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Amnoraris. lociimkyerbes das3oBa giarpama ra3-pianHa i reMmepaTrypa
KPOCCOBEPA MOJIEJILHOTO OIHAPHOTO IUIMHY, B IKOMY YaCTUHKU 3 TBEPIUM
KOPOM B3a€MO/IIOTH 3a JOIIOMOI'OI0 €KPAHOBAHUX KYJIOHIBCHKUX IIOTEH-
iaJiiB 3 00epHEHNM PaJIiyCOM eKpPAHyBaHH 2 TAKUM IHHOM, 110 OJTHAKOB1
COPTU BiJIIITOBXYIOTHCS, & Pi3HI cOpTu NpuUTAryoThes. [lokazano B pam-
Kax Teopil CepeHbOrO MOJIsA, MO 00JIACTb, B #Kill CIIBICHYIOTH ra3oBa
i pimka da3u, 3MEHITYEThCA 3 POCTOM Z i 30BCIM 3HUKAE TpU 2z ~ 3.
Orpumani pe3ybTaT sKICHO y3TOJKYIOThCS 3 PE3YJIbTaTAMHU KOMII 10-
TepHuX cuMyJismiit. Takoxk moka3aHo, 1o 301JIbIIeHHsT pajiyca B3a€MO/Iil
BeZle 10 3MeHINeHHs TeMiepaTypu Kpoccosepa. s z < 0.05, remmepa-
Typa KpPOCCOBEPA CTAE TAKOI XK sIK JIJIsT OOMEKEHO! TPUMITUBHOT MOJIEJI.

Gas-liquid phase coexistence in binary ionic fluids with screened
Coulomb interactions. The effect of an interaction range on the
crossover temperature

0O.V. Patsahan

Abstract. We study the gas-liquid phase diagram and the crossover
temperature of a model binary fluid in which hard-core particles inter-
act via screened Coulomb potentials with the inverse screening length z:
like particles repel each other and unlike particles attract (YRPM). Us-
ing the mean-field theory we find that the gas-liquid coexistence region
reduces with an increase of z and completely vanishes at z ~ 3. This is in
qualitative agreement with the simulation findings. It is also shown that
an increase in the interaction range leads to the decrease of the crossover
temperature. For z < 0.05, the crossover temperature is the same as for
the restricted primitive model.
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1. Introduction

The nature of criticality in ionic fluids with the dominant Coulomb in-
teractions has been an outstanding experimental and theoretical issue
for many years. Now, a generally accepted idea is that the phase transi-
tion in these systems belongs to the universal class of a tree-dimensional
Ising model [IHIO]. Nevertheless, the crossover from the mean-field-like
behaviour to the Ising model criticality when approaching the critical
point remains a challenging problem for theory, simulations and experi-
ments [3].

Quite recently, we have developed the theory that allows one to derive
all the relevant coefficients of the Landau-Ginzburg (LG) Hamiltonian
within the framework of the same approximation [II]. The Ginzburg
temperature for a purely Coulombic model calculated using this theory
turned out to be about 20 times smaller than for a nonionic model. We
have also considered the model which, besides Coulomb interactions, in-
cludes short-range attractive interactions. For this model, we have found
a decrease of the reduced crossover temperature with a decrease of a
solvent dielectric constant [II], which agrees with the available experi-
mental observations [3].

In the present work, we extend our previous investigations to the
study of the gas-liquid phase behavior and the crossover temperature in
binary ionic fluids with screened Coulomb interactions. Specifically, we
consider a two-component system of particles labeled 1 and 2, such that
the interaction potential between a particle of species a and one of the
species [ at a distance r apart is

00, r<o
’ua,@(T) = (_1)a+BKeXp(_Z(;/U — 1)) r>o (11)

3

where a, 8 = (1,2). For K > 0, Eq. (I.T) describes a symmetrical mixture
of hard spheres of diameter ¢ in which the like particles interact through
a repulsive Yukawa potential for » > o, and the unlike particles interact
through the opposite attractive Yukawa potential for » > . We restrict
our consideration to the case where the number densities of species 1
and 2 are the same, i.e., py = p2 = p/2. For K = (Ze)?/e, the model
(T is called a Yukawa restricted primitive model (YRPM). In the limit
z — 00, the YRPM reduces to a hard sphere model whereas the RPM
is recovered by taking the limit z — 0.

