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Bose-Fermi-Hubbard model in the heavy fermion limit
I.V.Stasyuk, V.O.Krasnov

Abstract. The phase transitions in the Bose-Fermi-Hubbard model in
the mean eld and hard-core boson approximations, in the cas of in-
nitely small fermion transfer and repulsive on-site bosonfermion in-
teraction, are investigated. The behavior of the BE condenate order
parameter and grand canonical potential as functions of thechemical
potential of bosons is analyzed. The possibility of changefoorder of the
phase transition to the super uid phase in certain range of the values
of the chemical potentials of Bose- and Fermi-particles is stablished.
For the casesT =0 and T 6 O the phase diagrams in the plane (tem-
perature, boson chemical potential) for di erent values of parameters of
boson transfer and chemical potential of fermions ° are built.
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1. Introduction

Physics of many-particle systems with strong short-range orrelations is
one of the important research elds. A new outbreak of activity in this
area is associated with manifestations of peculiar propeies of ultracold
atomic systems in traps at imposing periodic eld created bythe inter-
ference of coherent laser beams. In created in a such way ogtil lattices,
in the case of Bose-atoms, transition to the state with BoseEinstein con-
densate at very low temperatures(T < 10 ”::10 8K) occurs. Experi-
mentally, this e ect was observed for the rst time by Greine r and others
in 2002 2003 [1/2] in the system of’Rb atoms. Bose-Einstein condensa-
tion occurs in this case by the phase transition of the 2nd orér from the
so-called Mott insulator phase (Ml-phase) to the super uid phase (SF-
phase). The theoretical description of the phenomenon is bsed on the
Bose-Hubbard model [3[4], which takes into account two mainfactors
that determine the thermodynamics and energy spectrum of tle system
of Bose-particles tunneling between neighbour minima of mtential in
the lattice and short-range on-site repulsive interactionof Hubbard type.
A lot of investigations [5-14] are dedicated to the constrution of phase
diagrams that de ne the conditions of existence of SF-phaseat T = 0
and at non-zero temperatures as well as to the study of di eraét aspects
of one-particle spectrum (see, also, reviews [15717]).

Along with ultracold atomic Bose-systems the boson-fermia mix-
tures in optical atomic lattices are also actively researcled. Their ex-
perimental implementation (eg, spin-polarized mixtures d 8’Rb  4°K
atoms [18[20]) allowed to see the MI-SF transition in the presence of
Fermi-atoms. An important factor, that has been observed, s fading of
bosons coherence and the decay of condensate fraction in $Rase in a
certain range of thermodynamic parameter (chemical potenial bosons or
temperature) values in uenced by the interaction with fermions. This is
re ected in the change of conditions of existence of SF- and M phases
and the shift of curve of SF-MI transition on the phase diagran. As
a possible explanations of this e ect, the renormalization (due to self-
trapping) of tunneling hopping of bosons [18[ 20, 21], in uence of higher
boson bandsl[212, 23], intersite interactions (including secalled correlated
hopping) [24] are considered. An important feature of bososfermion
mixtures is the possible existence of new quantum phases suas CDW-
type phase (with the particle density modulation), supersdid (SS) phase
(with the spatial modulation of the density as well as the order param-
eter of condensate),SF; phase (with the condensate of fermion pairs),
and their various combinations (see, in particular, [25]). Another inter-
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esting factor that must be taken into consideration is the famation of
so-called fermion composites'[26,27], which are result oEfmion pair-
ing with one or more bosons (or one or more boson holes) due tdeir
e ective attraction (or repulsion). Interspecies interaction in this case
can be changed[28] using the Feshbach resonancel[29]. A cheteristic
here is the asymmetry between the attraction and repulsion ases in the
behavior of boson-fermion mixtures and in the phase diagram [18[30].

To describe the boson-fermion mixtures in optical latticesthe Bose-
Fermi-Hubbard model is used. Model and it's microscopic jusi cation
were proposed in[[30]. Following this, in[31,32] the phaseidgrams at
T = 0 (ground state diagrams) in the mean- eld approximation were
constructed. As well, the ion transfer was taken into accouhby means
of perturbation theory in order to do this; the e ective stat ic interaction
between bosons (in the casedg = JF =0;Jg 60;Jr =0;Jg = Jg =
J, where Jg ; Jg are the parameters of the ion transfer) was included.
An areas of the existence of phases with composite fermionspntaining
di erent number of bosons (or boson holes), were found. The malysis
was performed in the regime of xed fermion density.

