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Модель Бозе-Фермi-Хаббарда в границi важких фермiонiв

I.В. Стасюк, В.О. Краснов

Анотацiя. Дослiджено фазовi переходи в моделi Бозе-Фермi-Хаб-
барда в наближеннi середнього поля та жорстких бозонiв при враху-
ваннi одновузлової бозон-фермiонної взаємодiї типу вiдштовхування
та у випадку безмежно малого переносу фермiонiв. Проаналiзовано
поведiнку параметра порядку бозе-конденсату та термодинамiчного
потенцiалу як функцiй хiмiчного потенцiалу бозонiв. Встановлено
можливiсть змiни роду фазового переходу до надплинної фази у пев-
них областях значень хiмiчних потенцiалiв бозе- та фермi-частинок.
У випадках T = 0 та T 6= 0 побудовано вiдповiднi фазовi дiаграми на
площинi (температура, хiмiчний потенцiал бозонiв) при рiзних значе-
ннях параметра переносу бозонiв та хiмiчного потенцiалу фермiонiв
µ′.

Bose-Fermi-Hubbard model in the heavy fermion limit

I.V.Stasyuk, V.O.Krasnov

Abstract. The phase transitions in the Bose-Fermi-Hubbard model in
the mean field and hard-core boson approximations, in the case of in-
finitely small fermion transfer and repulsive on-site boson-fermion in-
teraction, are investigated. The behavior of the BE condensate order
parameter and grand canonical potential as functions of the chemical
potential of bosons is analyzed. The possibility of change of order of the
phase transition to the superfluid phase in certain range of the values
of the chemical potentials of Bose- and Fermi-particles is established.
For the cases T = 0 and T 6= 0 the phase diagrams in the plane (tem-
perature, boson chemical potential) for different values of parameters of
boson transfer and chemical potential of fermions µ′ are built.
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1. Introduction

Physics of many-particle systems with strong short-range correlations is
one of the important research fields. A new outbreak of activity in this
area is associated with manifestations of peculiar properties of ultracold
atomic systems in traps at imposing periodic field created by the inter-
ference of coherent laser beams. In created in a such way optical lattices,
in the case of Bose-atoms, transition to the state with Bose-Einstein con-
densate at very low temperatures (T < 10−7...10−8K) occurs. Experi-
mentally, this effect was observed for the first time by Greiner and others
in 2002–2003 [1,2] in the system of 87Rb atoms. Bose-Einstein condensa-
tion occurs in this case by the phase transition of the 2nd order from the
so-called Mott insulator phase (MI-phase) to the superfluid phase (SF-
phase). The theoretical description of the phenomenon is based on the
Bose-Hubbard model [3, 4], which takes into account two main factors
that determine the thermodynamics and energy spectrum of the system
of Bose-particles – tunneling between neighbour minima of potential in
the lattice and short-range on-site repulsive interaction of Hubbard type.
A lot of investigations [5-14] are dedicated to the construction of phase
diagrams that define the conditions of existence of SF-phase at T = 0
and at non-zero temperatures as well as to the study of different aspects
of one-particle spectrum (see, also, reviews [15–17]).

Along with ultracold atomic Bose-systems the boson-fermion mix-
tures in optical atomic lattices are also actively researched. Their ex-
perimental implementation (eg, spin-polarized mixtures of 87Rb − 40K
atoms [18–20]) allowed to see the MI-SF transition in the presence of
Fermi-atoms. An important factor, that has been observed, is fading of
bosons coherence and the decay of condensate fraction in SF-phase in a
certain range of thermodynamic parameter (chemical potential bosons or
temperature) values influenced by the interaction with fermions. This is
reflected in the change of conditions of existence of SF- and MI- phases
and the shift of curve of SF-MI transition on the phase diagram. As
a possible explanations of this effect, the renormalization (due to self-
trapping) of tunneling hopping of bosons [18, 20, 21], influence of higher
boson bands [22,23], intersite interactions (including so-called correlated
hopping) [24] are considered. An important feature of boson-fermion
mixtures is the possible existence of new quantum phases such as CDW-
type phase (with the particle density modulation), supersolid (SS) phase
(with the spatial modulation of the density as well as the order param-
eter of condensate), SFf phase (with the condensate of fermion pairs),
and their various combinations (see, in particular, [25]). Another inter-
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esting factor that must be taken into consideration is the formation of
so-called fermion composites [26, 27], which are result of fermion pair-
ing with one or more bosons (or one or more boson holes) due to their
effective attraction (or repulsion). Interspecies interaction in this case
can be changed [28] using the Feshbach resonance [29]. A characteristic
here is the asymmetry between the attraction and repulsion cases in the
behavior of boson-fermion mixtures and in the phase diagrams [18, 30].

To describe the boson-fermion mixtures in optical lattices the Bose-
Fermi-Hubbard model is used. Model and it’s microscopic justification
were proposed in [30]. Following this, in [31, 32] the phase diagrams at
T = 0 (ground state diagrams) in the mean-field approximation were
constructed. As well, the ion transfer was taken into account by means
of perturbation theory in order to do this; the effective static interaction
between bosons (in the cases JB = JF = 0; JB 6= 0, JF = 0; JB = JF =
J , where JB , JF are the parameters of the ion transfer) was included.
An areas of the existence of phases with composite fermions, containing
different number of bosons (or boson holes), were found. The analysis
was performed in the regime of fixed fermion density.

In [33] as well as in subsequent studies [34, 35], it was shown within
the BFH model that the direct boson-fermion interaction can lead to
effective dynamic interaction between bosons through fermionic field.
This gives the appearance of instability; when −→q = 0 – in regard to

phase separation, and when −→q =
−→
k DW – in regard to spatial modulation

and SS phase formation (which in the case of half-filling for fermions
and the increase of energy of their repulsion off bosons becomes a CDW
phase [36]). Mechanisms of arising of SS phase were studied in some other
works (see. in particular [25]). Bose-Einstein condensate enhances the s-
wave pairing of fermions, while uncondensed bosons are contributing to
the appearence of CDW. At half-filling for fermions SFf -phase competes
with antiferromagnetic ordering [37].

