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Дисипативна динамiка морфологiчних перетворень спричи-
нених розчинником у порах iз декорованими стiнками

Я.М.Iльницький, С.Соколовскi, Т.Пацаган

Анотацiя. Дослiджено формування морфологiй у порi, яка має стiн-
ки, декорованi смугами полiмерних щiток (iз мономерiв сорту А), та
заповнена бiнарною сумiшшю сортiв А i В рiзної композицiї. Зна-
йдено граничнi випадки квазi-одновимiрного та квазi-двовимiрного
розшарування сортiв. Показано, що формування морфологiй та –
в деяких випадках – перемикання мiж ними при змiнi композицiї
сумiшi спричинене змiною локального середовища для ланцюжкiв
полiмерних щiток. Знайдено сформованi за посередництвом розчин-
ника ламеларнi, меандро-подiбнi та рядковi цилiндричнi фази, для
кожної з яких проаналiзовано iнтеграли перекриття мiж щiтками та
компоненти тензора гiрацiї ланцюжкiв у щiтках.

Dissipative particle dynamics study of solvent mediated transi-
tions in pores decorated with tethered polymer brushes in the
form of stripes

J.M.Ilnytskyi, S.Soko lowski, T.Patsahan

Abstract. We study self-assembly of a binary mixture of components
A and B confined in a slit-like pore with the walls modified by the stri-
pes of tethered brushes of beads A. We concentrate on solvent mediated
transitions between morphologies when the composition of the mixture
varies. For certain limiting cases of the pore geometry we found an effec-
tive reduction of the dimensionality to quasi one- and two-dimensional
demixing cases. The change of a local environment for the chains upon
varying the mixture composition provides an explanation for formation
of a range of morphologies and, in some cases, for switching between
them. We found solvent mediated lamellar, meander and in-lined cyli-
nder phases which are analysed quantitatively on the values of brush
overlap integrals and the components of a gyration tensor.
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1. Introduction

In recent years investigations of polymer films on solid surfaces have
become one of the most rapidly growing research area in physics, chem-
istry, and material science. The reason for such sustained growth is due
to the availability of a wealth of fundamentally interesting information
in thermodynamics and kinetics, such as long and short range forces,
interfacial interactions, flow, and instability phenomena. [1–6, 8] More-
over, polymer thin films are widely used as an industrial commodity in
coatings and lubricants and they have become an integral part of the de-
velopment process in modern hi-tech applications such as optoelectron-
ics, biotechnology, nanolithography, novel sensors and actuators. [9–16]
Most of these applications have been connected with an intrinsic prop-
erty of polymer films to exhibit a variety of surface morphologies, the
size of which ranges from a few tens of nanometers to hundreds of mi-
crometers. As many of the modern, technologically relevant phenomena
occur at the nanoscale, the behavior of polymer thin films deposited on
flat surface that exhibit morphologies at the nanoscale has been one of
major focuses in recent years. [6, 8, 17–22]

The development of several new techniques [23] in material science
permits now the productions of solid substrates whose surface is “decorat-
ed” with precisely characterized surface structures on length scales rangi-
ng from nanometers to microns. In particular, advances in nanotechnol-
ogy have permitted establishment of methods for obtaining functional
polymeric films on solid surfaces exhibiting quite complex topographic
nanostructures. Such chemically decorated substrates allow for manip-
ulation of fluid at very short length scales and thus they can play an
important role in a variety of contexts. [24–26]

Importance of systems involving brushes tethered at structured sur-
faces stimulated development of methods of theoretical description of
such systems. Theoretical studies of fluids in contact with brushes on
patterned surfaces have been mainly based on different simulation meth-
ods. They include Monte Carlo [27] and molecular dynamics, [28] as well
as dissipative particle dynamics (DPD) simulations. [17,29] The studies
performed so far indicated that heterogeneity of tethered layers has a
great impact on the structure of the confined fluid and thermodynamic
and dynamic properties of the systems.

