

Here aij =

(

∂Fi

∂θj

)

θk=θk,s

, σ = a11 + a22 + a33 is the trace of the

characteristic matrix {aij}, ∆ = a11(a22a33 − a23a32) − a12(a21a33 −

ICMP–15–14E 5

a23a31) + a13(a21a32 − a22a31) is its determinant, Σ =
∑3

i=1
ηi, where

ηi = ajjall − ajlalj , i 6= j 6= l. For our model

a11 = −3pCOθ
2
CO,s − d− θO,s, a12 = −θCO,s, a13 = 0,

a21 = −2pO2
(1 + θ1×1,s)(1 − θCO,s − θO,s) − θO,s,

a22 = −2pO2
(1 + θ1×1,s)(1 − θCO,s − θO,s) − θCO,s,

a23 = pO2
(1 − θCO,s − θO,s)

2, (11)

a31 =
k5
δu

exp

(

u0 − θCO,s

δu

)

[

1 + exp

(

u0 − θCO,s

δu

)]2
, a32 = 0, a33 = −k5.

Equation (10) is a cubic equation with real coefficients. The solutions
of (10) are

ω1,2,3(k) =
3

√

−
q(k)

2
+
√

D(k) +
3

√

−
q(k)

2
−
√

D(k) +
b(k)

3
, (12)

where the following notations were introduced for the convenience:

q(k) = −
2b3(k)

27
+

b(k)c(k)

3
− d(k),

p(k) = c(k) −
b2(k)

3
,

D(k) =
q2(k)

4
+

p3(k)

27
.

Equation (12) is the dispersion relation which in general can contain
both real and imaginary parts, i.e. ω(k) = Reω(k) + iImω(k). The com-
ponent Reω(k) describes the stability of a solution (δθCO,k(ω), δθO,k(ω),
δθ1×1,k(ω)) and defines the process of relaxation, while Imω(k) sets the
frequency of the oscillating process.

Let’s consider cubic equation (10) in more detail. Assume that ω1, ω2,
ω3 are its solutions. It is well-known that coefficients of a cubic equation
and its roots are connected by the relations:

b = ω1 + ω2 + ω3,

c = ω1ω2 + ω1ω3 + ω2ω3, (13)

d = ω1ω2ω3,

bc− d = (ω1 + ω2)(ω1 + ω3)(ω2 + ω3).
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The investigated state is stable if for all eigenvalues of characteristic
equation (9)

Reωi(k) < 0, i = 1, 2, 3. (14)

Consequently, as follows from relations (13) and (14), the homogeneous
state of the whole system is stable when

b < 0,

c > 0, (15)

d < 0,

bc− d < 0.

The homogeneous state of the system becomes unstable when at least
for one ωi(k) (i = 1, 2, 3) Reωi(k) > 0. The violation of any of inequali-
ties (15) means that in the system a bifurcation has occurred. The broken
condition d<0 means the appearance of one real positive eigenvalue in
the system. The broken condition bc−d < 0 means there are two complex
conjugate eigenvalues with positive real part. The first case corresponds
to the Turing bifurcation, and the second – to the Hopf one.

In [17] authors represent the function d(k) as d(k2) = ∆ − αTk
2 +

βTk
4 − δTk

6, where αT =
∑3

i=1
Diηi, βT = a11D2D3 + a22D1D3 +

a33D1D2, δT = D1D2D3. Function d(k2) is a cubic parabola which has
local extremes. The maximum is

dmax(k2T ) = ∆ +
1

27δ2T

[

2(β2
T − 3αT δT )

3

2 + βT (2β2
T − 9αT δT )

]

(16)

and is reached at the point k2T = (βT +
√

β2
T − 3αT δT )/3δ2T . For the

Turing bifurcation it is necessary that in a certain range of wave numbers
d(k2) has become greater than zero, dmax(k2T ) > 0. As the authors affirm,
it is only possible if at least one of the coefficients on the main diagonal
of matrix {aij} is greater than zero (a well-known condition for the
existence of autocatalysis).

The condition for the Hopf bifurcation is obtained in [17] in the sim-
ilar way and is

k20 = (βV +
√

β2
V − 3αV δV )/3δ2V ,

Fmax(k20) = bc− d = σΣ − ∆ (17)

+
1

27δ2V

[

2(β2
V − 3αV δV )

3

2 + βV (2β2
V − 9αV δV )

]

> 0.
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Here

αV = D1(σ2 − a211 − a13a31 − a12a21) + D2(σ2 − a222 − a23a32

− a12a21) + D3(σ2 − a233 − a13a31 − a23a32),

βV = (D1 + D3)(D2 + D3)(a11 + a22) + (D1 + D2)(D2 + D3)

× (a11 + a33) + (D1 + D2)(D1 + D3)(a22 + a33),

δV = (D1 + D2)(D1 + D3)(D2 + D3).

Again, to satisfy inequality (17) the sum of two coefficients on the main
diagonal of matrix {aij} must be greater than zero [17].

