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Temneparypa I'in3Gypra aJjsi iOHHUX ILUIAHIB: BILJIMB KYJIOHIB-
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O.B.Ilanaran

Amnorarisi. BukopucroByodn MeTom KOJEKTUBHUX 3MIHHUX, JTOCTIIKY-
€ThCs BILINB KYJIOHIBCBKHMX B3a€MOJIiil Ha Temreparypy [iH30ypra mis
ionnmx cucrem. 171 3apsi10BO-aCHMETPUIHOT MOJIE] 3 TIOAATKOBAMHE KO-
POTKOCSI?KHIUMU IIPUTATAJBHIMHI B3a€MOISIMU B OKOJII KPUTUYHOI TOYKHU
ra3-piguaa orpuMmaHo edextuBHuit raminbronian Jlammay-I'inzoypra.
SHaligeHo sIBHI BUpa3u JJIst BCIX KOeIIieHTIiB raMiIbTOHIAHY B OIHOTIE-
TiieBoMmy HabsmkenHi. OTpuMaHe 3HAYEHHST PELYKOBAHOI TEMIIEPATYPHU
Tiusbypra tg ausa obmexenol npumitusraoi Mogesni (RPM) e npubausuo
B 20 pagziB memre, Hik 111 HeionHOI Mojeni. s moBHOT Mogerti, 1Mo
BKJIIOYAE K JIAJIEKOCSKHI, TaK 1 KOPOTKOCSYKHI B3a€MO/Ii1, t ¢ IPSIMYE 110
3HaveHHsd, 3Haitenoro ana RPM, gakmo cmta KyJIoHIBCHKUX B3a€MOJIii
CTa€ JOCTATHBO BEJIMKOIO.

The Ginzburg temperature of ionic fluids: the effect of Coulomb
interactions

0O.V.Patsahan

Abstract. Using the collective variables method we study the effect of
Coulomb interactions on the Ginzburg temperature of ionic fluids. For
the charge-asymmetric primitive model with additional short-range at-
tractive interactions in the vicinity of the gas-liquid critical point, we
derive the effective Landau-Ginzburg Hamiltonian. We obtain the ex-
plicit expressions for all the Hamiltonian coefficients within the frame-
work of the one-loop approximation. We obtain the reduced Ginzburg
temperature tg for the restricted primitive model to be about 20 times
smaller than for the nonionic model. For the full model including both
the short-range attractive and long-range Coulomb interactions, we show
that tg approaches the value found for the pure Coulombic model when
the strength of the Coulomb interactions becomes large enough.
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1. Introduction

For the last two decades, much attention has been focused on the issue of
critical and phase behaviour of fluids with Coulomb interactions. These
studies were motivated by controversial experimental results that demon-
strated the three types of the critical behaviour in ionic fluids: Ising-like
critical behaviour, classical mean-field behaviour, and a crossover be-
tween these two regimes (see Refs [IH4]). In order to interpret the results,
the ionic systems were classified as either solvophobic or Coulombic. The
main attention has been paid to the criticality of Coulombic systems in
which the phase separation is primarily driven by long-range electrostatic
interactions.

It is now generally accepted that the critical behaviour of Coulombic
systems belongs to the universality class of a three-dimensional Ising
model. Earlier experiments that supported the expectation of mean-field
critical behaviour could not be reproduced in later works (see Ref. [BL[0]
and references therein). Precise experiments indicate a crossover from
Ising to mean-field behaviour characterized by an increase of the non-
classical region with the polarity increase of the solvent [6,[7].

Many theoretical and numerical works on Coulombic systems are
based on a restricted primitive model (RPM), i.e., an equimolar mixture
of equisized charged hard spheres immersed in a structureless dielectric
continuum. It is established that the RPM undergoes a gas-liquid-like
phase transition at low temperature and low density [8HI1]. Reliable
estimates of the location of the critical point have been obtained using
simulations [I2}[13]. Simulations also strongly support the Ising critical
behaviour of the model [T2HIF].

The major part of theoretical studies of the criticality in the RPM
is based on the mean-field theories and deals with calculations of the
reduced Ginzburg temperature t¢ [16,[17]. According to the Ginzburg
criterion [I8], the mean-field theory is valid only when |t| > tg, where
t = (T —T.)/T. and T, are the mean-field reduced temperature and
the mean-field critical temperature, respectively. Generally, the previous
estimates of the reduced Ginzburg temperature of the RPM suggest the
non-classical region in the Coulombic systems to be of the same order, or
even larger than in simple fluids [T9H21]. Thus, excluding the possibility
of mean-field behavior of the RPM, these results fail to explain the exper-
imentally observed reduction of the crossover temperature in Coulombic
systems. However, a very small value of ¢ for the RPM (about 103 times
smaller than for a simple fluid model) was found in Ref. [22]. It should
be stressed that two conditions are to be taken into account to get a
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reasonable result for the Ginzburg temperature. The fist condition con-
sists in the choice of “a reference model“ exhibiting typical Ising critical
behaviour. The second one is the necessity to consider both the refer-
ence model and the model studied at the same level of approximation. In
Refs. [T9H21], the values of the Ginzburg temperature were calibrated by
a typical model of simple fluids. However, they were mainly calculated
at different, although often comparable, levels of approximation.