In [33] as well as in subsequent studie$ [34,85], it was showmithin
the BFH model that the direct boson-fermion interaction can lead to
e ective dynamic interaction between bosonslthrough fermbnic eld.
This gives the appearance of f'nstability; whenq = 0 in regard to

phase separation, and whenq = k pw in regard to spatial modulation
and SS phase formation (which in the case of half- lling for £rmions
and the increase of energy of their repulsion o bosons becoes a CDW
phasel[36]). Mechanisms of arising of SS phase were studiedsome other
works (see. in particular [25]). Bose-Einstein condensatenhances the s-
wave pairing of fermions, while uncondensed bosons are caitiuting to
the appearence of CDW. At half- lling for fermions SF; -phase competes
with antiferromagnetic ordering [37].

On the other hand, at the spin degeneracy, the reverse e ects pos-
sible, when pairing of fermions is induced by bosons. This 8iation is
analogous to the formation of Cooper pairs in the BCS model, a was
shown in several papers (see[ [3840]). It results in creatin of a phase
SF; , where the role of the super uid component belongs to fermia pairs;
corresponding phase diagrams are constructed in_[25]. Inggation over
fermionic variables provides also an additional static ineraction between
bosonsUgg , which promotesM| ! SF transition or suppresses it. To a
large extent it depends on the mass ratio of Bose- and Fermitams (on
the ratio of hopping parameterstg =tg ). The phase diagram obtained by
functional integration and the Gutzwiller approach in the cases of light
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(a mixture of 8’Rb  4°K atoms) and heavy (a mixture of 22Na “4°K
atoms) fermions are given in [34].

Another aspects of fermion in uence on theMI ! SF phase tran-
sition in boson subsystem were investigated in [22 41]. It § shown, in
particular, that virtual transitions of bosons under the in uence of inter-
action Ugg through their excited states in the optical lattice potenti al
minima lead to extension of the Ml phase region atT = 0 (the shift
of the curve of the phase transition in the (t; ) plane towards larger
values of thet=U ratio). The similar role is played by retardation at the
boson screening by fermions and polaron e ect [[42]. It maifests in the
reduction of parameter of bosons transfertg and their slowing down.
However, for heavy fermions the SF phase region in the case ofterme-
diate temperatures broadens[[35]. Interparticle interactons, in particular
the so-called bond-charge interaction, can have a signi cat in uence on
the transfer of bosons as shown i [24]. This also can lead tdé shift of
transition from Ml to SF phase.

A separate direction of theoretical description of boson abms and
boson-fermion mixtures in optical lattices is associated \th the use of
the hard-core boson approach, where the occupation of onisi states
conforms to the Pauli principle. For Bose atoms on the lattice this model
is a limiting case of Bose-Hubbard model fold 1 and widely enough
used [43(47]. It is suitable for the region0 T 1, but also can
describe the MI-SF phase transitions in the vicinity of the points g =
nU;n =0; 1; 2::: at nite values of U (in the case of strong couplingts
U) wheren ng n+1 for T =0 within the SF phase region [13,14].
In these cases, the model is applicable also to such phase tgitions at
non-zero temperatures.

For boson-fermion mixtures the BFH model in hard-core bosos limit
remains less explored. In[[48] the phase diagrams and phasepara-
tion or charge modulation conditions at the ion intercalation in semi-
conductor crystals were investigated on the basis of BFH-tpe model;
in [49,50] within pseudospin-fermion description (that caresponds to
the mentionedU !' 1 limit) the conditions of of SS and CDW phases
appearance under e ective interparticle interactions were investigated.
For the four-state model, that arises in this case, the calclations for
fermion band spectrum in Hubbard-I approximation were performed and
its transformation during transition to the SF-phase and at the presence
of a Bose-Einstein condensate [51] was investigated.

The aim of this work is a more thorough thermodynamics study d
mentioned 4-state model. We con ne ourselves to the case oheavy
fermions (i.e. extremely low values of fermion hopping pareneter tg).
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Such a situation was partially considered in [23 31]. It wasargued, in
particular, that frozen fermions, as xed subsystem whentg = 0, can
prevent the occurrence of long-range correlations of superd-type and
appearance of BE condensate. There exists, however, the tical fermion
concentration below which this e ect is absent (for d = 2;1‘7‘;”t 0;59;
for d=3;n5™  0;31; seel[23)).

We consider the equilibrium case, assuming that; takes the small
values, but not so small that could lead to a state of the glasstype
[15]52[53]. We will use the mean- eld approximation, basirg however on
accurate allowance for interspecies interaction in the spit of the strong
coupling approach. An analysis of the MI-SF phase transitim, based
on the conditions of thermodynamic equilibrium, will be performed (we
don't restrict ourself to the criterion of the normal (MI) ph ase stability
to determine the phase transition point). The study will be performed in
the case of xed chemical potentials of bosonsg and fermions ¢ atT =
0, as well as at non-zero temperatures. Corresponding phasdafjrams,
taking into account the possibility of a change of the phase tansition
order from the second to the rst one, will be built. Our investigation will
cover the case of repulsive on-site interaction between hdrcore bosons
and fermions Ugg > 0).