In numerous previous studies [29], including our work [30], the sim-
ulations have been carried out assuming constant composition in the
confined system. However, the demixing phenomena and the formation
of different morphologies strongly depend on the composition [32] and
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the aim of this work is to get an insight how the change in the fluid com-
position influences the structure of the confined system. Similarly as in
previous work, [30] we use DPD to investigate the behavior of a binary
mixture, composed of beads A and B, confined in slit-like pores with walls
modified by the stripes of tethered chains that are made of beads A. The
stripes at the opposing pore walls are placed “in-phase” (face-to-face),
or “out-of-phase. Species A and B are assumed to exhibit demixing in a
bulk phase. The simulations are carried out for different compositions of
the fluid. Our interest is to determine possible morphologies that can be
formed inside the pore, depending on the fluid composition, and on the
geometrical parameters characterizing the system (the size of the pore
and the width of the stripes, the arrangement of the stripes). In partic-
ular, we analyze special limiting cases, where geometry of the pore leads
to the reduction of effective dimensionality. Special emphasize is given to
the cases of stripes the separation distance between which, either within
the pore wall or across the pore, is small. The crossover for the polymer
chains from the regime of polymer melt to the regime of a good solution
provides a basis for solvent mediated morphology formation and mor-
phology switching. We performed complementary simulations where the
solvent in a form of a binary mixture is replaced by one-component sol-
vent of variable quality. Moreover, we also consider how the arrangement
of the stripes (“in-” versus “out-of-phase”) influences the observed phe-
nomena. Quantitative analysis of morphologies is performed by means
of overlap integrals of polymer chains belonging to different stripes or
surfaces. Conformational properties of chains are studied via gyration
tensor components. The simulation method has been described in our
previous work [30] and for the sake of brevity it has been omitted here.

The paper is organized as follows. In the next section we will re-
call briefly the model and the simulation method. A number of limiti-
ng cases for the pore geometry that show the effects of reduced effec-
tive dimensionality are considered in section 3. Quantitative analysis of
solvent mediated morphologies for the case of weakly separated stripes
is performed in section 4. The summary of the results is presented in
section 5.

2. The model

To simulate the pore we use the box of the dimensions Lx, Ly and
Lz. All the dimensions are in reduced units, measured in respect to the
cutoff distance rc for the repulsive interaction, which is set to rc = 1.
The planes z = 0 and z = Lz ≡ d are impenetrable walls. Periodic
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boundary conditions are applied in both X and Y directions. Each wall is
divided into stripes of equal width, w, alternating those with and without
polymers attached. The stripes at the apposite walls can be places either
in- or out of phase, see Fig. 1. The width of the stripes with attached
polymers is the same as the width of the polymer free spaces, therefore
the term “out-of-phase” means that the stripe with polymer on one wall
is facing polymer free stripe at another wall. The rest of the pore interior
is filled by single beads, representing the fluid components.

Figure 1. Geometry of the pore with in-phase (a) and out-of-phase (b)
arrangement of the stripes with tethered polymer chains. The pore size
is d and the stripes width is w. The length of polymer chains is L = 20
beads.

In simulations we use DPD approach that includes the existence of
smooth repulsive walls with the use of the reflection algorithm that pre-
serves the total momentum. [30] The reduced number density for beads
is equal to ρ = 3.0. Polymer chains are built of L = 20 beads linked via
harmonic bonds. The grafting points have been fixed on each wall and
distributed randomly inside the stripes with reduced grafting density
ρg = 1.0. More details are provided elsewhere. [30]

Two bead sorts, A and B are considered. Polymer chains are made
of beads of sort A. The total number of polymer beads in the system is
Np

A. A binary fluid mixture (which fills the interior of the pore) contains
Ns

A beads of sort A and NB beads of sort B. The fraction of the beads of
sort B is fB = NB/N , where N = Np

A +Ns
A +NB is the total number of

the beads. Miscibility of A and B beads is adjusted via the value of aAB

for the A-B repulsive interaction as compared to the values of aAA and
aBB for the A-A and B-B interactions, respectively. [31] In our study we
use the following values: aAA = aBB = 25 and aAB = 40.

For visualization of morphologies we employ the following density
grid approach. Simulation box is split into the grid of cubic cells with
linear dimension of 0.75−2.0, depending on the simulation box size. Local
densities for polymer A beads, ρpA(x, y, z), solvent A beads, ρsA(x, y, z),
and solvent B beads, ρB(x, y, z), are evaluated in each cell, centered at
(x, y, z). They are averaged over 10 − 15 configurations (the subsequent
configurations are separated by 5000 simulation steps). The averaging
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is carried out after stabilization of a given morphology (typically, after
2 · 105 simulation steps).

We found that presenting both local densities of A and B beads in the
same snapshot is not very informative. Instead, we show separate snap-
shots for local density of A or of B beads. In the first case, we represent
the cells with low local density of A beads (ρpA(x, y, z) +ρsA(x, y, z))/ρ <
0.15 as dots. All other cells are space-filled with the color saturation
proportional to the value of (ρpA(x, y, z) + ρsA(x, y, z))/ρ. The color tint
is blueish if ρpA(x, y, z) > ρsA(x, y, z) and greenish otherwise. Similar ap-
proach is used in the second case, when the density of B beads is plotted.
In this case ρB(x, y, z) is color coded with red tint.