On the other hand, the criticality of Coulombic systems has been
studied using the functional integration methods [23H27]. In particu-
lar, several attempts have been made in order to derive the effective
Ginzburg-Landau-Wilson (GLW) Hamiltonian of the RPM [24]25]. In
Ref. |24], the effective Hamiltonian is obtained in terms of a scalar field
conjugate to the charge density. However, a non-perturbative renormal-
ization group analysis of such Hamiltonian does not allow one to make
an unambiguous statement on the nature of the critical behaviour of
the RPM. An attempt to derive the effective Hamiltonian of the RPM
in terms of the number density field, strong fluctuating quantity in the
vicinity of the gas-liquid critical point, was made using the collective
variables (CVs) method in Ref. [25]. The analysis of the Hamiltonian co-
efficients shows that in spite of the long-range character of the Coulomb
potential, the effective interactions are of a short-range character and
describe attraction. The form of the Hamiltonian suggests the Ising-like
criticality of the RPM. However, the numerical estimations of the rel-
evant coefficients were not presented in this work. More recently, an
effect of the long-range interactions on the Ginzburg temperature has
been studied on the basis of the LGW Hamiltonian expressed in terms
of the field conjugate to the order parameter [26]. The Hamiltonian co-
efficients are presented therein in the form of an expansion in powers of
the ionicity measuring the strength of the Coulomb interaction, and the
consideration is restricted to the second power. The results have shown
that an increase in the Coulomb interactions leads to a decrease of the
temperature region of the crossover regime which confirms the experi-
mental observations [29]. A reduction of the reduced crossover tempera-
ture with an increase of the ionicity is also indicated in Ref. [27], though
it is weak compared to the experimental data. The limiting system with
the pure Coulomb interactions, which is the RPM, lies outside the range
of validity of the perturbative treatments developed in Refs [2627].

Recently, non-classical critical exponents have been found for the
RPM using the hierarchical reference theory [28]. However, an issue of
the width of the critical region has not been addressed in this work.

Summarizing, we can state that the nature of the non-classical region
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in the Coulomb dominated systems remains of fundamental interest and
presents a real challenge.

The purpose of the present paper is to derive a microscopic-based
effective Hamiltonian of the ionic model supplemented by short-range
attractive interactions and on its basis to consistently calculate the Ginz-
burg temperature for both the pure Coulombic model and the pure
solvophobic model as well as for the model parameters ranging between
the two limiting cases. To this end, we use the CVs-based theory de-
veloped for the description of phase transitions in ionic systems (see
Refs. [30131]). Following the ideas of Ref. [25], we integrate out the vari-
ables connected with the charge-density fluctuations and derive the ef-
fective Hamiltonian in terms of the variables describing the total number
density fluctuations. In this paper, we find the explicit expressions for all
the coefficients of the effective ¢*-model Hamiltonian at the same level
of approximation, namely, in the one-loop approximation corresponding
to a one sum over the wave vector. This enables us to get consistent
estimates for the critical parameters as well as for the Hamiltonian coef-
ficients for a whole range of the model parameters. The Ginzburg tem-
perature for the pure Coulombic model obtained in this way appears to
be about twenty times smaller than for a simple fluid. We also study the
effect of the interplay of short-range and long-range interactions on the
Ginzburg temperature.

The paper is arranged as follows. In Sec. II we give some brief back-
ground to the CVs-based theory for a charge-asymmetric primitive model
with additional short-range attractive interactions included. Sec. III is
devoted to the derivation of the effective Hamiltonian of the model in
the vicinity of the gas-liquid critical point. In Sec. IV we calculate the
Ginzburg temperature for the hard-sphere square-well model, the RPM
as well as for the models including both short-range and long-range in-
teractions. We conclude in Sec. V.

2. Background

We start with a classical two-component system consisting of N; particles
of species 1 and N, particles of species 2. The pair interaction potential
is assumed to be of the following form:

Uap(r) = das () + 055(r) + dag (), (2.1)

where gﬁs (r) is the interaction potential between the two additive hard
spheres of diameters o, and og. Here, ¢g,3 (r) is the Coulomb poten-
tial: ¢gﬁ(r) = quqpo©(r), where ¢%(r) = 1/(er), € is the dielectric
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constant. The system consists of both positive and negative ions so
that the electroneutrality condition is satisfied, i.e., Zizl Gapa = 0,
where p, is the number density of species «, po = N,/V, V is the
volume of the system. The ions of the species a = 1 are characterized
by their hard-sphere diameter o; and by their electrostatic charge qq
and those of species @ = 2 are characterized by diameter o2 and oppo-
site charge —zqo (qo is an elementary charge and z is the parameter of
charge asymmetry). Hereafter we consider the case 01 = 09 = ¢. The po-
tential gg(r) describes the short-range attraction. We specify ¢§§(T‘)
in the form of the square-well (SW) potential of the range A and as-
sume ¢7(r) = ¢58(r) = ¢ (r) = ¢°F(r). The system of hard spheres
interacting through the SW potential with A = 1.50 can serve as a rea-
sonable model for simple fluids. Such a system undergoes a gas-liquid
critical point which belongs to the universal class of a three-dimensional
Ising model.