On the other hand, at the spin degeneracy, the reverse effect is pos-
sible, when pairing of fermions is induced by bosons. This situation is
analogous to the formation of Cooper pairs in the BCS model, as was
shown in several papers (see, [38–40]). It results in creation of a phase
SFf , where the role of the superfluid component belongs to fermion pairs;
corresponding phase diagrams are constructed in [25]. Integration over
fermionic variables provides also an additional static interaction between
bosons UBB, which promotes MI → SF transition or suppresses it. To a
large extent it depends on the mass ratio of Bose- and Fermi-atoms (on
the ratio of hopping parameters tF /tB). The phase diagram obtained by
functional integration and the Gutzwiller approach in the cases of “light”
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(a mixture of 87Rb− 40K atoms) and “heavy” (a mixture of 23Na− 40K
atoms) fermions are given in [34].

Another aspects of fermion influence on the MI → SF phase tran-
sition in boson subsystem were investigated in [22–41]. It is shown, in
particular, that virtual transitions of bosons under the influence of inter-
action UBF through their excited states in the optical lattice potential
minima lead to extension of the MI phase region at T = 0 (the shift
of the curve of the phase transition in the (t, µ) plane towards larger
values of the t/U ratio). The similar role is played by retardation at the
boson screening by fermions and “polaron effect” [42]. It manifests in the
reduction of parameter of bosons transfer tB and their slowing down.
However, for heavy fermions the SF phase region in the case of interme-
diate temperatures broadens [35]. Interparticle interactions, in particular
the so-called bond-charge interaction, can have a significant influence on
the transfer of bosons as shown in [24]. This also can lead to the shift of
transition from MI to SF phase.

A separate direction of theoretical description of boson atoms and
boson-fermion mixtures in optical lattices is associated with the use of
the hard-core boson approach, where the occupation of on-site states
conforms to the Pauli principle. For Bose atoms on the lattice this model
is a limiting case of Bose-Hubbard model for U → ∞ and widely enough
used [43–47]. It is suitable for the region 0 ≤ nB ≤ 1, but also can
describe the MI-SF phase transitions in the vicinity of the points µB =
nU, n = 0, 1, 2... at finite values of U (in the case of strong coupling, tB ≪
U) where n ≤ nB ≤ n+ 1 for T = 0 within the SF phase region [13,14].
In these cases, the model is applicable also to such phase transitions at
non-zero temperatures.

For boson-fermion mixtures the BFH model in hard-core bosons limit
remains less explored. In [48] the phase diagrams and phase separa-
tion or charge modulation conditions at the ion intercalation in semi-
conductor crystals were investigated on the basis of BFH-type model;
in [49, 50] within pseudospin-fermion description (that corresponds to
the mentioned U → ∞ limit) the conditions of of SS and CDW phases
appearance under effective interparticle interactions were investigated.
For the four-state model, that arises in this case, the calculations for
fermion band spectrum in Hubbard-I approximation were performed and
its transformation during transition to the SF-phase and at the presence
of a Bose-Einstein condensate [51] was investigated.

The aim of this work is a more thorough thermodynamics study of
mentioned 4-state model. We confine ourselves to the case of “heavy”
fermions (i.e. extremely low values of fermion hopping parameter tF ).
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Such a situation was partially considered in [23, 31]. It was argued, in
particular, that frozen fermions, as fixed subsystem when tF = 0, can
prevent the occurrence of long-range correlations of superfluid-type and
appearance of BE condensate. There exists, however, the critical fermion
concentration below which this effect is absent (for d = 2, ncritp ∼ 0, 59;

for d = 3, ncritp ∼ 0, 31; see [23]).
We consider the equilibrium case, assuming that tf takes the small

values, but not so small that could lead to a state of the glass type
[15,52,53]. We will use the mean-field approximation, basing however on
accurate allowance for interspecies interaction in the spirit of the strong
coupling approach. An analysis of the MI-SF phase transition, based
on the conditions of thermodynamic equilibrium, will be performed (we
don’t restrict ourself to the criterion of the normal (MI) phase stability
to determine the phase transition point). The study will be performed in
the case of fixed chemical potentials of bosons µB and fermions µF at T =
0, as well as at non-zero temperatures. Corresponding phase diagrams,
taking into account the possibility of a change of the phase transition
order from the second to the first one, will be built. Our investigation will
cover the case of repulsive on-site interaction between hard-core bosons
and fermions (UBF > 0).

2. Hamiltonian of the BFH model

The Hamiltonian of the Fermi-Bose-Hubbard model is written usually
in the form:

H =
U

2

∑

i

nb
i(n

b
i − 1) + U ′

∑

i

nb
in

f
i − µ

∑

i

nb
i − µ′

∑

i

nf
i +

+
∑

<i,j>

tijb
+
i bj +

∑

<i,j>

t′ija
+
i aj (2.1)

Here U and U ′ are constants of boson-boson and boson-fermion on-site
interactions; µ and µ′ are chemical potentials of bosons and fermions,
respectively (we consider here the case of repulsive interactions U >
0, U ′ > 0) and t, t′ are tunneling amplitudes of bosons (fermions) de-
scribing the boson (fermion) hopping between nearest lattice sites.

Let us use, as in [54], the single-site basis of states

(nb
i = n;nf

i = 0) ≡ |n, i〉; (nb
i = n;nf

i = 1) ≡ |ñ, i〉 (2.2)

where nb
i (n

f
i ) are occupation numbers of bosons (fermions) on the site

i, and introduce the Hubbard operators Xn,m
i = |n, i〉〈m, i|, X ñ,m̃

i =
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|ñ, 〉〈m̃, i|, etc. Creating and destroying operators and operators of oc-
cupation numbers will express in terms of X-operators in the following
way [14, 54].

bi =
∑

n

√
n+ 1Xn,n+1

i +
∑

ñ

√
ñ+ 1X ñ,ñ+1

i

b+i =
∑

n

√
n+ 1Xn+1,n

i +
∑

ñ

√
ñ+ 1X ñ+1,ñ

i

ai =
∑

n

Xn,ñ
i a+i =

∑

n

X ñ,n
i (2.3)

nb
i =

∑

n

nXn,n +
∑

ñ

ñX ñ,ñ, nf
i =

∑

ñ

X ñ,ñ

Then, the Hamiltonian in this new representation takes the form:

H = H0 +Hb
1 +Hf

1 (2.4)

H0 =
∑

i,n

λnX
nn
i +

∑

i,ñ

λñX
ññ
i

λn =
U

2
n(n− 1)− nµ, λñ =

U

2
ñ(ñ− 1)− µñ− µ′ + U ′ñ

Hb
1 =

∑

<i,j>

tijb
+
i bj, Hf

1 =
∑

<i,j>

t′ija
+
i aj

In the case of the hard-core boson approximation (U → ∞) the

single-site |nb
i , n

f
i 〉 basis consists of four states:

|0〉 = |0, 0〉, |0̃〉 = |0, 1〉
|1〉 = |1, 0〉, |1̃〉 = |1, 1〉 (2.5)

In this limit

bi = X01
i +X 0̃1̃; b+i = X10

i +X 1̃0̃

ai = X00̃
i +X11̃; a+i = X 0̃0

i +X 1̃1 (2.6)

nb
i = X11

i +X 1̃1̃
i ;nf

i = X 0̃0̃
i +X 1̃1̃

i

λ0 = 0;λ1 = −µ;λ0̃ = −µ′;λ1̃ = −µ− µ′ + U ′ (2.7)
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and in the expression (2.4) for Hamiltonian of system the restriction
n = 0, 1 and ñ = 0̃, 1̃ on occupation numbers is imposed. As it was
mentioned, we consider the case of the so-called heavy fermions, when
the inequalities t′ ≪ t, t′ ≪ U ′ are fulfilled. Our aim consists in study of
conditions, at which the MI-SF transition in such a model takes place, in
the case when the fermion hopping between lattice sites can be neglected.
On this assumption, we will start from Hamiltonian:

Ĥ =
∑

i

(
λ0X

00
i + λ1X

11
i + λ0̃X

0̃0̃
i + λ1̃X

1̃1̃
i

)
+
∑

〈ij〉

tijb
+
i bj (2.8)

3. Mean field approximation

Let us introduce the order parameter of BE condensate ϕ = 〈bi〉 = 〈b+i 〉.
In the case of mean field approximation (MFA):

b+i bj → ϕ(b+i + bi)− ϕ2 (3.1)
∑

ij

tijb
+
i bj = ϕt0

∑

i

(b+i + bi)−Nt0ϕ
2

(here t0 =
∑
tij = −|t0|, t0 < 0)

Then, for initial Hamiltonian after separating the mean field part we
will have:

H = HMF +
∑

ij

tij(b
+
i − ϕ)(bi − ϕ) (3.2)

Here

HMF =
∑

i

Hi −Nt0ϕ
2; Hi =

∑

pr

HprX
pr
i ; (3.3)

and

||Hpr || =




|0〉 |1〉 |0̃〉 |1̃〉
0 t0ϕ 0 0 |0〉
t0ϕ −µ 0 0 |1〉
0 0 −µ′ t0ϕ |0̃〉
0 0 t0ϕ −µ− µ′ + U ′ |1̃〉




(3.4)

Our next step is the diagonalization:
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ÛT ∗ Ĥ ∗ Û =
ˆ̃
H (3.5)

where : Û =

(
Û1 0̂

0̂ Û2

)

and:

Û1 =

(
cosψ − sinψ
sinψ cosψ

)
, Û2 =

(
cos ψ̃ − sin ψ̃

sin ψ̃ cos ψ̃

)

Here

sin 2ψ =
t0ϕ√

µ2/4 + t20ϕ
2
, (3.6)

sin 2ψ̃ =
t0ϕ√

(U ′ − µ)2/4 + t20ϕ
2

Then we will get the diagonal single-site part (which is as well a
mean-field one) of Hamiltonian:

Ĥi =
∑

p′

εp′Xp′p′

i −Nt0ϕ
2, (3.7)

where p′ = 0′, 1′, 0̃′, 1̃′ are indices, which denote the states of new basis,

ε0′,1′ = −µ
2
±
√
µ2

4
+ t20ϕ

2,

ε0̃′,1̃′ = −µ′ − µ

2
+
U ′

2
±
√

(U ′ − µ)2

4
+ t20ϕ

2 (3.8)

For Bose-operators we will have in new basis:

bi=
1

2
sin(2ψ)(X0′0′

i −X1′1′

i )+
1

2
sin(2ψ̃)(X 0̃′0̃′

i −X 1̃′1̃′
i )+

+cos2 ψX0′1′

i −sin2 ψX1′0′

i +cos2 ψ̃X 0̃′1̃′
i −sin2 ψ̃X 1̃′0̃′

i

4. Thermodynamic potential in the mean field ap-

proximation

The partition function in MFA is equal to:

ZMF = Spe−βHMF = eβNt0ϕ
2
∏

i

Spe
−β

∑
pr

HprX
pr
i

=

= eβNt0ϕ
2
∏

i

e
−β

∑
p′

εp′X
p′p′

i

= eβNt0ϕ
2

ZN
0 (4.1)
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where

Z0 = e−βε
0′ + e−βε

1′ + e−βε
0̃′ + e−βε

1̃′ (4.2)

The grand canonical potential is:

ΩMF = −θ lnZMF = N |t0|ϕ2 −NΘ lnZ0 (4.3)

or

ΩMF /N = |t0|ϕ2 − θ lnZ0 (4.4)

(here we take into account that t0 = −|t0|). The equilibrium value of the
order parameter ϕ can be found from the global minimum condition of
Ω.