It is worth noting that the YRPM model is often used to model the
system of oppositely charged colloids [I2HI5]. The effective (screened)




2 IIpenpunt

colloid-colloid interactions in such a system are due to the presence of
co- and counter-ions in the solvent. In this case, K and z take the form:
K/kpT = Z?Xg/(1 + kpo/2)?/o and z = kpo, where kp = /8T ABps
is the inverse Debye screening length, A\p = e?/e,kpT is the Bjerrum
length, ps is the salt concentration and €4 is the dielectric constant of
the solvent. In a colloid system, the range of interaction can be modified
by changing the salt concentration.

Extensive simulations of the YRPM predict a rich phase diagram
involving a gas-liquid phase separation as well as several crystalline
phases which is in agreement with experimental confocal microscopy
data [I2HI5]. These studies indicate a sensitivity of the phase diagram
to the variation of z. In particular, it is found that the gas-liquid sepa-
ration is stable with respect to gas-solid coexistence for z < 4 [I4].

The gas-liquid phase transition in the YRPM was studied theoreti-
cally using the generalized mean-spherical approximation (GMSA) [16]
and the hierarchical reference theory (HRT) [I0]. The results obtained
from the GMSA show that both the critical density and the critical tem-
perature increase above the corresponding values for the RPM when 2z
increases (up to z &~ 4). Moreover, the GMSA predicts a non-monotonous
behavior of the critical temperature as a function of z. In Ref. [I0] the
main emphasis is made on the critical behavior of the YRPM including
the limiting case z — 0.

In this paper, using the theory developed in Ref. [I1], we study the
effects of the interaction range on the gas-liquid phase diagram of the
YRPM. Our discussion also involves an analysis of the dependence of
the crossover temperature on the interaction range.

2. Theory

2.1. Functional representation of the grand partition function

Using the Weeks-Chandler-Andersen (WCA) regularization scheme [17]
for the Yukawa potential inside the hard core, we rewrite the interaction
potential (TI)) as follows:

Uap(r) = O (r) + daa (1), (2.1)
where ¢'5(r) is the interaction potential between the two hard spheres
of diameter o

HS - 0, r<o
oS ={ o TSe 22)
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and gbgﬁ(r) has the form:

(-1)°tPK, r<o
gﬁ(r) = (_1)a+,8KeXp(_Z(T/U -1)) r>o a,B=(1,2).

r/o ’

(2.3)
Thermodynamic and structural properties of the system interacting
through the potential ¢"S(r) are assumed to be known. Therefore, the
one-component hard-sphere model is regarded as the reference system.
The model under consideration is at equilibrium in the grand canon-
ical ensemble, 3 = (kpT)~! is the inverse temperature, v, = Blq
(va = vg = v) is the dimensionless chemical potential of the ath species.
Using the CV method we present the grand partition function (GPF) of
the model in the form of a functional integral [ITL18]:

E[va] = Ens exp (Avy (N)us) /(dp)(dw) exp (Avnpo,N

B 7y ~
“or zk: ¢" (k)px,cp-x,c +1i Z (wk, N px,N + Wk, cPx,C)

k
\n n
(G M) (; k
+ TL' n ( Tyeeoesy n)wkl,C--'wkin,C
n>2 T in>0ki,. kg,
kainJrl,N e wkn,N(Skl-‘r-‘rkn) ) (24)

Here, the following notations are introduced. Zyg is the GPF of the one-
component hard-sphere model with the dimensional chemical potential
vus- Hereafter, the subscript HS refers to the hard-sphere system. Avy =
U — vys where

u:uazuaJr%Zk:(Ez{a(k), a=(1,2). (2.5)

qNSZIB(k) is the Fourier transform of the repulsive potential
Y (r) = Ko exp[—z(r/o — 1)]/r.