Using the CVs method, we can present the functional of the grand
partition function of the above-described model in the form [30]:

Elval = /(dP)(dw) exp <—% (657 (k) pre, N -1, N
k
+0° (k) pregP-1.0) +1 D (Wi NPIN T Wi 0Pk.Q)
k
+1DEH5[DN —in,ﬁQ —tiWQ]). (22)

Here, the following notations are introduced. px,n and px ¢ are the CVs
which describe fluctuations of the total number density and the charge
density, respectively:

Pk, N = Pk, + + Px,—, Pk,Q = Pk,+ — ZPk,—

CV px,a = Pk.o — 1Pk o describes the value of the k-th fluctuation mode
of the number density of the ath species, the indices ¢ and s denote real
and imaginary parts of pk o; CVs wy and wg are conjugate to py and
pq, respectively. (dp) and (dw) denote volume elements of the CV phase
space

!

dp) =[] deo.a]] def adpi a.
A=N,Q k40
i

(dw) = H dwo,AH dwi adwi 4
A=N,Q k£0

and the product over k is performed in the upper semi-space (p_x,4 =
P g woxa = wi 4). Coefficients ¢°F(k) and ¢ (k) are the Fourier
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transforms of the corresponding interaction potentials. We use the Weeks-
Chandler-Andersen (WCA) regularization scheme [32[33] for the both
potentials, ¢ (r) and ¢*%(r), inside the hard core.

Eus[Pn — iwn, Ug — igawg] is the grand canonical partition function
of the hard-sphere system with the renormalized chemical potentials

ZU1 + Vg _ Vv — Uy

VN = ———, Vg = —————,
N 142 @ go(1+ 2)

where 7, is determined by

7o = vt g UG + a2 0

V4 is the dimensionless chemical potential, v, = Buo — 3In A, and g
is the chemical potential of the ath species; 8 = 1/kgT is the reciprocal
temperature; A = (2rm, 371 /h?)1/2 is the inverse de Broglie thermal
wavelength. It is worth noting that (bgﬂ(r = 0) is a finite quantity due
to the WCA regularization. We introduce

Wy v Ok = iwie N0k — Avy, (2.3)

where Avy = Uy — vy s With vy ps being the chemical potential of
hard spheres.

In order to develop the perturbation theory, we present In Exg[vy us—
Wy, 70 — igawg] in the form of a cumulant expansion [31]

lnEHs[-.-]=Z(_Tj)nZ > oG (k. k)

n>0 in>0ky,... .k,

XWky,Q -+ - Wk, ,QWK; N -+ Wk, NOKy ..k s (2.4)

in+1 ?

where the prime on w_ y is omitted for the sake of simplicity. In Eq. (2.4)),

the nth cumulant 9™ (k1,...,k,) is a linear combination of the partial
cumulants My, ., (k1,. .., k,), the superindex i,, indicates the number

of variables wy @ in the cumulant expansion. For details we refer the
reader to Ref. [30]. The expressions for M\ and M) are as follows:

m?” = (N)us, m =0,
MO (k) = Gomsk), M (k) = @2(N)us b,

where (N)gs and ég)Hs(k) are the average number of particles and the
Fourier transform of the two-particle connected correlation function of
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(1) —
(7171)

a one-component hard-sphere system. It is worth noting that 91,

due to the electroneutrality condition. The recurrence formulas for iy,
are derived in Ref. [30] (see Egs. (46) in [30]).

Taking into account (23)-(24) and replacing px n by px,.n + 93150)51(
we can rewrite Eq. (22)) as follows:

E[Va] = EHS[VN,HS; DQ] C/ (dp)(dw) exp (AI/NpO N — ﬁ

2V
X Z[5SR(k)pk,Np—k,N + 0% (k) preop-k.Q) +1 ) [Wie v pr.n
K
toraneal + X EL Y S
n>2 ! in>0ki,... . kn
FWk,,Q - - - Wk, ,Q Wi, N - .wkmNélir,,,Jrkn) , (2.5)
where
- N)us ~
Avy = Avy - ﬂ%sﬁ”(ox
N2 ~
C = exp AVN<N>HS — Md)SR(O)] y
2V
and InZns(v us, Vo] = SJI((JO) [vnus, Pg]. It is worth noting that the

Hamiltonian in Eq. 23] does not include direct pair interactions of

number density fluctuations if QNSSR(k) =0.
Since we are interested in the gas-liquid critical point, the small-k
expansion of the cumulants can be considered. Hereafter we will put

k2
oty (k) = My” (0) + M) (2.6)

and approximate cumulants for n > 3 by their values in the long-
wavelength limit

M) (ky, .. k) ~ 9MED(0,. ). (2.7)
3. Effective Hamiltonian in the vicinity of the gas-
liquid critical point

In this section, based on Egs. (2.3)-(2.1), we derive the effective Hamil-
tonian of the model (1) in the vicinity of the gas-liquid critical point.
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We obtain consistently all the coefficients, including the square-gradient
term, within the framework of the same approximation.