We have an equation

∂(ΩMF /N)

∂ϕ
= 2|t0|ϕ− θ

Z0

∂Z0

∂ϕ
= 0 (4.5)

or

2|t0|ϕ+
∑

p′

〈Xp′p′〉∂εp′

∂ϕ
= 0 (4.6)

Here:

〈Xp′p′〉 = 1

Z0
e−βεp′ (4.7)

Using that:

∂ε0′,1′

∂ϕ
= ±t0 sin 2ψ = ∓|t0| sin 2ψ (4.8)

∂ε0̃′,1̃′

∂ϕ
= ±t0 sin 2ψ̃ = ∓|t0| sin 2ψ̃,

we will get from (4.6)

ϕ =
1

2
sin 2ψ

(
〈X0′0′〉 − 〈X1′1′〉

)
+

1

2
sin 2ψ̃

(
〈X 0̃′0̃′〉 − 〈X 1̃′1̃′〉

)
(4.9)

or in the explicit form,

ϕ =
|t0|ϕ
2


 〈X

1′1′〉 − 〈X0′0′〉√
µ2

4 + t20ϕ
2

+
〈X 1̃′1̃′〉 − 〈X 0̃′0̃′〉√

(U ′−µ)2

4 + t20ϕ
2


 (4.10)
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This equation has trivial ϕ = 0 and non-trivial ϕ 6= 0 solutions, the
second can be obtained from the equation:

1

|t0|
=

〈X1′1′〉 − 〈X0′0′〉
2
√

µ2

4 + t20ϕ
2

+
〈X 1̃′1̃′〉 − 〈X 0̃′0̃′〉

2
√

(U ′−µ)2

4 + t20ϕ
2

(4.11)

When we have several solutions in this equation – we will consider only
that, which are related to minimum of ΩMF

5. Averages 〈bi〉, 〈b
+

i
〉 and equation for ϕ

Let’s us to apply the unitary transformation ÛT (...)Û to operators X01
i

and X 0̃1̃
i ; which, in the matrix form, are:

||X01
i || =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , ||X 0̃1̃

i || =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 (5.1)

We will get:

||ÛTX01
i Û || =




sinψ cosψ cos2 ψ 0 0
− sin2 ψ − sinψ cosψ 0 0

0 0 0 0
0 0 0 0


 (5.2)

and

||ÛTX 0̃1̃
i Û || =




0 0 0 0
0 0 0 0

0 0 sin ψ̃ cos ψ̃ cos2 ψ̃

0 0 − sin2 ψ̃ − sin ψ̃ cos ψ̃


 (5.3)

In the transformed basis representation:

ÛTX01
i Û = cos2 ψX0′1′

i + sinψ cosψ(X0′0′

i −X1′1′

i )− sin2 ψX1′0′

i

(5.4)

ÛTX 0̃1̃
i Û = cos2 ψ̃X 0̃′1̃′ + sin ψ̃ cos ψ̃(X 0̃′0̃′ −X 1̃′1̃′)− sin2 ψ̃X 1̃′0̃′

After averaging with the aid of HMF Hamiltonian:

〈X01
i 〉 = 1

Z0
Sp(X01

i e−βHMF ) =
1

Z0
Sp(ÛTX01

i Ûe−βHMF ) (5.5)
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On the new basis the Hamiltonian HMF is diagonal; because of that,

the averages of diagonal operators Xp′p′

i (p′ = 0′, 1′, 0̃′, 1̃′) only will be
non-zero. Thus

〈X01
i 〉 = 1

2
sin 2ψ

(
〈X0′0′〉 − 〈X1′1′〉

)
(5.6)

〈X 0̃1̃
i 〉 = 1

2
sin 2ψ̃

(
〈X 0̃′0̃′〉 − 〈X 1̃′1̃′〉

)

As a result, we have:

ϕ = 〈bi〉 = 〈X01
i 〉+ 〈X 0̃1̃

i 〉 = 1

2
sin 2ψ

(
〈X0′0′〉 − 〈X1′1′〉

)
+

+
1

2
sin 2ψ̃

(
〈X 0̃′0̃′〉 − 〈X 1̃′1̃′〉

)
(5.7)

So, we came to the same equation for ϕ as we have got from the extremum
condition for grand canonical potential.

6. The spinodal equation

If in the equation (4.11) we substitute ϕ = 0, we will have the condition
for second order phase transition to SF phase (if this transition is pos-
sible). In general, it is the condition of instability of normal (MI) phase
with respect to the Bose-Einstein condensate appearance (in figures it
corresponds to spinodal lines).

The equation (4.11) can be rewritten as:

1

|t0|
=

〈X1′1′〉 − 〈X0′0′〉
ε0′ − ε1′

+
〈X 1̃′1̃′〉 − 〈X 0̃′0̃′〉

ε0̃′ − ε1̃′
(6.1)

If ϕ→ 0,

ε0′ =

{
λ0, µ > 0

λ1, µ < 0
; ε0̃ =

{
λ1̃, µ < U ′

λ0̃, µ > U ′
(6.2)

ε1′ =

{
λ1, µ > 0

λ0, µ < 0
; ε1̃ =

{
λ0̃, µ < U ′

λ1̃, µ > U ′

It is seen that we can divide the µ axis on three regions (1) µ <
0; (2) 0 < µ < U ′; (3) µ > U ′ (when U ′ > 0). For all these regions
the equation (6.1) takes the form:

1

|t0|
=

〈X00〉 − 〈X11〉
λ1 − λ0

+
〈X 0̃0̃〉 − 〈X 1̃1̃〉

λ1̃ − λ0̃
(6.3)
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It can be rewritten as:

1

|t0|
=

〈X11〉 − 〈X00〉
µ

+
〈X 0̃0̃〉 − 〈X 1̃1̃〉

U ′ − µ
(6.4)

The equation (6.3) is the same as obtained in [51] from the condition
of divergence of the bosonic Green’s function (calculated in the random
phase approximation) at ω = 0,q = 0. In this way it is the condition of
instability of the phase with ϕ = 0. Therefore, the equation (6.3) is an
equation for spinodal line.

7. Spinodals at T = 0

When T = 0, averages 〈Xp′p′〉, 〈X p̃′p̃′〉 are different from zero only for
lowest energy level. Here the three cases can be separated out.