3. Solvent-mediated transitions in special geometries

3.1. Wide stripes geometry

In the case of wide stripes that are in-phase arranged, the periodic pat-
tern of alternating sub-regions is formed within the pore. The sub-regions
free of polymer brush provide an environment for a bulk, quasi-3D demi-
xing of confined A and B beads. On the contrary, the sub-regions domi-
nated by a brush, reduce the volume accesible for the demixing of A and
B beads to quasi-2D slabs, especially for moderate values of pore size d.
This is demonstrated in Fig. 2, where we show examples of morphologies
observed for wide stripes with w = 90 in a pore of size of d = 20 when
the fraction fB is varied.

Figure 2. The sequence of morphologies obtained for the case of wide
stripes, w = 90, at pore size d = 20 by varying fraction of B beads, fB
(indicated at the right). Color-coded density of B beads in the selected
part of the pore is shown only for the sake of clarity.
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The first effect to mention is that with the increase of the fraction
of A beads, fA = 1 − fB, more of them are adsorbed by the stripes
of polymer brush causing their considerable swelling. We will discuss
this effect quantitatively in section 4. The remaining A and B beads are
spread within the rest of accessible volume.

We will concentrate here on the phenomena that occur within quasi-
3D sub-regions. The morphologies formed here repeat those observed for
diblock copolymers at various composition (or in similar systems). [30,32]
To relate both cases one should look at the local fractions of A and B
beads here, f ′

A and f ′
B, that differ from their global counterparts, fA

and fB due to adsorption of some of A beads into the brush mentioned
above. We found that cylinders made of B beads are formed at fB =
0.16 (f ′

B = 0.31, lowest frame in Fig. 2). Similarly, cylinders made of
A beads are observed inside the interval from fB = 0.40 (f ′

A = 0.26)
to fB = 0.50 (f ′

A = 0.17). Lamellar-like phase (in the OY Z plane;
alternating blocks of A and B beads along the X-axis) is observed in
the interval from fB = 0.26 (f ′

A = 0.50) to fB = 0.30 (f ′
A = 0.42). These

boundaries of morphologies (in terms of the values f ′
U for minor fraction

U) correlate well with the phase diagram for diblock copolymers (see,
e.g. Refs. [30, 32])

Morphology transformations observed within quasi-2D regions liter-
ally repeat those found for the narrow stripes geometry, and this case is
considered in detail in the following subsection.

3.2. Narrow stripes geometry

For narrow stripes, w < 5, the polymer chains from adjacent stripes
brigde theirselves into lamellae that envelope each wall. [30] It is quite
obvious that the same scenario holds for the out-of-phase arrangement
of stripes, as far as both surfaces are decoupled. This is confirmed in our
simulations (not shown for the sake of brevity). Two flat lamellae, formed
at each wall, reduce the region accessible to free A and B beads to a slab,
which turns into a quasi-2D one for moderate pore size d ∼ 14−20. This
situation also represents the sub-regions dominated by a brush for the
case of wide stripes (considered in a previous subsection).

In Fig. 3 we display the sequence of quasi-2D morphologies that ap-
pear in this central slab as the result of a micro-phase separation between
A and B beads. The pore size is d = 13.333, the stripes width is w = 4
and only color-coded density of B beads is shown (in red tint). This pore
size is a special one, as far as for the parameters being used here (poly-
mer length, bulk and grafting densities), no solvent A beads are present
at fB = 0.5. [30] At this fraction fB, solvent B beads fill-in all slab-like
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Figure 3. Sequence of morphologies obtained for narrow stripes, w =
4, in a pore of size d = 13.333 at various fractions fB (indicated at
the bottom). From left to right: lamellar, thinned lamellar, perforated
lamellar, “sausage” and “cake”, single “sausage”, and hexagonally packed
“cakes” morphologies are shown (only color-coded density of B beads is
shown).

accessible volume in the middle of the pore (first frame from the left in
Fig. 3). The slab stays continuous but thinnes out with a decrease of fB
down to fB = 0.28 (the next frame). Then, it turns into a perforated
lamellar one and then into disjointed prolate and/or oblate objects made
of beads B (see respective frames in Fig. 3). For still lower value of fB,
fB ≈ 0.12 hexagonally distributed “cookies” of B beads appear. One can
easily see that this morphology possesses the same symmetry as perforat-
ed lamellar one, if beads A and B are interchanged. Further decrease of
fB causes that hexagonal order of the “cookies” is lost, and for fB < 0.1
“cookies” of B beads become randomly arranged (not shown). This se-
quence of the morphologies is reminiscent of the one observed in partial
mixing of the two-dimensional fluids. [33] Therefore, the case of narrow
stripes can be classified as geometry-driven dimensional crossover from
3D to 2D for confined fluid.