First, we integrate over CVs wx ny and wg g in Eq. (25) using the
Gaussian density measure as the basic one [25]. As a result, we get

E[val = EnsC H Sm(O) H

where

mm [ o) exp(~Hlvasprv.pl) . (31

0 2
—H[Va, pn, pQ) = —ag )Po 9 Z (aé )Pk.,prk,N- + aé )pk,Q
"k

1 0 2
Xp-k@) = 3 > (GQ ) Phey N ks N ks + 3057 Pley N Plea 0Pk @
" ki ,ko ks
3 1 0
+aé )pkthkapk&Q) Ok, +ko+ks — Al Z (az(l )pk17N -+ Pka,N
Tk, kg

2 3
605 iy N P N P, 0Pk, + 405 prcy NPz Pk 0PKa

4
+a )Pkl,kaz,kaa,ka4,Q) Oky+otkey e e (3.2)

and the coefficients a'/™ (n < 4) are given by

¥ = Ay, iV =0, (3.3)
© _ Bsr 1 @ _ Bo
e - 3.4
as V¢ ( )+ mé@)(k)a 2 V¢ ( )+ ;2)7 ( )
0 2 3
aéo)__fmé) @ _ _ oy’ o oy
@y o) (an? ) iy
(3.5)
0
NON 1 < © 5 (0 ))2>
0 0 ’
(") oty
FOR 1 @ oy o ()2
4 (mtéo))2(m(2))2 mgo) m(Q) ’
1 gﬁ(z)m@)
04(13) BN (7} IS ) RO (S)ﬁf) -3 3—(2)3 )
My (M5™) IP)
2
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A distinguishing feature of the Hamiltonian(3.2))-(B.0), unlike that for

the RPM [25], is the presence of the coefficients aﬁf’) due to the charge-
asymmetry of the model. Using the recurrence formulae from Ref. [30],
Egs. B3)-(B.6) can be reduced to the form given in Appendix A.

3.1. Gaussian approximation

Let us consider the Gaussian approximation, which corresponds to Eq. (32)

where only the terms with n < 2 are taken into account. In this case, the
integration over CVs px n and px g in Eq. (81) leads to the following
expression for the logarithm of the grand partition function

InEq = InSps + S0LHS <]2V‘2HS eaa() Zln [1 Wb quR( k)Y (k)

——Zln {1+ 53¢ (kym 2’}

The Legendre transform of In Z¢ yields the Helmholtz free energy in the
one-loop approximation. The result is

tuen = 2EA gy - B0 5 oy Db L0
k
1, 5 1 &
+580°0%(0) + 57 zk:ln {1 * BWSRS&HS(M
. -
+W ; In [1 + ﬁqupgbc(k)} ) (37)

where f. . denotes the Helmholtz free energy density. Again, the subscript
HS refers to the hard-sphere system, Ss is (k) is the pair structure factor
of a one-component hard-sphere system [34]. The one-loop free energy
(B0 coincides with the free energy in the random phase approximation
(RPA) of the theory of liquids [34].

From (B one can find the chemical potential vy in the RPA

VRPA e % ngya( ﬁ%z Z¢C k) + BpdSR(0)
5QOZ¢C (k)
T Z 1+ Bg3zpgC (k) (35

and obtain on its basis the mean-field gas-liquid phase diagram. The
gas-liquid critical parameters of the charge-asymmetric PM (¢°%(r) =
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0) were calculated in Ref. [I0] using the above equations and different
regularization schemes for the Coulomb potential inside the hard core.

3.2. Coefficients of the Landau-Ginzburg-Wilson Hamiltonian

Our aim is to derive the effective Hamiltonian in terms of CVs px v
related to the order parameter associated with the gas-liquid critical
point. To this end, we integrate out CVs pi ¢ in Eq. (3.2 following the
programme outlined for the RPM [25]. As a result, we arrive at the
effective LGW Hamiltonian of the following form:

—H [pn] = _Zn' Z Gn Pkqi,N Pko,N - - Pkp,N
n>1 kl,...,kn
><5k1+...+kn~ (3.9)

Coefficient a,, can be presented as
an = a9 + Aa,, (3.10)

where the second addend is the correction obtained after integration
over CVs pyk . Each correction Aa, has the form of infinite series. In
particular, after some algebra we find the following expressions for Aa,,
in the approximation corresponding to a one sum over the wave vector

a

1 ~
Aa; = _mzq:GQQ(q)Jr..., (3.11)
1 ~ 1 ~
Aay(k) = _
az (k) N Zq:GQQ(CI) ) <N>zq:GQQ(Q)
xGoo(la+k|) +..., (3.12)

3 ~ 3 ~
—<N>ZGQQ(Q)+ <N>ZGQQ(Q)
q q

- 1 -
xGoollatkal) - —%— > Goala)
q

Aag(kl, kg) =

xGaolla+ki))Goolla —ka|) +...,  (3.13)
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12 ~ 6 ~
Aay(ky, k2 ks) = —— > Goqla) - NS > Goal)
q q

xGoglla+ ki +ka|) — 3" Goale)Gaoqlla + kal)

<N >
qa
12 ~ - .
RS ;GQQ(Q)GQQUqﬂL k1|)Goq(la — k2 — ks|)
3 ~ . -
v gGQQ<q>GQQ<|q+ k1|)Goq(la — kel)
xGoqlla—ka —ks|) + ..., (3.14)

where we have made use of the formulas from Appendix A. Hereafter,
for notation simplicity, the subscript HS is omitted.