1) µ′ < 0
Here, at µ < 0 the ground state is the state is |0〉, and at µ > 0

the ground state is |1〉. Respectively, in the first one from these cases
〈X00〉 = 1, while in the second one 〈X11〉 = 1 (other averages are equal
to zero). The equation (6.4) can be written now as:

1

|t0|
=

{
− 1

µ
, µ < 0

1
µ
, µ > 0

(7.1)

It follows from here that

µ =

{
t0, µ > 0

−t0, µ < 0
(7.2)

This is the spinodal equation for µ′ < 0.
2) µ′ > U ′

The change of ground state takes place when µ = U ′. For µ < U ′ the
state |0̃〉 is the ground one, and for µ > U ′ it is the state |1̃〉. Respectively,

at µ < U ′, 〈X 0̃0̃〉 = 1 and at µ > U ′, 〈X 1̃1̃〉 = 1. The equation (6.4) takes
now the form:

1

|t0|
=

{
1

U ′−µ
, µ < U ′

1
µ−U ′

, µ > U ′
(7.3)

In this case the following lines will be the lines of spinodal:
{
µ = U ′ + t0, µ > U ′

µ = U ′ − t0, µ < U ′
(7.4)
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Fig.1a Instability region of MI phase (at T = 0); the case |t0| < U ′/2

3) 0 < µ′ < U ′

The change of ground state takes place now when µ = µ′. For µ < µ′

t such a state is |0̃〉, and for µ > µ′ it is the state |1〉. Respectively, at

µ < µ′, 〈X 0̃0̃〉 = 1 and for µ > µ′, 〈X11〉 = 1. For spinodal we will have
now the equation:

1

|t0|
=

〈X11〉
µ

+
〈X 0̃0̃

U ′ − µ
(7.5)

It follows from here that, µ = U ′ − |t0| when µ < µ′, and µ = |t0| when
µ > µ′. In the case |t0| < U ′, the solution µ = µ′ also appears. When
µ′ > U ′/2, it exists for U ′ −µ′ < |t0| < µ′, and at µ′ < U ′/2 it exists for
µ′ < |t0| < U ′ − µ′. If |t0| ≥ U ′, the solution µ = µ′ disappears.

Fig.1b Instability region of MI phase (at T = 0); the case U ′

2 < |t0| < U ′
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Fig.1c Instability region of MI phase (at T = 0); the case |t0| = U ′

Fig.1d Instability region of MI phase (at T = 0); the case |t0| > U ′

The lines of spinodales are broken and much differ for cases |t0| ≥
U ′, U ′ > |t0| > U ′/2, |t0| < U ′/2. As a result, the areas of absolute
instability of the normal phase (calculated at T = 0) possess the different
shapes. These areas are shown in figures 1a–1d.

8. ϕ(µ) and Ω(µ) dependences at T = 0

One can find the dependences of order parameter ϕ and grand canonical
potential Ω upon the chemical potential of bosons at different values of
temperature and µ′ using the equation (4.11).

In the limit T → 0 only averages related to the ground state con-
tribute to the right-hand side of the equation. With the change of ϕ the
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ground state can be reconstructed and this makes the problem of de-
termination of solutions for order parameter self-consistent. This prob-
lem can have analytical solution, when states with fermion and without
fermion are not mutually mixed. This can be achieved when µ′ takes
values which are far-off the [0, U ′] interval.

When we have the large in modulus and negative µ′ values, the state
|1′〉 is the ground one and the equation (4.11) reduces in this case:

1

|t0|
=

1

2
√

µ2

4 + t20ϕ
2

(8.1)

Then:

ϕ =
1

2

√
1− µ2/t20 (8.2)

In a positive region, when µ′ ≫ U ′, the state |1̃′〉 is the ground one;
respectively, we have an equation:

1

|t0|
=

1

2
√

(U ′−µ)2

4 + t20ϕ
2

(8.3)

In this case:

ϕ =
1

2

√
1− (µ− U ′)2/t20 (8.4)

The dependences of functions (8.2) and (8.4) on µ are presented in fig-
ures 2a, 2b.

Fig.2a Order parameter as function of µ for µ′ < 0, |µ′| ≪ U ′

ICMP–14–08E 15

Fig.2b Order parameter as function of µ for µ′ ≫ U ′

In the region of intermediate values of µ′ (especially at 0 ≤ µ′ ≤
U ′), the mixing of “tilded” and “untilded” states leads to deformation of
the curve ϕ(µ). In the figures 3a, 3b, 3c one can see the plots of order
parameter ϕ as function of chemical potential of bosons µ for different
values of chemical potential of fermions µ′. These curves are obtained
numerically from the equation (4.11) in the case T = 0.

One can see that in the vicinity of µ′ = 0 and µ′ = U ′ values the
ϕ(µ) dependence has a reverse course and S-like behaviour. This is an
evidence of possibility of the first order phase transition (instead of the

Fig.3a Order parameter ϕ as function of µ for
T → 0;µ′ = 0.1, U ′ = 1, |t0| = 0.8
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Fig.3b Order parameter ϕ as function of µ for
T → 0;µ′ = 0.5, U ′ = 1, |t0| = 0.8

second order one). This conclusion can be confirmed by calculation of
grand canonical potential ΩMF (µ) as function of µ.

Fig.3c Order parameter ϕ as function of µ for
T → 0;µ′ = 0.9, U ′ = 1, |t0| = 0.8
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In the case of large negative values of chemical potential µ′, when at
T = 0 only state |1′〉 remains:

ΩMF /N → |t0|ϕ2 − θ ln e−βε
1′ = |t0|ϕ2 − µ

2
−
√
µ2

4
+ t20ϕ

2 (8.5)

Using expression (8.2) we have:

ΩMF /N = − (µ2 + |t0|2)
4|t0|

(8.6)

At the same time, at ϕ = 0 the ground state in the region µ′ < 0 is the
state |0〉 for µ < 0 and the state |1〉 for µ > 0. Then:

ΩMF /N |ϕ=0 =

{
0, µ < 0

−µ, µ > 0
(8.7)

Plots of functions (8.6) and (8.7) are presented in the figure 4a.

One can see that derivatives ∂ΩMF

∂µ
and

∂ΩMF |ϕ=0

∂µ
coincide in the

points µ = ±|t0| that limit the interval of µ values with ϕ 6= 0. This
verifies the second order of the phase transition to the phase with BE
condensate here.