In the case of the WCA regularization, Bgy (k) has the form

470

BeY (z) = m{[z2 + 2%(1 + 2)]sin(z) — z2? cos(:v)}, (2.6)

where T* = (BK)~! is the reduced temperature and = = ko.
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pk,N and px ¢ are the CVs which describe fluctuations of the to-
tal number density and the relative number density (or concentration),
respectively:

Pk, N = Pk,+ T Pk,—; Pk,C = Pk, + — Pk,—»

CV px,a = Pk — 1Pk o describes the value of the k-th fluctuation mode
of the number dens1ty of the ath species, the indices ¢ and s denote real
and imaginary parts of pk o; CVs wy and we are conjugate to py and
pc, respectively. (dp) and (dw) denote volume elements of the CV phase
space:

!

dp) =[] deo.a]] defadpi a.
A=N,C k40
i

(dw) = H dwo,AH dwi adwi 4
A=N,C k£0

and the product over k is performed in the upper semi-space (p_k,4 =
Pl As W1, A = Wi 4)-

The nth cumulant SJISf n) is a linear combination of the initial cumu-
lants My, ..., Which, in turn, coincide with the Fourier transforms of
the partial connected correlation functions of the hard-sphere system.
We have the following recurrence relations for the cumulants [18]:

9)?510) = én,HSu mgll) = O’
M = Gno1us, my =
mtg;l) = 3Gn—2,HS - 2Gn—1,HSu

where éan(k) is the Fourier transform of the n-particle connected cor-
relation function of a one-component hard-sphere system.

2.2. Effective Ginzburg-Landau Hamiltonian

We consider the model ([23) near the gas-liquid critical point. In this
case, the phase space of CVs px n contains CV pg y related to the order
parameter. In order to obtain the effective Hamiltonian in terms of px n
one should integrate out CVs pg ¢ and wg,c. The detailed derivation
of such type of Hamiltonian is given in Ref. [II]. Using the results of
Ref. [11], we can write the expression for the effective ¢* LG Hamiltonian

ICMP-13-09E 5)

of the model under consideration

1
eff _ - 2
HY = a10po,n + 21N) Ek (ag,0 + k?az:2) pre NP1 N
1
+— E a3,0Pk1,N Pka,NP—ki—k2,N
3N ot
1,K2
1
+4!<N>3 E a4,00kq,N Pka,N Pks,NLP—ki—kz—ks,N>» (2-7)

ki,ko,ks

with the coefficients having the following form in a one-loop approxima-
tion:

a170 = —AI/N — 51,Y (28)
an,o0 = _Pn_l Cn HS — Pn_l Cn Y
wp = o0 - }:*2 J1+3(@].  (210)

Here, we introduce the following notations. The superscript (2) in
Eq. (ZI0) denotes the second-order derivative with respect to the wave
vector. 5n us is the Fourier transform of the n-particle direct correlation
function of a one-component hard—sphere system in the long-wavelength
limit. Explicit expressions for Cn us and C§ I){S for n < 4 in the Percus
Yevick approximation are given in Ref. [11].

The term p™~ 1Cn7Y denotes the contribution resulting from the inte-
gration over CVs pyx ¢ and wk ¢

pm@y_@;%%;mm, (211)
o) = L@ 212
) L+ BpgY () 212

Taking into account Eq. (226]) and (2.12)), we obtain the following explicit
expressions for p"~1C, y:

. (n— DI-24)™1 [
-,y = dz 22
iy -
‘| o
T*x3(22 + 22) + 24nf(x) |

(2.13)

where
f(x) = [2* + 2*(1 + 2)] sin(z) — 22* cos(z) (2.14)
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and n = mpo3 /6 is the packing fraction. Avy is given by Eq. ([Z.5) and
can be rewritten as follows:

1

Avy =v —vps + TS (2.15)

Summarizing, the expressions for coefficients a,, o for n > 2 and az o
consist of two terms. While the first term depends solely on the charac-
teristics of a hard-sphere system, the second term is of mixed type and
takes into account the concentration-concentration (or charge-charge)
correlations. Coeflicient a; o is the excess part of the chemical potential
v, and the equation a9 = 0 gives the chemical potential in the random

phase approximation. Using Eqs. (28), (Z13) and (Z13]), one obtains for
v
1 1 [ 22 f(x)
= - 4 = ——d 2.16
vEras T om o /0 T*x3(22 + 22) + 24nf(x) v (2.16)

Coeflicient az 2 describes the square-gradient term. The explicit expres-
sion for as 2 is too long to be presented herein.