Goo(q) is the Fourier transform of a charge-charge connected corre-
lation function of the charge-asymmetric PM determined in the Gaussian
approximation

- 1
G ==
aeld) 14 Bpg3z¢©(q)

For the WCA regularization [33],

5(q) = a4

e (3.15)
Now, we are in a position to study Eqs. (3:11)-(BI4) in detail. As is seen
from Egs BII)-(BI4), corrections Aa,, for n > 2 depend on the wave
vectors. Expanding the second term of Aay at small k one can readily
see that the linear term vanishes. As a result, Aas can be presented as
follows:

ACLQ = ACLQﬁO + szCLQQ + O(k4), (316)
where
Ay = ﬁ > Goala) - ﬁ Y [Gaal@),
Bmzs == i Y Gaal@Gia) (3.17)

and the superscript (2) refers to the second-order derivative with re-
spect to the wave vector k: G(Q2)Q(q) = 0%’Goq(lq + k|)/0k?|k—o. The
appearance of the factor k2 in Eq. (3.I6) is caused by the charge-charge
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correlations being taken into account. It should be noted that the ex-
pression for Aas o has the same form as that obtained for the RPM in
Ref. |25]. However, the numerical estimates of the effective Hamiltonian
coefficients were notoomade in that work. It will be done below.

The integrals / [éQQ (q)r dq entering Eqgs. BII)-@BI4) are di-
0

vergent at ¢ — oo. This divergence can be avoided by introducing the
cutoff wave-vector which, however, leads to the cutoff-dependent results.
Another way is to rearrange the terms in Eqs. (B11)-(B.I4]) expressed by
infinite series. Here, we will follow the second way.

We approximate Aay by Eqs. B16)-(BI7) and replace Aag(ky,...)
and Aag(ki,...) by their values in the long-wavelength limit putting
Aag(ky,...) ~ Aaso and Aag(ky,...) =~ Aago. It is convenient to cal-
culate Aa, using Feynman diagram presentation. Limiting the series in
Egs. (310)-@I4) to the order of one sum over q one can present the part
of the effective Hamiltonian (39) in the following diagrammatic form

1
Aaypo,N = —5" ©7 (3.18)
R ORGSR
21(N) a 2,00k, NP—k,N = ! 5 ) .

1 .\
m Z Aa3,opk1,Npk27Np_k1_k27N _ _37@

ki ko
|
+3’©:‘ ,/_\ : (3.20)
1
41({N)3 Z Aa4,0Pk; N Pk, N Pka, N P~ky —kz—ka,N
ki,k2,ks
\ \ , , N e
:12:0_6 Q _12_0‘“2 AN
/ / \ \ . R
-3 ' (3.21)

- ~

In Egs. (BI8)-B2I)), each external leg represents CV px n, the vertex
(im)

n

n!

represents the factor Oky+..+k, and each internal line corresponds
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to the propagator éQQ (¢). Integrals over wave vectors are implied here.
As is seen, the restriction to a one sum over q in the expressions for Aa,,
leads to the one-loop diagrams having the same number of vertices and
bonds.

Now, introducing

~ . Bpidz¢°(g)
59 1+ Bpg329°(q)’
we substitute _
Goqle) =1+9(9) (3.22)

into Egs. (B11)-3I4). Then, adding all the terms corresponding to the
one-loop diagrams in Eqs (BI8)-(B2I) we present Aa,, in the form:

Aar = —ﬁ > 4(a), (3.23)
Baa(l) = ~5 55 L) -~ iy IV @ 1 +30)]. (320
Aay = ——— Y70 (3.25)
Aay= - —— 3" li(a)" (3.26)

The integrals entering Eqs. (8:23)-(3.20) are convergent in the lower and
upper limits. Again, the superscript (2) denotes the second-order deriva-
tive with respect to k. Comparing Eqs. (3224) and (BI7) it is easy to
check that substitution ([3:22)) does not change the coefficient Aag . Fi-
nally, inserting Egs. (3:223)-(3.28) in (3I0) we arrive at explicit expres-
sions for the coefficients a,, in the one-loop approximation:

ai,0 = —Avy — 51,0, (3-27)
as,0 = —pCams + Bpd>(0) — pCac, (3.28)
1 1 ~
azz = —5pCops + 5p0" ")
1

—— NP9 h+7 3.29

4mwg;g<@[+g@m (3.29)
as,o = —p253,Hs - 0253,07 (3-30)
aso = —p°Csns — p°Ca,c, (3.31)
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where a, 0 = ayp
sion ay = a0 + k2a272, and CQﬁHS(k) = CQyHS + %kQCé?})IS Cn,HS is the
Fourier transform of the n-particle direct correlation function of a one-
component hard-sphere system in the long-wavelength limit

~ 1 . e
_pc2,HS = m= pn 1Cn,HS =p 1Cn,HS(07 .. ) = aszO)7 n>3

and C'NéQIZIS = 82C~21Hs(k)/8k2|k:0. Using the formulas from Appendix A,

one can establish a link between the direct correlation functions CNmHS

k=0, G20 and ag o are the coeflicients of the expan-

and the connected correlation functions én,HS for n < 4.

Cp,c denotes the contribution to the n-particle direct correlation func-
tion from the charge subsystem

e = ncthi=0 = PSS 63

It is easy to check that the coefficients a, o for n > 2 can be obtained
from the one-loop free energy (see Eq. (8.7))

n-19"(=Bfrpa)

_ on—-1s
G = P01,

An,0 = p

where 5n(0, ...) denotes the Fourier transform of the n-particle direct
correlation function of the full system in the long-wavelength limit. It
is worth noting that the functions C, differ from the ordinary direct
correlation functions ¢, by an ideal term [341[35].