As we see, our diagonal coefficients a11, a22 and a33 are negative for
all values of the system parameters. This means that the catalytic CO
oxidation reaction is not autocatalytic because, as was mentioned above,
for autocatalytic reactions at least one of the diagonal coefficients must
be greater than zero. Nevertheless, we show further that conditions of
the existence of the Turing (16) and the Hopf (17) bifurcations can be
satisfied in our non-autocatalytic system at certain values of the sys-
tem parameters. We associate the emergence of these instabilities with
an interaction of nonlinear local transformations with positive feedback
(i.e. surface phase transitions) and transport processes (diffusion) which
spatially coupling the system.

2. Results and discussion

2.1. Homogeneous surface

As was mentioned above, the system is stable if

Reω(k) < 0 for ∀k, (18)

that is when all normal modes are exponentially reduced. In the case
when for at least one mode at a certain k inequality Reω(k) > 0 becomes
true, the whole system becomes unstable because the amplitude of the
corresponding motion increases. The system can loss stability of the
homogeneous state in two ways – either through the Hopf bifurcation
leading to the temporal patterns formation (oscillations) in the system
or through the Turing bifurcation that leads to the formation of regular
spatial patterns.

Figure 1 shows the dispersion dependences of real Reω and imaginary
Imω parts as functions of the wave number k for different values of the
coefficient D3. Values of other model parameters used in our calculations
are presented in Table 1.
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Figure 1. Dispersion dependences of real Reω (solid line) and imaginary
Imω/10 (dash line) parts on the wave number k for D3 = 0.000175
(a) and D3 = 0.3 (b), respectively. Diffusion coefficients D1 = 0.035,
D2 = 0.000035 and partial pressure pCO = 0.06 are the same in all
cases.

At pressure pCO = 0.06 the system is characterized by one station-
ary point (θCO = 0.359, θO = 0.123, θ1×1 = 0.545), and under such
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values of the system parameters it is unstable, because Reω > 0 at
k0 = 0. Hence, we have a realization of the Hopf bifurcation scenario
with Imω(k0) = 0.419, Reω(k0) = 0.003 where k0 = 0. As we know [13],
the Hopf instability is the local dynamic instability arising in nonlinear
systems with multiple time-scales, and requires the following conditions:
Imω(k0) 6= 0, Reω(k0) > 0 where k0 = 0. In the phase space of the sys-
tem it causes a new attractor – a closed orbit called the limit cycle [1].
As a result of the Hopf bifurcation, evolution of the system takes place
by the states of the limit cycle.

The corresponding phase portrait of the system is depicted in Fig-
ure 2. As we can see, the phase trajectory screwed on the closed curve –
the limit cycle. Both average coverages of the adsorbates and the local
fraction of the surface area found in the unreconstructed 1× 1 structure
undergo periodic oscillations arised because of the Hopf bifurcation. The
instability of such type generates periodic in time patterns, i.e. waves.

0
0.2

0.4
0.6

0.8

0

0.1

0.2

0.3

0.4
0.2

0.4

0.6

0.8

1

COO

1*
1

Figure 2. The limit cycle in the phase portrait of the system in autowave
regime at pressure pCO = 0.06.

A change of the diffusion coefficient D3 does not affect the stabil-
ity of the system. However, as figure 1 depicts, depending on diffusion
coefficient D3 the Turing instability can occur in the system. In con-
trast to the Hopf bifurcation, the Turing bifurcation is not dynamic.
It is called bifurcation caused by the diffusion. The Turing bifurcation
requires Imω(kT ) = 0, Reω(kT ) > 0 where kT > 0 is a value of wave
number k corresponding to the second peak of the curve Reω(k) [13]. As
ones see from figure 1b, at a certain choice of the diffusion parameters of
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the system, namely D1 = 0.035, D2 = 0.000035 and D3 = 0.3, condition
Imω(kT ) = 0, Reω(kT ) = 0.001 > 0 becomes true for kT = 0.475. It
causes periodic in space and stationary in time concentration patterns
called the Turing patterns.

Besides, we have tested whether analytical conditions (16) and (17)
for the existence of the Turing and the Hopf bifurcations, respectively,
are performed for a given set of the system parameters. We have built a
plot of the function d(k2) which is shown in Figure 3. We have got that

0

-0,0002

-0,0004

k

-0,0006

-0,0008

0,80,60,40,20

Figure 3. Dependence of the coefficient d of cubic equation (10) on the
wave number k at pressure pCO = 0.06.

the maximum of the curve lies in a region of positive values and is

dmax(k2T ) = 5 · 10−5 > 0. (19)

Analytical conditions (16) gives the same value of dmax(k2T ). This means
the appearance of one real positive eigenvalue in the system. Really, there
are three real roots of cubic equation (10) for this set of the parameters.
And one of them is positive: ω1 = 0.001, ω2 = −0.069, ω3 = −0.724.
From analytical conditions (17) we have

Fmax(k20) = 0.0037 > 0. (20)