2. Hamiltonian of the BFH model

The Hamiltonian of the Fermi-Bose-Hubbard model is written usually
in the form:
U X bryb OX b f X b OX f
5 n’(n 1)+ U . nyn; ’ n; ’ n; +
I I I I

H =
X
+ ti b b + t? a' a (2.1)

<ijj> <i;j>

Here U and U° are constants of boson-boson and boson-fermion on-site

interactions; and © are chemical potentials of bosons and fermions,
respectively (we consider here the case of repulsive intecions U >
0;U%> 0) and t, t% are tunneling amplitudes of bosons (fermions) de-
scribing the boson (fermion) hopping between nearest lattie sites.

Let us use, as in[[54], the single-site basis of states

(nP=n;nf =0) j niii; (nP=n;n! =1) | m;ii (2.2)

where nib(nif) are occupation numbers of bosons (fermions) on the site
i, and introduce the Hubbard operators X" = jn;iihm;ij; X2 =
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je; ihm;ij, etc. Creating and destroying operators and operators of oc
cupation numbers will express in terms of X-operators in thefollowing
way [14/54].

X X
b = pmxin;nﬂ " pB+1Xia;a+l
X
q+ - pn+1xin+l;n + pmxiaﬂ;a
n B
o X x e + N 23
a = i 8 = i (2.3)
X oox " D
nP=  nX"™M+  BX®® nl = xX®®
n B B

Then, the Hamiltonian in this new representation takes the form:

H=Hp+HP+ HJ 2.4
ot Hit Hy (2.4)
H(): nxinn + BXiBB

=-n(n 1) n; . %B(B 1) e "+U%

_ . f _
HY = tib'h; Hy = t) a"a

<i;j> <i;j>

In the case of the hard-core boson approximation(U ! 1 ) the
single-sitejn?; nif i basis consists of four states:

joi =jo;0i;  j6i = jo; 1
jli=jL0i;  j& =L (2.5)
In this limit
b= X%+ X% h = X104+ x
a = XP+ Xx¥a = X0+ x® (2.6)
nP= XM e X80l = XP+ X1
0=0; 1= ; g= % 4= 0+ U° (2.7)




6 idaiseio

and in the expression (2.4) for Hamiltonian of system the resiction

n =0;1and 8 = 6;% on occupation numbers is imposed. As it was

mentioned, we consider the case of the so-called heavy feroms, when
the inequalitiest® t;t° U%are ful lled. Our aim consists in study of

conditions, at which the MI-SF transition in such a model takes place, in
the case when the fermion hopping between lattice sites canebneglected.
On this assumption, we will start from Hamiltonian:

X X
B = oXP+ XM+ X+ XB o+ b (28)
i hij i

3. Mean eld approximation

Let us introduce the order parameter of BE condensaté = hyi = Hq* i.
In the case of mean eld approximation (MFA):

+ | ' + v 2
t;(h N h)x 3.1
tibbh ="to (B +h) Nty ?
ij i
P S
(heretg = tiy = j toj;to < 0)
Then, for initial Hamiltonian after separating the mean el d part we
will have:

X
H=Hwr + tp (0" )b ) (3.2)
i
Here
X X
Hwe = Hi Nto'?% Hi=  HpXM; (3.3
i pr
and
0 1
joi j1i e j @i |
0 te O 0 joi
JiHpjj= B to 0 0 jai (3.4)
0 o0 0 to' j6i
0 0 to 04+ UYO| je&i

Our next step is the diagonalization:
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N
0T B 0=18 (3.5)
where : 0 = %1 l?z
and: I
O, = oS sin 0, = cos€ sin€
1= sin cos 27 sine  cos®
Here
. to'
2=4 + t§' 2 (39
. to'
sin2€=p 0

(U0 )2=4+1t3' 2
Then we will get the diagonal single-site part (which is as wé a
mean- eld one) of Hamiltonian:
X
A= o Nt 3.7)
pO

where p®= 0% 1% @ # are indices, which denote the states of new basis,
r—

" _ 21 2.
00:10 = — Z + tO 2,

2

r
T VL (LD L
Lt 2 2 4

For Bose-operators we will have in new basis:

+ 12 2 (3.8)

010 1 .
+>s
)+ 5si

010 . 0n0 .
+cos? X 01 sin? X }%+cos? X TP sin? & F¢

b= sin2 JXP X} n@O(XF® X POy

4. Thermodynamic potential in the mean eld ap-
proximation

The partition function in MFA is equal to:

P r
Zue = Spe M = Mt O.ZY Spe » Hpr X P _
i
v P 0X.popo
=eNto? g 0" = gNto ¥z (4.1)
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where
Zo=e "+e "9+ "to+e "io (4.2)
The grand canonical potential is:
Me = InZur = Njtgj' 2 N In Zg (4.3)
or
we =N = jtoj' 2 InZo (4.4)