Coefficient a0 is the excess part of the chemical potential vy con-
nected with the short-range attractive and long-range Coulomb interac-
tions. Equation a1, = 0 leads to the expression for vy in the RPA (see
Eq. B8)). Coefficient as 2 describes the square-gradient term. We em-
phasize that all the coefficients given by Eqs (8:27)-[331)) are found in the
one-loop approximation corresponding to a one sum over the wave vector.
The charge asymmetry does not manifest itself in the above equations
and, therefore, there is no difference between the RPM and the charge-
asymmetric PM at this level of approximation. The resulting effective
Hamiltonian reads as

1

eff _ E : 2
H = a1,0P0,N + 2'<N> 8 (a:210 +k a272) Pk, NP—k,N
+ L E + L
- a o -
3|<N>2 R 3,0Pk1,N Pkz,N P—ki—kz,N 4|<N>3
1,k2
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X E a4,00k1,N Pkz2,NPks,NLP—ki—ka—ks,N-
ki,ka ks

Therefore, within the framework of the same approximation, we have
derived the microscopic-based expressions for the coefficients of the ef-
fective Hamiltonian. Taking into account the charge-charge correlations
through integration over the charge subsystem (the CVs px g) we get
a contribution to the coefficients at the second order which describes
the effective attraction of short-range character. The resulting Hamilto-
nian has the structure of the LGW Hamiltonian of an Ising model in
an external magnetic field. Eqgs. (327)-([3.32) will be used below for the
calculation of the Ginzburg temperature.

4. Ginzburg temperature

We present ag g in the form:

_ T — Tc
ag,0 = G20 + a2, t, t= T
C
da
where ag0 = @2,0(t = 0) and az; = 82t)0 . Hereafter, the subscript
t=0

c refers to the critical value.
At the critical point, the system of equations

a0 = 0, as,o = 0 (41)

holds yielding the critical temperature and the critical density. After the
substitution of 7, and p. in the equation a;,o = 0 one gets the critical
value of the chemical potential vy .

Following [I8[19], the reduced Ginzburg temperature can be written
as follows:

. 1 aio
G = 55 o
3272 ag a3’

(4.2)

where all the coefficients should be calculated at the critical temperature
and the critical density determined from Eqs. (@1).
4.1. Hard-core square-well model

First, we consider a one-component system of hard spheres interacting
through the SW potential of depth ¢ and range A\ = 1.50. This system
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exhibits a typical Ising critical behaviour. For the WCA regularization,
the Fourier transform of the SW potential has the form [32]

6° " (k) = ¢57(0)

D) [- Az cos(A\x) + sin(Az)], (4.3)
where z = ko and ¢5%(0) = —eo3AT N3,

For this model Aa, = 0, and we get from Eqs. 217)-B31I) and
Eq. (£3) simple expressions for the coefficients of the LGW Hamiltonian

1 8nA3
a170 = —AVN + W — ﬁ, (44)
I 5 8nA3 83
azo = —pCous— @, a2t = W,
1 5(2) 4 77/\5
a2 = —5pCns + s 7eR> (45)
asp = —p°Cans, as,0 = —p°Ca s, (4.6)

where Avy = vy — v nas. The reduced temperature in the hard-core
square-well (HCSW) model, T5%, is defined as the ratio between the
thermal energy and the interaction strength of the two hard spheres at
contact TSR = kgT/e, and n = mpo3 /6 is the packing fraction. We use
the Percus-Yevick (PY) approximation for the n-particle direct correla-
tion functions of the hard-sphere system [34,[36]. As a result, we have

5 (1+2p)? 52 _ 116 — 11y + 4n°)
pc2,HS - (1 — 77)4 ) ch,HS - 10(1 — 77)4 )

_p2CS,HS =

)

(1—7n—6n?)(1+2n)
(1—mn)°

Table 1. The reduced gas-liquid critical parameters, the coefficients of
the effective Hamiltonian and the reduced Ginzburg temperature tg for
the hard-core square-well model (HCSW model) and for the restricted
primitive model (RPM) in the one-loop approximation. The superscripts
SR and C refer to the HCSW model and RPM, respectively.

Model TcSR © P a¢ a2,2 Q4,0 la
HCSW 1.2667 0.2457 2.7426 0.4536 2.7421 0.0937
RPM 0.08446 0.0088 1.0758 0.2570 0.1752 0.0053
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P Cans = 2(1 — 61 + 151 + 561° + 24n*)
’ (1 =n)°

Using Eqgs. ([@1)), (£2) and (£4)-(L8) one can easily calculate the re-
duced Ginzburg temperature. The corresponding results are presented

in Table 1 (the first row). It should be noted that we get t¢ = 1.55 if we
pass to the expression for the the reduced Ginzburg temperature used in
Ref. [20] which differs from Eq. (£2) by the factor (p})~2. This agrees
with the result t¢ = 1.57 obtained in [20] for the same system in the
RPA.