Fig.4a Grand canonical potentials ΩMF /N (solid line) and
(ΩMF /N)ϕ=0 (dotted line) as functions of µ at

µ′ < 0, |µ′| ≪ U ′, |t0| = 0.8 (T → 0)
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Fig.4b Grand canonical potentials ΩMF /N (solid line) and
(ΩMF /N)ϕ=0 (dashed line) as functions of µ at

µ′ > 0, µ′ ≫ U ′, |t0| = 0.8 (T → 0)

The function ΩMF /N(µ) has the similar character in other limiting
case, namely the case of large positive values of µ′. Here:

ΩMF /N = − ((µ− U ′)2 + |t0|2)
4|t0|

− µ′

ΩMF /N |ϕ=0 =

{
−µ′, µ < U ′

U ′ − µ− µ′, µ > U ′
(8.8)

(see the figure 4b). Here the second order phase transition also takes
place.

The result of numerical calculations of function ΩMF /N(µ) in the
case of intermediate values of µ′ (done with the help of calculated earlier
ϕ(µ) dependences) are shown in figures 5a, 5b, 5c. Here and hereafter
numerical values of parameters are given in the U ′ units.

In the cases when the function ϕ(µ) has a reverse course, one can see
the so-called “fishtails” in the behaviour of the grand canonical potential
where the intersection points of lowest curves correspond to the first
order phase transitions (phase transitions on the other side of the interval
of non-zero ϕ values are of the second order). Values of µ at which there
the first order phase transitions exist, are shifted relatively the spinodal
line points (near µ′ = 0 to the left and near µ′ = U ′ to the right). As a
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Fig.5a Grand canonical potential as function of µ at
T → 0, µ′ = 0.1, |t0| = 0.8

Fig.5b Grand canonical as function of µ at T → 0, µ′ = 0.5

Fig.5c Grand canonical potential as function of µ at T → 0, µ′ = 0.9
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Fig.6 Limits of the SF phase area (including the 1st(2nd) order phase
transition lines shown by dotted (solid) curves), T → 0, t0 = 0.8U ′

result – the region of existence of SF phase at T = 0 is wider then the
limited by spinodals.

Described effect of the phase transition order change disappears when
chemical potential µ′ is placed near middle of the [0, U ′] interval (see
figure 6). The point µ′ = U ′/2 is a special one. With decreasing of µ′,
the fragmentation of SF region on two parts takes place at this point.

9. Phase transitions at T 6= 0

The investigation similar to the previous one can be done in the case of
non-zero temperature. Lets first take a look on spinodals – the curves,
that determine the borders of the normal phase stability region. When
T 6= 0, they are described by the equation (6.4). The solutions of this
equation on the plane (T, µ) for different values of µ′ are shown in figures
7a–7d and 8a–8d.

Outside the [0, U ′] interval for µ′, the curves of spinodals have the
usual dome-like shape. Attaining to this area, the curves undergo an
appreciable deformation, and when they enter inside, the regions with
two temperatures of instability corresponding to one value of µ appear.
With the change of T the “re-entrant” transitions became possible. But,
to get the real (T, µ) phase diagrams one need to investigate the grand
canonical potential behaviour in such regions.

In the figures 3a, 5a, 9a,b, 10a,b one can see how the shape of curves
for ϕ(µ) and ΩMF /N changes with the increase of temperature in the
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Fig.7a (T, µ) phase diagram; |t0| = 0.8, U ′ = 1, µ′ = −0.05

Fig.7b (T, µ) phase diagram; |t0| = 0.8, U ′ = 1, µ′ = 0.05
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Fig.7c (T, µ) phase diagram; |t0| = 0.8, U ′ = 1, µ′ = 0.2

Fig.7d (T, µ) phase diagram; |t0| = 0.8, U ′ = 1, µ′ = 0.4
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Fig.8a (T, µ) phase diagram; |t0| = 0.8, U ′ = 1, µ′ = 0.5

Fig.8b (T, µ) phase diagram; |t0| = 0.8, U ′ = 1, µ′ = 0.8
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Fig.8c (T, µ) phase diagram; |t0| = 0.8, U ′ = 1, µ′ = 0.95

Fig.8d (T, µ) phase diagram; |t0| = 0.8, U ′ = 1, µ′ = 1.05
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region of parameters values, where at T = 0 we have the first order
phase transition. At higher temperatures the reverse course of ϕ(µ) func-
tion and “fishtail” of ΩMF /N gradually decrease and disappear. At some
temperature, that corresponds to tricritical point, the order of phase
transition changes from first to second. At the further increase of tem-
perature the curves of phase transitions coincide with the spinodal lines.
It is shown in figures 7b,c and 8b,c where dotted lines are the lines of
the first order phase transitions. They are present in the phase diagrams
in the cases when 0 < µ′ . 0.3U ′ ans 0.7U ′ . µ < U ′. From figures
one can see that in almost all cases for 0 < µ′ < U ′ interval there are
regions where “re-entrant” transitions take place. In these cases the SF
phase exists as intermediate one between temperature regions where the
normal phase is stable.

It is worthy to consider, besides previously analyzed, the phase di-
agrams (µ′, µ) at nonzero temperatures. In the region of temperatures
above the tricritical ones (which reach a maximum of the order of 0, 075U ′,
as it seen from figures 7b,7c,8b,8c) the phase transition lines coincide
with spinodales; the transitions, as such, are of the 2nd order. Borders
between phases are determined in this case by the equation (5.4) where

〈Xnn〉 = Z−1
0 |ϕ=0 e

−βλn ; 〈X ññ〉 = Z−1
0 |ϕ=0 e

−βλñ (9.1)

Z0 |ϕ=0=

1∑

n=0

e−βλn +

1̃∑

n=0̃

e−βλñ

and λn and λñ are specified in (1.5).
In the case U ′/2 < |t0| < U ′, the obtained numerically (µ′, µ) phase

diagrams are presented in figure 6. The change of shape of the SF phase
region during gradual raisins of temperature, starting form θ = 0, 1U ′,
is shown. This region is simply connected at T = 0. However, as is seen
from µ′ versus µ plots, at certain (critical) temperature θc the change of
topology of phase diagrams takes place. The SF phase region becomes
biconnected (it occurs at θc ∼= 0, 341U ′ when |t0| = 0, 8U ′). Such a
splitting into two parts is realized at point with coordinates µ = µ′ =
0, 5U ′. For these values of chemical potentials we have at T = θc the
second order phase transition from the SF to MI phase.