(here we take into account thattg = | toj). The equilibrium value of the
order parameter' can be found from the global minimum condition of

We have an equation

@ wme =N) I @3
=2 MR 2 2jte)) ——a =0 45
@ ol 75 (4.5)
or
X "
dite + % @F g (4.6)
p° @
Here:
00, 1 .
hWXPPi=_"e »° 4.7)
Zo
Using that:
@g;}" = tosin2 = | tojsin2 (4.8)
@&);@

= tgsin2€=j tgjsin2€

@l
we will get from (4.6)

1 . . . 1 . . .
' = Zsin2 KO h X+ z5|n2e X %% h X% (4.9)

2
or in the explicit form,
2 3
ey 1010: 0°0°; £OF0: ©060;
.=Jt(g 4th :hX |+qh><uo|r21x i5 (4.10)
S+ 182 (4)+t(2)'2
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This equation has trivial ' =0 and non-trivial ' 6 0 solutions, the
second can be obtained from the equation:

1 X% h X0 X PP h X O
.t—. = q —_— + q e (411)
JloJ 2 T+t(2)l2 2 (U4)+t%'2

When we have several solutions in this equation we will congler only
that, which are related to minimum of yg

5. Averages hbii, hb'i and equation for

Let's us to apply the unitary transformation 07 (::))0 to operators X
and X #; which, in the matrix form, are:

0 1 0 1
01 00 0O 00O
oo _B O OO0 0k . gg.._%oooo
JJXiJJ—%OOOO XTI = @9 0 0 1 (5.1)
0O 0 0O 0 0 0O
We will get:
. 1
sin cos cog 00
. 2 .
AT O 0L sin sin cos 0 0§
0 0 0 0
and
0 0 O 0 0 !
0 O 0 0 §
ST N B8
jOTX*0j = %0 0 sin€cos® cog € (5.3)
00 sin® © sin €cos®

In the transformed basis representation:

07X =cos? X PP +sin cos (XX XI) sin® X M
(5.4)

07X 80 =cos®> & ¥¥ +sin €cos€&X¥® X F) sin? & #¢

After averaging with the aid of Hyr Hamiltonian:

hx 0% = Z—IOSp(XPle Howe )= Z—]'OSp(L’)TXFlOe Howe ) (5.5)
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On the new basis the Hamiltonianlj,(\)ﬂp is diagonal; because of that,
the averages of diagonal operatorX”® (p°= 0% 1% & £) only will be
non-zero. Thus

A A . .
X0 = Zsin2 X% h X1 (5.6)
: 2
o1 . .
hx 8% = E5|n2e hX ®®i h X &€
As a result, we have:

010,

"= M= XN+ X O = Zsin2 KO h X P+

NI =

+ :—leinZe X ®® h X TP (5.7)

So, we came to the same equation fdr as we have got from the extremum
condition for grand canonical potential.

6. The spinodal equation

If in the equation (B 1) we substitute ' =0, we will have the condition
for second order phase transition to SF phase (if this trangion is pos-
sible). In general, it is the condition of instability of nor mal (MI) phase
with respect to the Bose-Einstein condensate appearancer(i gures it
corresponds to spinodal lines).

The equation (4.11) can be rewritten as:

X P h X 0% , XFPi h X

1
Lo o 61)
Jto) 00 10 Y ©
if* 10,
( 0 ( ubo
.o 0 > Y TR
00 — 1; < O ’ e~ g, >U 0 (62)
( (
A 1, >0 ., g <U?
0 — =
' <0 ' g >Ul

It is seen that we can divide the axis on three regions(l) <
0; (20 0< <U % (3 >U %whenU®> 0). For all these regions
the equation (&.1) takes the form:

1 X% h X1 N hX i h X%

— 6.3
Jto) 10 e o ©3
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It can be rewritten as:
1 hX 11 h X 99 . hX 8 h X %%

T 55 (6.4)

The equation (€3) is the same as obtained in[][51] from the catition

of divergence of the bosonic Green's function (calculatechi the random
phase approximation) at! =0;q = 0. In this way it is the condition of

instability of the phase with ' = 0. Therefore, the equation [€.3) is an
equation for spinodal line.

7. Spinodalsat T =0

When T = 0, averageshX P’ X i are di erent from zero only for
lowest energy level. Here the three cases can be separatedt.ou
1) °<o0
Here, at < 0 the ground state is the state isjOi, and at > 0
the ground state is j1li. Respectively, in the rst one from these cases
hX 99i = 1, while in the second onehX i =1 (other averages are equal
to zero). The equation (€.4) can be written now as:
—= N (7.1)
Jto) = >0
It follows from here that

_ to > 0 (7.2)
to;, < O '

This is the spinodal equation for °< 0.