3. Gas-liquid phase transition

In this section we study the gas-liquid phase diagram of the model (2.1])

using Eqs. [2.8)-(2I6). First, we present the coeflicient as o as azo =

a2,0 + a2, where Q2,0 = a270(t = O), a2t = 8a2,0/8t|t:0, and t =

(T —T,)/T,. Hereafter, the subscript c refers to the critical value.
Taking into account Egs. (29) and (Z13), we obtain for as

48T /°° 2°(22 + 2%) f2(x)
™ o (Tra3(22+22) + 2477f_(33))3

as; = dz, (3.1)

where f is given by (2.14).
At the critical point, the system of equations
d2,0(ﬂc, Tc) = 07 a3,0(pcaTc) =0 (32)

holds yielding the critical temperature and the critical density. These
equations, using Eqgs. (29) and ([213), can be rewritten in the form:

(1+2n)? 24 0 2% f2(z)dz _
(1*7;7)4 - 777 fO [T*z3(z2+m2)+24nf(z)]2 =0 (33)
(1—=7n—61%)(1+2n) 1152n% oo 22 f3(x)dx -
77(1—7777)5 - ﬂ'n fO [T*x3(22+x2)+24nf(x)]3 0, (34)

where the PY approximation is used for 5n,HS.

ICMP-13-09E 7
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Figure 1. The loci of equations az = 0,0 (solid lines) and a3 ¢ = 0 (dashed
line) for z = 2 and z = 2.75. The cases z = 2.75, z = 2.78 and z = 2.79
are depicted at the inset.
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Figure 2. The reduced critical temperature of the YRPM as a function
of the interaction range. The inset shows T} as a function of z. The line
is guide to the eye.
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Figure 3. The reduced critical density of the YRPM as a function of the
interaction range. The inset shows p} as a function of z. The line is guide
to the eye.

Table 1. The reduced gas-liquid critical parameters, the coefficients of the
effective Hamiltonian and the reduced Ginzburg temperature ¢t depend-
ing on the dimensionless inverse screening length for the Yukawa-RPM

model (see the text) in the one-loop approximation.

z T; P ast a2 a4,0 ta
2.78 0.170886 0.0707 1.7322 0.1750 0.0152 8%10~°
2.77 0.170697 0.0684 1.7035 0.1750 0.0434 0.0007
2.75 0.170319 0.0661 1.675 0.173 0.0695 0.0018
2.7 0.169384 0.0625 1.6307 0.1699 0.1076  0.0046
2.6 0.167523 0.0573 1.5699 0.166 0.1576  0.0109
2.5 0.165656 0.0535 1.5258 0.1635 0.1901 0.0171
2.0 0.155964 0.0400 1.3778 0.1580 0.2784 0.0452
1.8 0.15183  0.0357 1.3333 0.1577 0.2986  0.0540
1.5 0.145215 0.0301 1.2750 0.1594 0.3109 0.0592

1 0.13248 0.0215 1.1910 0.1702 0.3064 0.0506
0.8 0.126383 0.0182 1.161 0.1793 0.2939 0.0409
0.5 0.11521 0.0138 1.1184 0.202 0.2508 0.0216
0.4 0.110640 0.0122 1.1069 0.2135 0.2394 0.0168
0.1 0.09245 0.0091 1.0784 0.2521 0.1816  0.0060
0.05 0.08857  0.0089 1.0762 0.2555 0.1756  0.0054
0.01 0.0853 0.0088 1.0759 0.257 0.1754  0.0053

0.005 0.08488 0.0088 1.0758 0.257 0.1752 0.0053
0.001  0.08454 0.0088 1.0758 0.257 0.1752 0.0053

ICMP-13-09E 9

0.20

0.18
0.16

0.14

0.10 4

0.08

0.06

0.00 0.04 0.08 0.12 0.16
n

Figure 4. The spinodal curves of the YRPM for different values of z.

Solving Eqs. B3)-(34) we obtain the critical temperature and the
critical density for z ranging from z = 0.001 to z = 2.78. At z = 2.79, the
system of equations (B3)-([3.4) has no solution in the region of the gas-
liquid phase transition (see Fig. 1). The results for critical parameters for
different values of z are presented in Table 1. The dependence of T and
p’ on the parameter 2! measuring the interaction range is displayed
in Figs. 2-3. As is seen, the reduced critical temperature T sharply
decreases with an the increase of the interaction range for 2= <20
and then slowly approaches the critical temperature of the RPM (T =
0.08446). The reduced critical density p’ demonstrates a sharp decrease
in the region z=! < 10 reaching the RPM critical value for z=! = 100.
A decrease of the critical temperature and the critical density expressed
in the same reduced units was observed in Ref. [14].