At the further increase of temperature the separated SF phase re-
gions move away one from another and become narrower. Finally, they
disappear at T 0

c = |t0|/2. This temperature is obtained from the equa-
tions

1

|t0|
=

1

µ
tanh

βµ

2
(9.2)
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Fig.9a Order parameter ϕ as function of µ;
T = 0.03, µ′ = 0.1, |t0| = 0.8, U’=1

Fig.9b Order parameter ϕ as function of µ;
T = 0.07, µ′ = 0.1, |t0| = 0.8, U ′ = 1
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Fig.10a Grand canonical potential as function of µ at
T = 0.03, µ′ = 0.1, |t0| = 0.8, U ′ = 1

Fig.10b Grand canonical potential as function of µ at
T = 0.07, µ′ = 0.1, |t0| = 0.8, U ′ = 1
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Fig.11a (µ, µ′) phase diagram at T = 0.1, |t0| = 0.8, U ′ = 1

or

1

|t0|
=

1

µ− U ′
tanh

β(µ− U ′)

2
(9.3)

at large negative or positive values of µ′. The temperature T 0
c has a mean-

ing of maximum temperature at which the SF phase in the pure hard-
core boson case disappears (in the mean-field approximation). When
µ′ < 0, |µ′| ≫ U ′, the fermions are practically absent (nf ≈ 0), while

Fig.11b (µ, µ′) phase diagram at T = 0.3, |t0| = 0.8, U ′ = 1
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Fig.11c (µ, µ′) phase diagram at T = 0.34, |t0| = 0.8, U ′ = 1

Fig.11d (µ, µ′) phase diagram at T = 0.342, |t0| = 0.8, U ′ = 1
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Fig.11e (µ, µ′) phase diagram at T = 0.38, |t0| = 0.8, U ′ = 1

at µ′ > 0, |µ′| ≫ U ′ the almost all lattice sites are occupied by fermions
(nf ≈ 1). In both limits the fermions have no influence on phase tran-
sition in boson subsystem shifting only the critical value of the boson
chemical potential. Phase transitions curves in the (T, µ) plane have a
form of domes, which are symmetrical with respect to µ = 0 or µ = U ′

points (where the maxima of domes are located).

10. The µ = U ′/2 case

The symmetric case when µ = U ′/2 (corresponding to the half-filling of
bosons (nB = 1/2)) is worth of separate investigation. Consideration of
thermodynamics of the model greatly simplifies here.

The energies of local states (3.8) in such a case are:

ε0′,1′ = −U
′

4
±

√(
U ′

4

)2

+ t20ϕ
2,

ε0̃′,1̃′ = −µ′ +
U ′

4
±

√(
U ′

4

)2

+ t20ϕ
2 (10.1)

Respectively, for partition function we have:

Z0 = 2
(
e

βU′

4 + eβµ
′

e
−βU′

4

)
cosh

(
β
√

(U ′/4)2 + t20ϕ
2

)
, (10.2)
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and for equation for order parameter

1

|t0|
=

〈X1′1′〉 − 〈X0′0′〉+ 〈X 1̃′1̃′〉 − 〈X 0̃′0̃′〉
2
√
(U ′/4)2 + t20ϕ

2
= (10.3)

sinh
(
β
√
(U ′/4)2 + t20ϕ

2
)

√
(U ′/4)2 + t20ϕ

2

(
e

βU′

4 + eβµ
′

e
−βU′

4

)

Z0

After substitution the expression (10.2) we obtain the following equation

√
(U ′/4)2 + t20ϕ

2 =
|t0|
2

tanh

(
β
√
(U ′/4)2 + t20ϕ

2

)
(10.4)

using this equation, the non-zero solution for ϕ can be found.
The behaviour of radical

√
(U ′/4)2 + t20ϕ

2 ≡ Q as function of tem-
perature is shown graphically in figure 12. The curve for Q does not
reach the zero with the temperature θ = 1/β increase and terminates at
the Qmin = U ′/4 value, which corresponds to the point; at which the ϕ
parameter goes to zero. Starting from this we can make two conclusions:

1. Non-zero solutions for ϕ exist only when Qmin < |t0|
2 , i.e. when

|t0| > U ′/2.

2. The value Q = Qmin corresponds to the spinodal temperature
which is determined by the equation

U ′/4 =
|t0|
2

tanhβU ′/4 (10.5)

(it follows from ( 10.4) when ϕ = 0). This leads to expression

Θspinod. =
U ′/4

Arth U ′

2|t0|

(10.6)

From equation (10.4) and from figure 11 one can see that order
parameter ϕ is a gradually decreasing function of temperature,
which tends to zero when Θ → Θspinod.

It is important to stress, that the order parameter ϕ and tempera-
ture θc do not depend on chemical potential of fermions µ′. It holds
true for whole region of the µ′ values (not only for the 0 < µ′ < U ′

interval, but also for µ′ < 0 and µ′ > U ′). In considered case,
the fermion subsystem has an affect on temperature of transition
to the state with BEC only through interaction U ′ with bosons.
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Fig.12 Radical Q as function of temperature Θ

Here, the critical value U ′
crit = 2|t0| exists. When U ′ exceeds such

a value, SF phase in symmetrical case µ = U ′/2 disappears.

The foregoing shows that at the temperature θspinod. is the same
as that one, at which the SF phase region splits into two separate
parts (such an effect was discussed above).

The phase transition to SF phase, taking place at Tc = Tspinod., in
this case, is of the second order.