4.2. Restricted primitive model

Now, we consider the RPM setting ¢°® = 0 in Eqs. (B.27)-(331). Using
Eq. (3IH), we get the following explicit expressions for the coefficients
of the effective Hamiltonian

a0 = —Avy-— 2TLC + i1, (4.7)
a0 = % + i, as; = % 12, (4.8)
ao = U= 777& ?”;;él 20 (4.10)

In Egs. (1)-(@II) the following notation are introduced:

P e 1T /W{ sin ()
0

7T¢ T3 + K2 sin(x)] -

%) 5 .2
. / x® sin“(x) dz,
o (

23 + k2 sin(z))®

i1 = /OO 20 [k?2® (1 + cos®(2)) + 2(2® — 2k% sin(x))(2z cos(z)
0
—3sin(z)) + 2° sin(z)] /(z* + £*sin(z))*dz,

where k = kpo with k2, = 4mpBq°z being the Debye number.
The reduced temperature T¢is defined in the standard way as the
ratio between the thermal energy and the interaction strength of the
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opposite charged hard spheres at contact

_ kpTeo

TC

(4.12)
The loci of equations az 9 = 0 and a3 = 0 are shown in Fig. 1. The
two lines intersect at a maximum of the gas-liquid spinodal yielding
the coordinates of the critical point in the one-loop approximation (see
Table 1).

Substituting the critical temperature and the critical density into
Eqs (3)-II) we calculate the coefficients of the effective Hamilto-
nian. Then, we get from Eq. [£2) the reduced Ginzburg temperature
of the RPM. The results are presented in Table 1 (the second row). As
is seen, the reduced Ginzburg temperature found for the RPM is about
twenty times smaller than that obtained for the HCSW model. There-
fore, contrary to the previous findings [T9H21], our results suggest that
the critical region for the RPM is much narrower than the critical region
for a non-ionic model.

0.09 |-
0.08

o 007

0.06 |-/

0.05 |

0.04

1 n 1 n 1 n 1 n
0.004 0.008 0.012 0.016 0.020
n

Figure 1. Restricted primitive model: the loci of equations a3 ¢ = 0 (solid
line) and aso = 0 (dashed line). Temperature T is given by Eq. (Z12)
and 1 = mpo? /6 is the packing fraction.
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4.3. Coulomb interactions versus short-range attractive inter-
actions

Here, we consider the full system given by Eq. (2] and study the effect
of the interplay of short- and long-range interactions on the Ginzburg
temperature. We briefly call the model as a RPM-SW model. For the
RPM-SW model, we get explicit expressions for the coefficients of the

effective Hamiltonian combining Eqs. (@4)-(L8) and Eqs. (£7)-(ZI1).
We also introduce the parameter

o TSR - qu
TC eoe’

measuring the strength of the Coulomb interaction with respect to the
short-range attractive interaction.

As before, we first solve the equations for the critical parameters.
The loci of these equations are shown in Fig. 2 for o = 25, 50, 100 and
oo (RPM) and in Fig. 3 for a = 0.5,1,2,5 and 10. As for the RPM, the
curve as,o = 0 intersects the gas-liquid spinodals at a maximum. The
results for the critical parameters, the Hamiltonian coefficients and the
reduced Ginzburg temperature are presented in Table 2. As is seen, the
reduced Ginzburg temperature first decreases with an increase of a and
then begins to increase slowly approaching the RPM value for o 2 100.

0.10

0.09
0.08
= o007

0.06

0.05

0.005 0.010 0.015 0.020
n

Figure 2. RPM-SW model: the loci of equations as = 0,0 (solid lines)
and a3 o = 0 (dashed line) for o = 25, 50, 100 and co (RPM). T¢ is given
by Eq. @I2), n = mpo3/6 is the packing fraction and o = ¢3z/(eoe).
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25 —05

0.0

0.15 0.20 0.25 0.30
n

Figure 3. RPM-SW model: the loci of equations a9 = 0 (solid lines)

and a3 o = 0 (dashed line) for « = 0.5, 1,2, 5 and 10. The meaning of the

symbols is the same as in Fig. 2.

0.05 0.10

Quite probably, the RPM-SW model with a certain value of a lying
between 10 and 25 undergoes a tricritical point (see, e.g., Ref. [37L138]).
This issue deserves a separate study. All the coefficients have the same
trend with an increase of « from 0 to co, and their trend coincides with
the trend of t¢. Both T and p? (or 7.) decrease when « increases and
reach the critical values of the RPM. The trend of T is opposite to
the trend of TC.

Table 2. The reduced gas-liquid critical parameters, the coefficients of
the effective Hamiltonian and the reduced Ginzburg temperature tg for
the RPM-SW model (see the text) in the one-loop approximation.

T SR *
a T T Pe azt az 2 Q4,0 ta

0.5  2.56537 1.28269 0.2429 2.7132 0.4506 2.6606 0.0903
1 1.29904 1.29904 0.2393 2.6694 0.4427 2.5441 0.0885
2 0.66471 1.32943 0.2328 2.5908 0.4288 2.3275 0.0840
5 0.28387 1.41935 0.2170 2.4320 0.3986 1.8133 0.0676
10 0.16012 1.6012 0.2026 2.4104 0.3740 1.2586 0.0398
25 0.09054 2.2636 0.0159 1.0406 0.2175 0.0906 0.0024
50  0.08705 4.3524 0.0109 1.0597 0.2396 0.1472 0.0047
100  0.08568  8.568  0.0097 1.0676 0.2481 0.1602 0.0050
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0.10

0.08

0.06

0.04

0.02

e

0.00

Figure 4. The reduced Ginzburg temperature as a function of the ionicity
(see the text). The symbols indicate the results of the present work and
the line represents the results from Ref. [26]. Z is given by Eq. (Z13).