3.3. Pillar geometry

In the case of wider stripes (w > 6), bridging of polymer chains that
belong to adjacent stripes is prohibited due to high penalty in conforma-
tional entropy. Instead, the in-phase arranged stripes can bridge their-
selves across the pore to form pillars, providing that the pore width d
is not too big (cf. the sketch phase diagram presented in the previous
work [30]). Such pillars are observed, for example, at d = 13.333 and
w = 10. Similarly to the case shown in Fig. 2, the system again dis-
plays (periodic along X axis) pattern of sub-regions, one being pillars
of merged brushes and another – polymer-free sub-regions. At fB = 0.5
the latter are in a form of blocks filled exclusively with solvent B beads.
For 0.5 > fB > 0.26 these blocks become thinner first (as far as solvent
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Figure 4. Sequence of morphologies obtained for d = 13.333 and w = 10
at various fractions fB (indicated at the bottom). Blocks of B beads
filling the space between pillars of A beads (fB = 0.50), thinned blocks
(fB = 0.26), hexagonally arranged columns (fB = 0.20), and random
columns (fB = 0.14) are shown. Only color-coded density of B beads is
displayed.

A beads are adsorbed into pillars causing the latter to swell). Then, for
fB ∼ 0.20, the blocks split into rounded “columns” spanning across the
pore and arranged almost hexagonally. At still lower values of fB we
arrive at randomly arranged columns of B beads of random thickness.
All these morphologies are displayed in Fig. 4.

The regions accessible for the micro-phase separation of solvent beads
have a shape of slabs extended along Y -axis. The important point here
is that all morphologies observed within these slabs at various fB are
uniform within the X dimension of each slab, thus the behavior of the
system can be interpreted as being quasi-1D along Y axis within each
slab. One can quantify observed morphology changes by the density pro-
files of B beads, ρ(y), along Y axis. It can be evaluated within a thin
cross-section slabs located in the middle of each region (marked as 1− 4
in the third frame from the left in Fig. 4). The thickness of each cross-
section slab in X direction is equal to 2 and the averaging of the density
is made in Z-direction. The histograms for the density profiles ρ(i)(y)
in each i-th slab obtained in this way for the morphology shown in the
third frame from the left in Fig. 4, are presented in the left frame of
Fig. 5. The local density inside each column of B beads is equal to the
bulk density, ρ(y) ≈ ρ = 3, whereas outside the column it drops down

to zero. Therefore, the integrated density, I =
∫ Ly

0
dyρ(y)/Ly is a good

measure for “block continuity”. Right frame of Fig. 5 shows the values
of I, averaged over all four slabs, 1 − 4. Two sets of simulations were
performed. For the set I we started the simulation from the morphology
equilibrated at fB = 0.5 and converted required number of B beads, cho-
sen randomly across the system, into A beads. In the set II simulation,
the initial configuration involved linearly stretched polymer chains and
solvent A and B beads randomly distributed within the pore.

One can observe the transformation from continuous into disconti-
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Figure 5. Left frame shows the density profiles ρ(i)(y) along each i-th
slab region shown in the third frame from the left in Fig. 4. Right frame
shows the dependence of the integral profile I (averaged over four slabs)
on fB. The results for simulation set I are shown as blue disks and for
the set II – as red asterisks.

nuous block morphology that occurs at f∗
B ≈ 0.23 (for the simulations

set I; blue open disks) or at f∗
B ≈ 0.28 (for the simulation set II; red

asterisks). The former value is lower indicating the presence of the “un-
derconcentrated” continuous block morphology at 0.28 > fB > 0.23 in
the simulations set I. It is also interesting to note that for small fB the
integral I changes nearly linearly with fB.

4. Competition between solvent mediated morpholo-

gies for closely arranged stripes

So far we considered several special cases when both the geometry re-
strictions imposed by the pore geometry and the composition of the
mixture confined within accessible sub-regions promote essential mor-
phological changes. In both cases of a narrow pore (subsection 3.2) and
of a pillar (subsection 3.3) the stripes of brushes are bridged in one of
directions by purely geometry means, literally by bringing stripes close
enough to form lamellae (pillars). The role of the solvent is restricted
then to swelling of already formed lamellae (pillars) and to micro-phase
separation inside the polymer-free sub-regions.