2) 0 U 0

The change of ground state takes place when = U% For <U Cthe
state j6i is the ground one, and for > U Cit is the state j&i. Respectively,
at <U ®hX®%j=1andat >U %hx % = 1. The equation (6.4) takes
now the form:

(
1 . <U 0
i = U o (7.3)
Jto) —go> >U
In this case the following lines will be the lines of spinodal
( = U% ty; >U O
' (7.4)

uo to; <U 0
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W |<ut2

: U j n
Ut~ U+t

It

ol

Fig.1a Instability region of Ml phase (at T = 0); the casejtoj < U %2

3)0< 9%<U?®
The change of ground state takes place now when= C For < ©
t such a state isj6i, and for > Citis the state jli. Respectively, at
< %% =1 andfor > %hX'% =1. For spinodal we will have
now the equation:

1 hxlli hxgg

— + 7.5
jtoj uo (7.5)
It follows from here that, = U° j togj when < % and = jtoj when
> 0 In the casejtoj < U9 the solution = Oalso appears. When
0> U %2, itexists for U O< jtgj< 9 andat %< U °=2it exists for
O<jtgj<U®  OIfjtoj UC the solution = Odisappears.
W U2<|t |<U!

Fig.Lb Instability region of Ml phase (at T = 0); the case'}’ < jtoj < U °
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Fig.1d Instability region of Ml phase (at T = 0); the casejtoj > U°

The lines of spinodales are broken and much dier for casegoj
U%UO > jtoj > U%2;jtoj < U%2. As a result, the areas of absolute
instability of the normal phase (calculated at T = 0) possess the di erent
shapes. These areas are shown in gures la 1d.

8. "( )and ( ) dependencesat T =0

One can nd the dependences of order parameter and grand canonical
potential  upon the chemical potential of bosons at di erent values of
temperature and ° using the equation (Z.11).

In the limit T ! 0 only averages related to the ground state con-
tribute to the right-hand side of the equation. With the chan ge of' the
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ground state can be reconstructed and this makes the problenof de-
termination of solutions for order parameter self-consisént. This prob-
lem can have analytical solution, when states with fermion ad without
fermion are not mutually mixed. This can be achieved when ° takes
values which are far-o the [0; U9 interval.

When we have the large in modulus and negative ° values, the state
j19 is the ground one and the equation [4.111) reduces in this case

jtioj - 17 8.1)
2 S +t5 2
Then:
q_—
' = % 1 2=t} (8.2)

In a positive region, when © U° the state j&3 is the ground one;
respectively, we have an equation:

1 1 ©3)
ol 5 @ 7, 22 '
4 0

In this case:

19
=21

2 (

The dependences of functions[{8]2) and (8l4) on are presented in g-
ures 2a, 2b.

u92=t2 (8.4)

0,5+
0,4+
0,3+
0,2+

0,1+

0,0 ‘
Al o It

Fig.2a Order parameter as function of for °< 0;j § U°
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051 ¢
0,4
0,3
0.2

0,14

u
0,0 w '
Ut | u' U+t

Fig.2b Order parameter as function of for ¢ U°

In the region of intermediate values of ° (especially at 0 0
U9, the mixing of tilded and untilded states leads to deformation of
the curve ' (). In the gures 3a, 3b, 3c one can see the plots of order
parameter ' as function of chemical potential of bosons for di erent
values of chemical potential of fermions ° These curves are obtained
numerically from the equation @.11) in the caseT =0.

One can see that in the vicinity of °=0 and °= U°values the
' () dependence has a reverse course and S-like behaviour. Thisan
evidence of possibility of the rst order phase transition (instead of the

045

04r 5

0351 B

03r B

025 5

02r B

015F B

01

A it

J

Fig.3a Order parameter' as function of for
T! 0; 9=0:;U%=1;jtej=0:8
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Fig.3b Order parameter' as function of
T! 0; 9=0:5,U%=1;jtgj =0:8

1

for

second order one). This conclusion can be conrmed by calcation of
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In the case of large negative values of chemical potential®, when at
T =0 only state j1% remains:

"0 = jtoj’ 2

5 (8.5)

2
me =N 1j toj' 2 Ine Z+tg'2

Using expression[(8.2) we have:

( %+ jtoj?)

L 8.6
4jto] (8.6)

mr =N =

At the same time, at ' = 0 the ground state in the region °< 0 is the
state jOi for < 0 and the statejli for > 0. Then:

(
0; <0

s o (8.7)

mr =Nj =0 =

Plots of functions (8.6) and (8.14) are presented in the gured4a.

One can see that derivatives% and @MF@# coincide in the
points = | tpj that limit the interval of values with ' 6 0. This
veri es the second order of the phase transition to the phasewith BE
condensate here.