Fig.13 The temperature θspinod. as function of |t0|. Dotted line
corresponds to the temperature Θ0

c
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11. Conclusions

We used the Bose-Fermi-Hubbard model in the mean-field and hard-core
boson approximations, in the case of infinitely small fermion transfer
and repulsive on-site boson-fermion interaction, to describe phase tran-
sitions in the boson-fermion mixtures in optical lattices. Our aim was
to study the conditions, at which the MI-SF transition in such a model
occurs, in the case when the fermion hopping between lattice sites can
be neglected. Approach used in this work does not apply the traditional
scheme of mean-field approximation based on the decoupling of the on-
site interaction U ′nb

in
f
i . Instead of that, the Hubbard operator formalism

acting on the |nb
i , n

f
i 〉 basis of states is employed; this gives a possibility

to take exactly into account the boson-fermion interaction U ′ (the case of
repulsive boson-fermion interaction (U ′ > 0) is considered in this work).
The single-site problem is formulated with the only one self-consistency
parameter ϕ (ϕ = 〈bi〉 = 〈b+i 〉), and the mean-field approach is related
exclusively to description of the BE condensation.

On-site boson interaction U is treated as repulsive and infinitely large
(U > 0, U → ∞); that imposes restriction on occupation numbers of
bosons (nb

i = 0 or 1). Nevertheless, this approximation gives a possibility,
as is known, to describe the MI-SF transition in the close vicinity of the
µ = nU points (where n are integer numbers) in the case of finite values
of U . The investigation is performed in thermodynamical regime of fixed
values of chemical potentials of bosons (µ) and fermions (µ′).

The equilibrium values of the order parameter ϕ (related to the
SF phase appearing) were found from the global minimum condition
of grand canonical potential Ω and, in parallel, by direct calculation of
averages of creating and destroying operators of bosons 〈b〉 and 〈b+〉.
From the obtained equation, using substitution ϕ → 0, we get the con-
dition of 2nd order phase transition to SF phase (if this transition is
possible). In general, it is the condition of instability of normal (MI)
phase with respect to the Bose-Einstein condensate appearance. This
equation is the same as obtained earlier from the condition of divergence
of the bosonic Green’s function (calculated in the random phase approx-
imation) at ω = 0,q = 0. The spinodal lines are calculated at T = 0
and T 6= 0 and corresponding phase diagrams on the (µ, µ′) and (µ, T )
planes are built.

For the ground state (T = 0) we separated 3 possible cases depending
on the value of the chemical potential of fermions µ′ and drew the cor-
responding phase diagrams where one can see the changes in the ground
state. Also, the dependences of the order parameter ϕ and the grand
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canonical potential Ω on µ (at different temperatures and chemical po-
tential µ′ values) are derived.

Considering the order parameter dependence upon chemical potential
of bosons (µ) we found the in the region of intermediate values of µ′

(especially at 0 ≤ µ′ ≤ U ′), the mixing of “tilded” and “untilded” states
leads to deformation of the curve ϕ(µ). The cases are distinguished,
when such a dependence has a reverse behaviour and the MI-SF phase
transitions changes its order from the 2nd to the 1st one (our analysis
is performed in details for the case U ′/2 < |t0| < U ′). In particular, in
the vicinity of µ′ = 0 and µ′ = U ′ values the ϕ(µ) dependence has a
reverse course and S-like behaviour. This is an evidence of possibility of
the first order phase transition (instead of the second order one). This
conclusion was confirmed by calculation of grand canonical potential
ΩMF (µ) as function of µ. As a result we showed that the region of
existence of SF phase at T = 0 is wider then the limited one by spinodals.
Described above effect of the phase transition order change disappears
when chemical potential µ′ is placed near middle of the [0, U ′] interval
corresponding to the fractional (0 < nf < 1) fermion concentration. In
particular, it takes place at 0 < µ′ . 0, 35U ′ and 0, 65U ′ . µ′ < U ′, when
|t0| = 0, 8U ′. BE condensation, taking place in this case, is influenced
by states which differ by number of fermions.The point µ′ = U ′/2 is a
special one. With decrease of µ′, the fragmentation of SF region on two
parts takes place at this point.

The similar investigation was done in the case of non-zero temper-
ature. Outside the [0, U ′] interval for µ′, the curves of spinodals have
the usual dome-like shape. Attaining to this area, the curves undergo an
appreciable deformation, and when they enter inside, the regions with
two temperatures of instability, corresponding to one value of µ, appear.
With the change of T the “re-entrant” transitions became possible. To get
the real (T, µ) phase diagrams, we investigated the grand canonical po-
tential behaviour in such regions. We found that at higher temperatures
the reverse course of ϕ(µ) function and “fishtail” of ΩMF /N gradually
decrease and disappear; at some temperature, that corresponds to tri-
critical point, the order of phase transition changes from first to second.
In almost all cases for 0 < µ′ < U ′ interval there are regions where
“re-entrant” transitions take place. In these cases the SF phase exists as
intermediate one between temperature regions where the normal phase
is stable.

We also considered the phase diagrams (µ, µ′) at nonzero temper-
atures. In the region of temperatures above the tricritical ones (which
reach a maximum of the order of 0, 075U ′) the phase transition lines
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coincide with spinodales; the transitions, as such, are of the 2nd order.
In the case U ′/2 < |t0| < U ′, there is observed the change of shape of
the SF phase region during gradual raising of temperature, starting from
Θ = 0, 1U ′. At certain (critical) temperature Θc the change of topology
of phase diagrams occurs. The SF phase region becomes biconnected
and such a splitting into two parts is realized at point with coordinates
µ = µ′ = 0, 5U ′. For these values of chemical potentials we have at
Θ = Θc the second order phase transition from the SF to MI phase. At
the further increase of temperature the separated SF phase regions move
away one from another and become narrower.

We also investigate the symmetric case µ = U ′/2 (which corresponds
to the boson half-filling (nB = 1/2). Consideration of thermodynamics
of the model greatly simplifies here. The order parameter ϕ and tem-
perature Θc do not depend on chemical potential of fermions µ′ in this
case. The fermion subsystem has an effect on temperature of transition
to the state with BEC only through interaction U ′ with bosons. Here,
the critical value U ′

crit = 2|t0| exists. When U ′ exceeds such a value, SF
phase in symmetrical case µ = U ′/2 disappears.
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