However, one can envisage the situation when the lamellar (pillar)
bridges are formed exclusively due to the role of a solvent. This, obvi-
ously, is possible in the geometries where the stripes of brush are brought
sufficiently close in one of X or Z dimensions, but not close enough to
bridge over by theirselves. Even more promising case can be designed by
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provoking the competition between bridging, which may happen when
the stripes are positioned sufficiently close in both X and Z directions.
Possible technological applications could involve the use of a solvent
mixture which contains A component in a form of a short chain. This
component could be used first for demixing with B component and for-
mation of certain morphology, and then to be used as a crosslinker, to
fix the structure permanently.

4.1. Mechanism for solvent-medialted morphologies and quan-
titative characterization of brush bridging and chains de-
formation

The mechanism for the solvent-mediated morphologies lies in swelling of
a polymer brush due to adsorption of a good solvent, the effect already
mentioned above. Here we will discuss this effect in more detail. Let us
consider the environment within the stripes of polymer chains. Due to
relatively low grafting density ρg = 1

3ρ (where ρ = 3 is bulk number
density) the stripes are far from the regime of a dense brush [34] and
are exposed to available solvent. For the case of poor solvent the brush
collapses and each chain found itself is in a regime of polymer melt,
whereas for a good solvent the chains are expected to be in the regime
of a good solution. Two cases are well distinguished by their respective
scaling laws, [35]. For instance, the radius of gyration scales as:

Rg = R(l0(N − 1))ν (1)

where R = const., l0 is the equilibrium bond length, N is the number
of monomers and ν = 0.5 for the case of polymer melt and ν ≈ 0.59
(Flory exponent) for the case of a good solution. [35] As it was discussed
previously, [36] the softness of the potentials employed in typical DPD
simulations does not violate the correct value for the exponent ν = 0.59
for a single chain in a good solvent.

To check whether this scenario holds, we performed a set of simula-
tions for the pore geometry with well separated stripes. Polymer chains
are made of A beads and one-component solvent of C beads is used. The
quality of the solvent is tuned via the repulsion parameter aAC between
A and C beads ranging from 25 (good solvent) up to 40 (bad solvent).
For each simulation run, the average bond length l0 and radius of gy-
ration Rg were evaluated and the scaling law (1) was employed for the
assumed values of the exponent ν, ν = 0.5 or 0.59. Next, the prefactor
R (see Eq. (1) was estimated. The results are collected in Table 4.1. As
it follows from the enclosed data, the difference between the estimated
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prefactors R does not exceed 1% which proves that the scaling law (1)
holds consistently. These simulations confirm a crossover from the regime
of polymer melt to a good solution regime for each chain which is driven
by the quality of the solvent. Typical chain extension ratio is estimated
as (l0(N −1))0.09 ∼ 1.3 which is of the order of 2−4 unit lengths for our
particular model and this provides the lengthscale for brush separations
at which one expects solvent-mediated bridging.

pore geometry solvent l0 Rg R
d = 22, in-phase aAC = 40 (ν = 0.50) 0.893 1.909 0.463

aAC = 25 (ν = 0.59) 0.937 2.557 0.468
d = 20, out-of-phase aAC = 40 (ν = 0.50) 0.892 1.909 0.464

aAC = 25 (ν = 0.59) 0.936 2.558 0.468

Table 1. Results of fitting the average bond length l0 and radius of gyra-
tion Rg to the scaling law, Eq. 1 for the assumed values of the exponent
ν. Output: prefactor R in Eq. 1 is numerically consistent for all the
considered cases.

To characterize quantitatively the level of bridging between stripes
we introduce the overlap integrals Ix and Iz between polymer chains in
X and Z directions (in analogy to the case of uniform brushes [37]):

Ix =
∑

〈ik〉

∫ Lx

0

ρi(x)ρk(x)dx ·





∑

〈ik〉

∫ Lx

0

dx





−1

, (2)

Iz =

∫ d

0

ρbot(z)ρtop(z)dz ·

[

∫ d

0

dz

]−1

,

where ρi(x) is the density profile along X axis for polymer beads be-
longing to i-th stripe (averaged over Y and Z directions); ρbot(z) and
ρtop(z) are density profiles for polymer beads belonging to bottom or
top wall, respectively (averaged over X and Y directions). These density
profiles are illustrated in Fig. 6. The evaluation of Ix overlap integral
is performed over all 〈ik〉 pairs that are located at the same wall and
are adjacent in X direction (with the account of the periodic boundary
conditions).