The spinodal curves calculated from Eq. (83 for different values of z
are shown in Fig. 4. As is seen, the spinodals change their form with the
variation of the interaction range. For small values of z, the curves have
a noticeable maximum at small 1 and change their run at higher values
of 1 thus tending to higher temperatures. The second positive slope of
spinodal curves indicates another type of the phase instability appearing
in the model. When z increases, the maximum of the spinodals moves
to the higher density, becomes flatter and finally disappears at z ~ 2.8.

In order to calculate the coexistence curves, we use the equation
2I6) and employ the Maxwell construction. Fig. 5 shows both the co-
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Figure 5. The coexistence curves (solid) and spinodal curves (dashed) of
the YRPM for different values of z.

existence curves (solid lines) and the spinodals (dashed lines) for a set of
z values. As is seen, the region of the gas-liquid coexistence in the T*-p*
plane reduces with an increase of z. A disappearance of the critical point
for z < 3 is in a qualitative agreement with the simulation study [14].

4. The crossover temperature

In order to estimate the temperature region in which the crossover
from classical behavior to Ising-like critical behavior occurs, we use the
Ginzburg criterion. The Ginzburg temperature expressed in terms of
coefficients of the Hamiltonian (Z7) reads [19]

2
1 aj

= — 3 .
3272 ag 1as o

ta (4.1)

The relevant coefficients can be calculated using Eqgs. (Z9)-2I0), 13)-
@I4) and @BI). The results for ag¢, az2 and aso and the reduced
Ginzburg temperature tg for different values of z are presented in Ta-
ble 1. The dependence of the coefficients on the interaction range is
shown in Figs. 6-8. While as ; is a decreasing function of 27!, the other
two coefficients demonstrate a non-monotonous behavior. Remarkably,
aq0 tends to zero for 27 < 0.36 (2 = 2.78) indicating the presence of a
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Figure 6. The coefficient as ; as a function of the interaction range z~1.

The line is guide to the eye.

tricritical point. For 2z~1 > 100, the values of all three coefficients become
equal to the values of the corresponding coefficients of the RPM [11].
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Figure 7. The coefficient as 2 as a function of the interaction range z~!

The line is guide to the eye.
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Figure 8. The coefficient a4 ¢ as a function of the interaction range z 1.

The line is guide to the eye.
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Figure 9. The reduced Ginzburg temperature as a function of the inter-
action range z~'. The line is guide to the eye.
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The dependence of the reduced Ginzburg temperature on the inter-
action range is shown in Fig. 9. For 2! > 20, the reduced Ginzburg
temperature approaches the value obtained for the RPM. For small 271,
te shows a non-monotonous behavior passing through a maximum at
271 ~ 0.67 and approaching zero at z~* < 0.36.

5. Conclusions

Using the approach that exploits the method of CVs we have studied the
gas-liquid phase diagram and the crossover temperature of the screened
Coulomb (Yukawa) restricted primitive model (YRPM) of oppositely
charged hard spheres of diameter o. Our results obtained within the
framework of the mean-field theory have shown that the region of the
gas-liquid coexistence in the plane ‘“reduced temperature-reduced den-
sity” decreases with an increase of the inverse screening length z and
completely disappears at z =~ 2.8. This is in a qualitative agreement
with the results of computer simulations indicating that the gas-liquid
coexistence is stable for z < 4 [I4].

We have studied the dependence of critical temperature and critical
density on the interaction range of the Yukawa potential. With the re-
duced temperature defined as the inverse of the Yukawa potential contact
value, the critical temperature decreases with an increase of the interac-
tion range. The reduced critical density shows a similar trend. The both
trends qualitatively agree with the results of simulations [14].

Finally, we have studied the effect of the interaction region on the
crossover behavior by applying the Ginzburg criterion. Using our previ-
ous results, we have obtained explicit expressions for coeflicients of the
LG Hamiltonian in a one-loop approximation, and consequently calcu-
lated the Ginzburg temperature. We have shown that an increase in the
interaction region leads to a decrease of the temperature region where
the crossover from the mean-field critical behavior to Ising model crit-
icality occurs. For z=! > 20, the reduced Ginzburg temperature of the
YRPM is the same as for the RPM.
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