In this case we have two complex conjugate eigenvalues with positive
real part: ω1,2 = 0.003± 0.419i, ω3 = −0.725. The first case corresponds
to the Turing bifurcation, and the second – to the Hopf one.
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2.2. Inhomogeneous surface

To investigate the effect of inhomogeneities on the surface, we consider
an one-dimensional Pt(110) substrate of a size Lx = 1 µm with various
surface phases – reconstructed central 1 × 2 phase surrounded by the
unreconstructed 1 × 1 phase. Periodic boundary conditions were chosen
assuming that there is no flow through the boundary of the interval [0,1].
The initial conditions were set as follows:

θCO(x, t = 0) = θCO,s, (21)

θO(x, t = 0) =

{

θO,s, x < 0.3 and x > 0.7,
0, 0.3 < x < 0.7,

(22)

θ1×1(x, t = 0) =

{

1, x < 0.3 and x > 0.7,
0, 0.3 < x < 0.7.

(23)

Parameters of the reaction and diffusion correspond to the homo-
geneous oscillating state. This means that in the case when the entire
surface of the substrate had uniform structure, the temporal behavior
would be characterized by homogeneous periodic oscillations of cover-
ages θCO(x, t) = θCO(t), θO(x, t) = θO(t) and the local fraction of the
surface area in the unreconstructed 1 × 1 phase θ1×1(x, t) = θ1×1(t).

In the case when the reconstructed 1 × 2 phase is located inside the
unreconstructed 1 × 1 phase, the gradients of the adsorbate coverages
and of the surface geometry near the 1 × 2/1 × 1-interfaces lead to the
transition to a highly nonuniform state that, in turn, leads to a deforma-
tion of the wave front. To see this, in figure 4 we present the evolution
of the adsorbate coverages θCO, θO and the substrate geometry θ1×1 at
pressure pCO = 0.06. We observe the occurrence of periodic in space and
time patterns for θO coverage. The distributions of θCO coverage and
θ1×1 surface geometry are almost homogeneous in space.

Figure 5 presents the spatial distribution of oxygen coverage θO at
pressure pCO = 0.06 at the moment t =2000. Coverage of adsorbed
oxygen is sensitive to the surface structure at an initial moment, and
the nonuniform distribution of oxygen sets on the surface with time.
The oxygen distribution has oscillating behaviour, we see homogeneous
periodic oscillations of θO coverage along the entire surface.

Figure 6 depicts the temporal evolution of oxygen coverage in the
form of amplitude map. Figure 6a shows that at partial pressure pCO =
0.06 an auto-oscillatory regime appears in the system when condition
(17) of the existence of the Hopf bifurcation is satisfied. Figure 6b demon-
strates that at pressure pCO = 0.053 the system evolves to a steady state
through the damped oscillations. As we see, a perturbation of the initial
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Figure 4. Oscillations of the adsorbate coverages θCO, θO and the surface
geometry θ1×1 at pressure pCO = 0.06.
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Figure 5. Spatial distribution of oxygen coverage θO at pressure pCO =
0.06 at the moment t =2000.

spatial homogeneous distributions of oxygen coverage and surface geom-
etry leads to the growth of the perturbations by the Turing mechanism
and to the formation of regular spatiotemporal (figure 6a) and spatial
(figure 6b) patterns with durable coexistence of regions with high and
low oxygen concentrations on the surface.

Conclusions

The catalytic carbon monoxide oxidation reaction model taking diffusion
processes on the Pt(110) surface into account has been considered. The
dispersion dependences Reω and Imω on the wave number k have been
built. Despite that the CO oxidation reaction is not autocatalytic, we
have shown that the analytic conditions of the existence of the Turing
and the Hopf bifurcations can be satisfied at certain values of the sys-
tem parameters. Thus, the system may lose its stability in two ways –
either through the Hopf bifurcation leading to the formation of tempo-
ral patterns in the system, namely oscillations, or through the Turing
bifurcation leading to the formation of regular spatial patterns. At si-
multaneous implementation of both scenarios spatiotemporal patterns
for oxygen coverage θO have been observed in the system. We associate
the emergence of these instabilities with an interaction of nonlinear local
transformations with positive feedback (i.e. surface phase transitions)
and transport processes (diffusion) which spatially coupling the system.
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Figure 6. Amplitude map of oxygen coverage θO at pressures pCO = 0.06
(a) and pCO = 0.053 (b).

The distribution of θCO is almost homogeneous in space and independent
of the surface geometry.
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Košice; S. Thurner, Vienna; M. Tokarchuk, Lviv; I. Vakarchuk, Lviv;
V. Vlachy, Ljubljana; A. Zagorodny, Kyiv

CONTACT INFORMATION:
Institute for Condensed Matter Physics
of the National Academy of Sciences of Ukraine
1 Svientsitskii Str., 79011 Lviv, Ukraine
Tel: +38(032)2761978; Fax: +38(032)2761158
E-mail: cmp@icmp.lviv.ua http://www.icmp.lviv.ua


	Model and theory
	Results and discussion
	Homogeneous surface
	Inhomogeneous surface