Q /N

MF

0 Itl

_ltoN u

Fig.4a Grand canonical potentials yr =N (solid line) and
( mr =N) -0 (dotted line) as functions of at
0<0;j 9 U%jtej=0:8(T! 0)
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Fig.4b Grand canonical potentials g =N (solid line) and
( me =N): = (dashed line) as functions of at
>0, © U%jtej=0:8(T! 0)

The function yr =N( ) has the similar character in other limiting
case, namely the case of large positive values of. Here:

(( U9+jtj®)
4jto]
0. <U 0

MF =Nj = = o ’ o Sy o (8.8)

mMF =N =

(see the gure 4b). Here the second order phase transition ab takes
place.

The result of numerical calculations of function yg =N( ) in the
case of intermediate values of ° (done with the help of calculated earlier
' () dependences) are shown in gures 5a, 5b, 5c. Here and hereaift
numerical values of parameters are given in theJ units.

In the cases when the function' ( ) has a reverse course, one can see

the so-called shtails in the behaviour of the grand canonical potential
where the intersection points of lowest curves corresponda the rst
order phase transitions (phase transitions on the other sid of the interval
of non-zero' values are of the second order). Values of at which there
the rst order phase transitions exist, are shifted relatively the spinodal
line points (near °=0 to the left and near °= UCto the right). As a
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result the region of existence of SF phase afl = 0 is wider then the
limited by spinodals.

Described e ect of the phase transition order change disappars when
chemical potential ©is placed near middle of the[0; UY interval (see
gure 6). The point %= U%2is a special one. With decreasing of °,
the fragmentation of SF region on two parts takes place at ths point.

9. Phase transitionsat T 60

The investigation similar to the previous one can be done in he case of
non-zero temperature. Lets rst take a look on spinodals the curves,
that determine the borders of the normal phase stability regon. When

T 6 0, they are described by the equation [6.4). The solutions of his

equation on the plane(T; ) for di erent values of °are shownin gures

7a 7d and 8a 8d.

Outside the [0;UY interval for © the curves of spinodals have the
usual dome-like shape. Attaining to this area, the curves udergo an
appreciable deformation, and when they enter inside, the rgions with
two temperatures of instability corresponding to one valueof appear.
With the change of T the re-entrant transitions became possible. But,
to get the real (T; ) phase diagrams one need to investigate the grand
canonical potential behaviour in such regions.

In the gures 3a, 5a, 9a,b, 10a,b one can see how the shape ofreas
for ' ( ) and nr =N changes with the increase of temperature in the
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region of parameters values, where afl = 0 we have the rst order
phase transition. At higher temperatures the reverse cours of' ( ) func-
tion and shtail of g =N gradually decrease and disappear. At some
temperature, that corresponds to tricritical point, the or der of phase
transition changes from rst to second. At the further incre ase of tem-
perature the curves of phase transitions coincide with the ginodal lines.
It is shown in gures 7b,c and 8b,c where dotted lines are the ihes of
the rst order phase transitions. They are present in the phase diagrams
in the cases when0 < ©°. 0:3U%ans0:7U°. < U ° From gures
one can see that in almost all cases fod < © < U % interval there are
regions where re-entrant transitions take place. In theg cases the SF
phase exists as intermediate one between temperature regis where the
normal phase is stable.

It is worthy to consider, besides previously analyzed, the pase di-
agrams( % ) at nonzero temperatures. In the region of temperatures
above the tricritical ones (which reach a maximum of the orde of 0; 073U°,
as it seen from gures 7b,7¢,8b,8c) the phase transition lies coincide
with spinodales; the transitions, as such, are of the 2nd ordr. Borders
between phases are determined in this case by the equation.@® where

XMi=2Z,tj0e ", XPPi=Z,'joe - (9.1)
X 3

Zoj':(): e "+ e e
n=0 n=9

and , and 5 are specied in (1.5).

In the caseU®%=2 < jtoj < U° the obtained numerically ( % ) phase
diagrams are presented in gure 6. The change of shape of theFSphase
region during gradual raisins of temperature, starting fom = 0;1U°,
is shown. This region is simply connected aff = 0. However, as is seen
from Oversus plots, at certain (critical) temperature . the change of
topology of phase diagrams takes place. The SF phase regioretomes
biconnected (it occurs at . = 0;341U° when jtoj = 0;8U9. Such a
splitting into two parts is realized at point with coordinat es = 9=
0;5U° For these values of chemical potentials we have al = . the
second order phase transition from the SF to Ml phase.