Bridging of brushes involves certain amount of bending and/or
anisotropic stretching of polymer chains, these can be quantified via the
components of gyration tensor, Gxx, Gyy and Gzz . The components are
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Figure 6. Left frame illustrates density distributions ρi(x) of the polymer
beads in each i-th stripe along X axis averaged over Y and Z axes (the
distributions 1 − 4 belonging to the bottom surface are shown only).
Right frame illustrates density distributions of the polymer beads along
Z axis that belong to bottom and top surfaces (abbreviated as “bot” and
“top” respectively), the distributions are averaged in X and Y directions.

evaluated for each k-th chain

G
[k]
αβ =

1

N

N
∑

i=1

(r
[k]
i,α −R[k]

α )(r
[k]
i,β −R

[k]
β ), (3)

where α, β denote Cartesian axes, r
[k]
i,β are the positions of individual

monomers and R
[k] is the center of mass position of the k-th chain.

Then, G
[k]
αβ are averaged over chains and over time trajectory after the

morphology stabilizes itself, providing the estimates for Gxx, Gyy and
Gzz . One should mention that due to the symmetry of the pore in Y
direction, the Gyy component is found to be unchanged and it is not
considered in our analysis. The average radius of gyration Rg is defined
as R2

g = Gxx + Gyy + Gzz , and the average extension of chains can be
found from the maximal eigenvalue of the gyration tensor, σ2

max.

4.2. Solvent-mediated morphological changes

The properties introduced above are used to characterize solvent-
mediated bridging between stripes of brushes. At first we will consider
the case of one-component solvent of variable quality (tuned via aAC pa-
rameter, see above). The results are provided for the pore size of d = 20
and stripes od width w = 13 arranged out-of-phase (see Fig.7). With
a decrease of aAC towards the case of a good solvent (aAC = 25), one
observes a monotoneous increase of all the metric properties, Gxx, Gzz

and σ2
max. This quantifies the effect of polymer chains swelling due to the

crossover from the polymer melt to polymer in a good solvent regime.
The overlap integrals Ix and Iz have been found to become non-zero
at certain threshold value of aAC < 28. This indicates solvent-mediated
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Figure 7. Behavior of the overlap integrals Ix and Iz (left frame) and
the components Gxx and Gzz and maximal eigenvalue σ2

max of the gy-
ration tensor (right frame) upon the changes of the quality of the one-
component solvent. The quality of the solvent is defined via repulsion
parameter aAC between polymer (A) and solvent (C) beads, the value
of aAC = 25 represents the case of a good solvent.

bridging between droplets of polymer chains. The bridging happens al-
most simultaneously in both X and Z directions for this geometry of the
pore. In the view of our analysis, it is important to mention that all the
characteristics, Ix, Iz , Gxx, Gzz and σ2

max increase monotonically with a
decrease of aAC down to 25 with no peculiarities observed neither in the
behavior of metric properties and overlap integrals nor in the snapshots.

The case of one-component solvent of variable quality provides a
suitable reference point for a more complex case of a two-component
solvent composed of A and B beads. The repulsion parameter aAB is
chosen to be always equal to 40 in our study, therefore, the effective
“goodness” of such a mixture can be characterized by the fraction fB of
B beads (the mixture is a good solvent for fB = 0). The analogy with
one-component solvent is, however, not exact, as far as the mixture is
prone to segregation (see, e.g. Fig. 4 in Ref. [30]). Local inhomogeneities
may influence the way in which the brushes are bridged and, as the result,
the sequence of solvent-mediated morphologies may differ from the case
of one-component solvent. Hereafter we will consider fixed stripe width
of w = 13 and both: in- and out-of phase arrangements. The pore size
will be fine-tuned in each case and ranges from d = 19 to d = 24.

In the case of in-phase arrangement of the stripes we select three pore
sizes, namely d = 20, 22 and 24 (the distance between brushes in X and
Z directions is approximately equal for d = 22). The evolution of Ix, Iz ,
Gxx, Gzz and σ2

max upon the change of the fraction of fB from 0.5 down
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Figure 8. Behavior of the overlap integrals Ix and Iz (top row of frames)
and the components Gxx and Gzz and the maximal eigenvalue σ2

max

of the gyration tensor (bottom row of frames) upon the changes of the
effective quality of the two-component solvent of A and B beads. Effective
quality of the solvent is defined via the fraction fB of “bad solvent” beads
B. The case of in-phase arrangement of stripes of the width w = 13 is
shown at the pore sizes d = 20, 22 and 24.

to 0 is shown for each pore size in Fig. 8. One can compare these plots
with the curves displayed in Fig. 7 and observe that the metric proper-
ties of chains at f = 0.5 subject to the two-component solvent match
approximately their counterparts for the case of one-component solvent
at aAC = 28. This provides the estimate for an effective “goodness” of
the two-component solvent. Metric properties coincide for the case of
good solvent (f = 0 and aAC = 25, respectively).