In order to establish a link to our previous results (see Ref. [26]) we
pass from « to the ionicity Z by means of the relation

a=TRT,  where I= % (4.13)
Fig. 4 presents the dependence of the reduced Ginzburg temperature on
the ionicity. The results of the present work are shown by solid circles
while the line represents the results from Ref. [26]. As is seen, the both
groups of results agree well for Z < 6.25 corresponding to a < 10.
The deviations between the results that appear for large values of Z are
due to the different approximations used in calculating the Hamiltonian
coefficients in the present and previous works. Therefore, the results of
this paper generally agree with the previous results obtained within the
framework of a different perturbative treatment and, in turn, confirm a
key role of the Coulomb interactions in the reduction of the crossover
region in ionic systems when compared to the nonionic systems.

5. Conclusions

In this paper, we have revisited the issue of the criticality of the Coulomb
dominated systems. The model considered, besides Coulomb interac-
tions, includes short-range attractive interactions. Using the CVs-based
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theory we have derived the ¢*-model LGW Hamiltonian in terms of the
CVs describing the fluctuation modes of the total number density. The
resulting form of the effective Hamiltonian confirms the fact that the
criticality of the Coulombic models belongs to the universal class of a
three dimensional Ising model. The important feature of the developed
approach is that it enables us to obtain all the coefficients, including the
square-gradient term, within the framework of the same approximation.

The LGW Hamiltonian obtained has been used for the calculation
of the gas-liquid critical parameters and the Ginzburg temperature for
a number of models, in particular, the pure solvophobic model, the pure
Coulombic model as well as for the models including both the Coulomb
interactions and the short-range attractive interactions. In the present
paper, all quantities, the critical parameters, the relevant coefficients
of the effective Hamiltonian, and, accordingly, the Ginzburg temper-
ature, for all the models considered have been calculated in the one-
loop approximation. This approximation leads to the mean-field values
for the reduced critical parameters. It is worth noting that the charge-
asymmetry does not manifest itself at this level of approximation.

Having excluded the Coulomb interaction, we first calculate the re-
duced Ginzburg temperature for a simple fluid model, the one-component
system of hard spheres interacting via the square-well potential of the
range A = 1.5. This well-known model is used to calibrate the Ginzburg
temperature for the models having Coulomb interactions. Then, neglect-
ing the short-range attraction we study the criticality in the RPM. Our
calculations have shown that the reduced Ginzburg temperature of the
Coulombic systems is much smaller (although it is not extremely small)
than for simple fluids. We have obtained the fluctuation dominated re-
gion for the RPM to be much narrower (reduced by a factor of ~ 20)
than for the HCSW fluid.

We have also studied the Ginzburg temperature depending on the
interplay between the Coulombic and short-range attractive interac-
tions. Having introduced the ratio a that determines the strength of the
Coulomb interaction with respect to the short-range interactions (SW
potential), we calculate both the reduced critical temperature and criti-
cal density, the Hamiltonian coefficients and the reduced Ginzburg tem-
perature for a set of the « values ranging from 0.5 to 100. For the model
under consideration, the Ginzburg temperature shows a non-monotonous
behaviour with the variation of «. In particular, to first decreases ap-
proaching its minimum in the region 10 < o < 25 and then starts to
increase approaching the RPM value for a« > 100. The present results
generally agree with our previous results obtained within the framework
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of the different perturbative treatment. Moreover, they are in good quan-
titative agreement for o < 10.

In conclusion, within the framework of the unified approach we have
derived the Ising-like effective Hamiltonian which enables us to make
reliable estimates of the reduced Ginzburg temperature for the RPM
as well as for the model with the competing short-range and Coulomb
interactions. For the model including both the short-range attractive
interactions and the long-range Coulomb interactions, we have shown
that the reduced Ginzburg temperature approaches the value obtained
for the RPM when the strength of the Coulomb interactions becomes
large enough. This suggests the key role of the Coulomb interactions
in the crossover behaviour observed experimentally in ionic fluids. We
believe that our results provide new insights into the nature of the non-
classical region in the Coulomb-dominated systems.

6. Appendix

6.1. Expressions for coefficients asli”)

Taking into account the recurrence formulae for mi) (see (46) in Ref. [30])

we get the following expressions for coefficients an ) for n <4

(0) _ g FSR(p) 4 L (@) _ 5,70 (k) 4 -
a’2 Bp¢ ( ) + SQ_]HS(k), a2 Bp¢ ( ) + quu
0) S3.HS @) 1 (3) (1-2)
ay’ =——=, ay’ = ——5—, asy’ = — ,
’ SS,HS ’ qu ’ q822

2
© _ 1 355 ns 2 _ 2
a = —— 1S - , ay’ = ——,
! S5 s < BT @
RONNS 2(1—2) RO _2(1 —z+2?)
4 quz ’ 4 q(é)lZB

where S, us = (N?MHS/(N)HS, CNJn)HS is the Fourier transform of the n-
particle connected correlation function of a one-component hard-sphere
system.
In order to get the corrections Aas and Aay (Egs. I3)-B14) we
also need coefficients aéz) and aéz) presented by
@ _ 3" @ _ 4

a = Qa = .
5 2.7 6 2
4o~ 4o~
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