At the further increase of temperature the separated SF phas re-
gions move away one from another and become narrower. Fingll they
disappear at T = jtoj=2. This temperature is obtained from the equa-
tions

1 1
— = —tanh —
Jto) 2

(9.2)
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Fig.11a(; 9 phase diagram atT =0:1;jtoj =0:8;U%=1

or Fig.11lc(; 9 phase diagram atT = 0:34;jtoj =0:8;U%=1

( v

1
— = Otanh 5

1
Jto) u

(9.3)

at large negative or positive values of °. The temperature T2 has a mean-
ing of maximum temperature at which the SF phase in the pure had-
core boson case disappears (in the mean- eld approximation When

< 0; j 9 UO the fermions are practically absent(n;  0), while |t u

T=0.38

Fig.11d (; 9 phase diagram atT = 0:342jtoj =0:8;U%=1

Fig.11b (; 9 phase diagram atT =0:3;jtoj =0:8;U%=1
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Fig.11le(; 9 phase diagram atT = 0:38;jtoj =0:8;U%=1

at >0, j 9 UOhealmostall lattice sites are occupied by fermions
(ms  1). In both limits the fermions have no in uence on phase tran-
sition in boson subsystem shifting only the critical value d the boson
chemical potential. Phase transitions curves in the(T; ) plane have a
form of domes, which are symmetrical with respectto =0 or = U°
points (where the maxima of domes are located).

10. The = U%2 case

The symmetric case when = U%2 (corresponding to the half- lling of
bosons(ng = 1=2)) is worth of separate investigation. Consideration of
thermodynamics of the model greatly simpli es here.

The energies of local states (3.8) in such a case are:

S 2
uo uo
o010 = 7 7 7 5 2
S 2
ue uo
‘wo= Ot - tw? (10.1)

Respectively, for partition function we have:

q__
cosh (U%=4)2 + t2' 2 (10.2)

o _u?o
Py

UO
Zo=2 e+ +e e

ICMP 14 08E 31

and for equation for order parameter
1 _ P h X%+ PP h X O
jtoj 2" (U=a)2 + 17 2
: P i3 v o u?®
sinh (U=4)2+15'2 e +e e 4

= (10.3)

After substitution the expression (10.2) we obtain the following equation

(UO=A)2 + t2' 2= J%"Jta\nh (U0=4)2 + t3' 2 (10.4)
using this equation, the non-gero solution for' can be found.

The behaviour of radical  (U%4)2+ t3' 2 Q as function of tem-
perature is shown graphically in gure 12. The curve for Q does not
reach the zero with the temperature =1= increase and terminates at
the Qmin = U%4 value, which corresponds to the point; at which the'
parameter goes to zero. Starting from this we can make two caslusions:

1. Non-zero solutions for' exist only when Qnin < ”T‘” i.e. when

2. The value Q = Qmin corresponds to the spinodal temperature
which is determined by the equation

_ it

U4 5 tanh U = (10.5)

(it follows from ( 10.4) when ' =0). This leads to expression
u=4

= 7U0
Arth o]

(10.6)

spinod:

From equation (10.4) and from gure 11 one can see that order
parameter ' is a gradually decreasing function of temperature,
which tends to zero when ! spinod:

It is important to stress, that the order parameter ' and tempera-
ture . do not depend on chemical potential of fermions ° It holds
true for whole region of the ©values (not only for the 0< %< U?°
interval, but also for °< 0and °> U9Y. In considered case,
the fermion subsystem has an a ect on temperature of transiton
to the state with BEC only through interaction U° with bosons.
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Fig.12 Radical Q as function of temperature

Here, the critical value U, = 2jtoj exists. When U° exceeds such
a value, SF phase in symmetrical case = U%2 disappears.

The foregoing shows that at the temperature gpinog; IS the same
as that one, at which the SF phase region splits into two sepaate
parts (such an e ect was discussed above).

The phase transition to SF phase, taking place atTc = Tspinog: , iN
this case, is of the second order.

Fig.13 The temperature gpinog: as function of jtoj. Dotted line
corresponds to the temperature 9
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11. Conclusions

We used the Bose-Fermi-Hubbard model in the mean- eld and had-core
boson approximations, in the case of in nitely small fermion transfer
and repulsive on-site boson-fermion interaction, to desébe phase tran-
sitions in the boson-fermion mixtures in optical lattices. Our aim was
to study the conditions, at which the MI-SF transition in suc h a model
occurs, in the case when the fermion hopping between latticsites can
be neglected. Approach used in this work does not apply the tiditional
scheme of mean- eld approximation based on the decouplingfahe on-
site interaction Uohibn{ . Instead of that, the Hubbard operator formalism
acting on the jn?; nif i basis of states is employed,; this gives a possibility
to take exactly into account the boson-fermion interactionU° (the case of
repulsive boson-fermion interaction(U%> 0) is considered in this work).
The single-site problem is formulated with the only one selconsistency
parameter' (' = hyi = hy i), and the mean- eld approach is related
exclusively to description of the BE condensation.