When one moves away from fB = 0.5 towards 0 the behavior of all the
properties Ix, Iz , Gxx, Gzz and σ2

max differs much from the case of one-
component solvent. For the pore of d = 20, the bridging in Z direction
is observed first. This is indicated by a large hill at Iz centered around
the value of fB = 0.34 (top left frame in Fig. 8). To be able to form the
pillar morphology, the chains need to rearrange their selves preferentially
in Z direction as indicated by an increase of Gzz at the expense of Gxx

values (bottom left frame in Fig. 8). The value of Gzz = 3.69 found at
fB = 0.34 is of same order and even exceeds that observed at fB = 0,
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Figure 9. Sequence of morphologies obtained for d = 20 and for in-phase
arranged stripes of the width w = 13 at various fractions fB (indicated
at the bottom). Top row: color-coded densities of brush prevailing (blue)
and good solvent prevailing (green) regions, bottom row: bad solvent
prevailing regions (red). Morphologies: separate droplets (fB = 0.50);
solvent mediated pillars (fB = 0.36) and in-lined cylinders of B beads
(fB = 0.22).

namely Gzz = 3.56. This indicates that the chains within pillars are
in the regime of a good solvent. This is confirmed by the snapshots
shown in top-middle and bottom-middle columns of Fig. 9, where the
droplets are seen merged together by the good solvent beads. Therefore,
as the result of different miscibility of A and B components, the solvent
A nucleates by filling the gap between polymer droplets, and solvent
mediated transition from separate droplets to pillar morphology occurs.
With further decrease of fB, the pillars are also bridged in X direction.
This is indicated by an increase of Gxx values and is seen in the top-right
and bottom-right columns of Fig. 9.

With an increase of the pore size d to 22, the bridging ability in Z
direction is lessened giving a way for bridging along the walls. This is
demonstrated by the existence of local maxima and minima of Ix, Iz and
Gxx and Gzz components (see top-center and bottom-center frames in
Fig. 8). With further increase of d to 24 the situation is reversed with
respect to the case of d = 20. Now, the droplets are farer in Z direction
and their bridging is observed in X direction: Ix and Gxx posses maxima
centered around fB = 0.4 (top-right and bottom-right frames of Fig. 8).

Let us switch now to the case of out-of-phase arrangement of stripes.
The set of pore sizes d = 19, 20 and d = 21 are analyzed in this case
(the distance between brushes in X and Z directions is approximately
equal for d = 20). The behavior of Ix, Iz , Gxx, Gzz and σ2

max is shown
in Fig. 10. The limiting cases of d = 19 and d = 21 bear similarities
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Figure 10. The same properties as in Fig. 8 are shown for the case of
out-of-phase arrangement of stripes of the width w = 13 at the pore sizes
d = 19, 20 and 21.

to their respective counterparts (d = 20 and d = 24) for the in-phase
arrangement of stripes. Indeed, at d = 19 the polymer-rich droplets are
bridged in Z direction first with a decrease of fB. With further decrease
of fB the droplets are bridged in X direction. Situation is reversed at
d = 21.

The intermediate case of the pore size d = 20 is more interesting be-
cause it demonstrates solvent mediated switching between various mor-
phologies. When fB decreases away from 0.5, first the bridges in X di-
rection are formed. Both Ix and Gxx exhibit maxima centered around
fB = 0.36, cf. top-middle and bottom-middle frames of Fig. 10. This in-
dicates the formation of solvent mediated lamellar morphology, see snap-
shots in top-middle and bottom middle frames of Fig. 11. With further
decrease of fB, the bridges are formed in Z direction at the expense of
those that have been previously formed in X direction. This is indicated
by large value of Iz and practically zero value of Ix within the interval of
fB ∈ [0.23, 0.3]. The structure of this morphology is of simple meander
(see snapshots in top-right and bottom-roght frames of Fig. 11).