On-site boson interactionU is treated as repulsive and in nitely large
(U > 0;U '1 ), that imposes restriction on occupation numbers of
bosons (P = 0 or 1). Nevertheless, this approximation gives a possibily,
as is known, to describe the MI-SF transition in the close viaity of the

= nU points (where n are integer numbers) in the case of nite values
of U. The investigation is performed in thermodynamical regimeof xed
values of chemical potentials of bosons () and fermions ( 9.

The equilibrium values of the order parameter' (related to the
SF phase appearing) were found from the global minimum condion
of grand canonical potential and, in parallel, by direct calculation of
averages of creating and destroying operators of bosorthi and ho*i.
From the obtained equation, using substitution ' ! 0, we get the con-
dition of 2nd order phase transition to SF phase (if this transition is
possible). In general, it is the condition of instability of normal (MI)
phase with respect to the Bose-Einstein condensate appeamnae. This
equation is the same as obtained earlier from the condition bdivergence
of the bosonic Green's function (calculated in the random plase approx-
imation) at ! = 0;q = 0. The spinodal lines are calculated atT = 0
and T 6 0 and corresponding phase diagrams on the;( 9 and (;T )
planes are built.

For the ground state (T = 0) we separated 3 possible cases depending
on the value of the chemical potential of fermions °and drew the cor-
responding phase diagrams where one can see the changes ie tiround
state. Also, the dependences of the order parameter and the grand
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canonical potential on (at di erent temperatures and chemical po-
tential ©values) are derived.

Considering the order parameter dependence upon chemicabgential
of bosons( ) we found the in the region of intermediate values of °©
(especially at0  © U9, the mixing of tilded and untilded states
leads to deformation of the curve' ( ). The cases are distinguished,
when such a dependence has a reverse behaviour and the MI-Slhgse
transitions changes its order from the 2nd to the 1st one (ouranalysis
is performed in details for the caseU%2 < jtoj < U 9. In particular, in
the vicinity of °=0 and °= U°values the' ( ) dependence has a
reverse course and S-like behaviour. This is an evidence obgsibility of
the rst order phase transition (instead of the second orderone). This
conclusion was conrmed by calculation of grand canonical ptential

me () as function of . As a result we showed that the region of
existence of SF phase al = 0 is wider then the limited one by spinodals.
Described above e ect of the phase transition order change idappears
when chemical potential ©is placed near middle of the[0; U9 interval
corresponding to the fractional (0 < n; < 1) fermion concentration. In
particular, it takes placeat 0<  °. 0;35U%nd 0;65U°. %< U % when
jtoj = 0;8U° BE condensation, taking place in this case, is in uenced
by states which di er by number of fermions.The point %= U%2is a
special one. With decrease of ©, the fragmentation of SF region on two
parts takes place at this point.

The similar investigation was done in the case of non-zero taper-
ature. Outside the [0; U9 interval for © the curves of spinodals have
the usual dome-like shape. Attaining to this area, the curves undergo an
appreciable deformation, and when they enter inside, the rgions with
two temperatures of instability, corresponding to one valle of , appear.
With the change of T the re-entrant transitions became possible. To get
the real (T; ) phase diagrams, we investigated the grand canonical po-
tential behaviour in such regions. We found that at higher temperatures
the reverse course of ( ) function and shtail of g =N gradually
decrease and disappear; at some temperature, that correspds to tri-
critical point, the order of phase transition changes from rst to second.
In almost all cases for0 < 9 < U9 interval there are regions where
re-entrant transitions take place. In these cases the SF pase exists as
intermediate one between temperature regions where the namal phase
is stable.

We also considered the phase diagramg; 9 at nonzero temper-
atures. In the region of temperatures above the tricritical ones (which
reach a maximum of the order of 0;075U9 the phase transition lines
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coincide with spinodales; the transitions, as such, are oftte 2nd order.
In the caseU%2 < jtgj < UC, there is observed the change of shape of
the SF phase region during gradual raising of temperature, tarting from

=0 ;1U° At certain (critical) temperature . the change of topology
of phase diagrams occurs. The SF phase region becomes bicented
and such a splitting into two parts is realized at point with c oordinates

= 0=0;5U° For these values of chemical potentials we have at

= . the second order phase transition from the SF to Ml phase. At
the further increase of temperature the separated SF phasesgions move
away one from another and become narrower.

We also investigate the symmetric case = U%2 (which corresponds
to the boson half- lling (Ng = 1=2). Consideration of thermodynamics
of the model greatly simpli es here. The order parameter' and tem-
perature . do not depend on chemical potential of fermions °in this
case. The fermion subsystem has an e ect on temperature of &nsition
to the state with BEC only through interaction U° with bosons. Here,
the critical value U3, = 2jtoj exists. When U exceeds such a value, SF
phase in symmetrical case = U%2 disappears.
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