One can see that upon increase of the fraction of good solvent in the
system, the chains within each stripe swell and acquire certain bistability
properties. The chains can redistribute their mass either in X or in Z
direction (as indicated by the behavior of Gxx and Gzz components)
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Figure 11. Sequence of morphologies obtained for d = 20, for out-of-
phase arranged stripes of the width of w = 13 at various fractions of
fB. Separate droplets (fB = 0.50); modulated lamellar (fB = 0.36) and
meander (fB = 0.24) morphologies.

and form relevant bridges (as indicated by non-zero values of the overlap
integrals Ix and Iz). The histograms for the corresponding components
of the gyration tensor, f(Gxx) and f(Gzz) provide additional insight
into spatial redistribution of the polymer chains in various morphologies.
These histograms are shown in Fig. 12 for the case of pore size d = 20
and out-of-phase arrangement of the stripes of the width of w = 13.
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Figure 12. Distributions of the relevant gyration tensor components, Gxx

and Gzz for the various fractions fB (indicated in each frame). The case
of d = 20, w = 13 and out-of-phase arrangement of stripes is shown.
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The distribution function f(Gzz) is found to be essentially stretched
towards larger values of Gzz for meander (fB = 0.26) morphology and
at still lower values of fB. It exhibits a quite irregular shape, whereas
the distribution of f(Gxx) is similar to the Lhuillier form [36, 38, 39]
that was found as a typical distribution of experimental radii of gyration
for long polymers. Broad distributions of the gyration tensor of both
components indicate the existence of weakly and highly deformed chains
within each stripe. It is plausible to assume that highly deformed chains
are found within the bridges that connect polymer droplets in solvent
mediated pillar, meander and possibly other morphologies. A measure
for the average stretch of chains is provided by the maximal eigenvalue
of the gyration tensor, σ2

max. As it follows from the set of plots shown
in Figs. 8 and 10, the values of σ2

max exhibit local maxima for certain
morphologies. The values of these maxima are higher as compared to
the case of one-component solvent mapped into an effective value of aAC

(see Fig. 7). This indicates that the loss of conformation entropy due
to excess average stretch of chains is compensated by an decrease of the
enthalpy, due to an increase of contacts between similar beads of type A.

5. Summary

In this work we consider formation and transitions between the nanos-
tructures that occur inside a pore modified by stripes of tethered poly-
mer brushes filled by a binary mixture. The beads A of filler solvent are
identical to these of chain monomers, while the beads B exhibit partial
mixing with beads A. Two options of in- and out-of-phase arrangement
of polymer stripes are considered for a broad range of pore geometies
and at various composition of A and B beads. For some cases we also
undertook supplementary simulations with the one-component solvent
of variable quality which replaces the mixture, to serve as a reference.

The change of the composition of the fluid inside the pores has a
great impact on the developing structures. For pore geometries with
narrow stripes the problem of the description of microphase separation
inside the pore reduces to quasi two-dimensional; in the case of mod-
erately wide stripes and narrow pore one faces quasi one-dimensional
demixing; whereas for very wide stripes the system is split into quasi
two-dimensional and bulk regions.

The most interesting, in our view, effects that demonstrate solvent
mediated changes in the nanostructures occur for the geometries with
weakly separated stripes of polymer chains. With the increase of A com-
ponent, the latter dissolves the polymer chains causing their swelling.
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As the result of this, the system acquires a bistability in terms of ei-
ther bridging adjacent stripes along the wall or bridging opposite stripes
across the pore. Stable morphology is formed as the result of a compe-
tition between seggregation of A and B beads and the deformation of
the chains. In our simulations we observe morphology switching due to
subtle changes in pore geometry and/or the composition of a mixture.

We found following solvent mediated morphologies: in-lined cylinders
(made of one component), meander structure and wave-shaped modu-
lated internal channels. Suggested applications of such structures (af-
ter, possibly, making the structure permanent via crosslinking) involve
nanopatterning for manufacturing of nanochannels, nanorods and simi-
larly sized objects.

So far our studies concentrated on the equilibrium DPD simulations.
However, it would be of interest to check how the morphologies change if
the fluid would undergo a pressure-driven flow along the pore axis. The
last problem is currently under study in our laboratories.
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Košice; S. Thurner, Vienna; M. Tokarchuk, Lviv; I. Vakarchuk, Lviv;
V. Vlachy, Ljubljana; A. Zagorodny, Kyiv

CONTACT INFORMATION:
Institute for Condensed Matter Physics
of the National Academy of Sciences of Ukraine
1 Svientsitskii Str., 79011 Lviv, Ukraine
Tel: +38(032)2761978; Fax: +38(032)2761158
E-mail: cmp@icmp.lviv.ua http://www.icmp.lviv.ua


	Introduction
	The model
	Solvent-mediated transitions in special geometries
	Wide stripes geometry
	Narrow stripes geometry
	Pillar geometry

	Competition between solvent mediated morphologies for closely arranged stripes
	Mechanism for solvent-medialted morphologies and quantitative characterization of brush bridging and chains deformation
	Solvent-mediated morphological changes

	Summary

