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Квантування майже колових орбiт у формалiзмi iнтеґралiв
дiї Фоккера. II. Траєкторiї Редже

А.Дувiряк

Анотацiя. Запропоновано релятивiстичну кваркову модель мезонiв,
сформульовану в рамках формалiзму iнтеґралiв дiї типу Фоккера.
Мiжкваркова взаємодiя у нiй переноситься скалярно-векторною су-
перпозицiєю полiв, що описуються рiвняннями з вищими похiдними.
В нерелятивiстичнiй границi модель описує двочастинкову систему з
лiнiйним потенцiялом. Для аналiзу моделi в iстотно релятивiстичнiй
областi застосовано наближення збурених колових орбiт та певний
принцип вiдбору фiзично змiстовних розв’язкiв, що дає змогу здiй-
снити канонiчне квантування моделi. Показано, що модель добре вiд-
творює особливостi спектроскопiї легких мезонiв.

Quantization of almost-circular orbits in the Fokker action for-
malism. II. Regge trajectories

A. Duviryak

Abstract. A relativistic quark model of mesons formulated within the
formalism of Fokker-type action integrals is proposed, in which an in-
terquark interaction is mediated by scalar-vector superposition of higher
derivative fields. In the non-relativistic limit the model describes a two-
particle system with the linear potential. In order to analyze the model
in the essentially relativistic domain the perturbed circular orbit ap-
proximation and certain principle of selection of physically meaningful
solutions are applied which permit one to perform the canonical quanti-
zation of the model. It is shown that the model reproduces well specific
features of the light meson spectroscopy.
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1. Introduction

It is known that spectra of heavy mesons (contaning c and b quarks)
are described well by means of potential models with the non-relativistic
Cornell potential u(r) = u0 − α/r + ar and various quasi-relativistic
corrections of scalar-vector type [1–4]. The potential is QCD-motivated:
its Coulomb part is a non-relativistic limit of the one-gluon exchange
interaction while the linear part comes from the Wilson loop. The latter
is also related to a string conception of hadrons [5–7]. Constants u0, α
and a vary from one model to another. In particular, the string tension
parameter a is frequently used as an adjustable parameter from the range
a = 0.15 ÷ 0.3 GeV2 [1–4] although the most conventional value a =
0.18 ÷ 0.2 GeV2 is substantiated by QCD simulations on the lattice [8].

Mass spectra of light mesons (consisting of u, d and s quarks) possess
characteristic features which can be summarized roughly in the following
idealized picture [7, 9–11]:

1. Meson states are clustered in the family of straight lines in the
(M2, j)–plane known as Regge trajectories.

2. Regge trajectories are parallel; slope parameter σ is an universal
quantity, σ = 1.15 ÷ 1.2 GeV2.

3. As states of quark-antiquark system mesons can be classified non-
relativistically, by ℓ and nr (the orbital and radial quantum num-
bers) as well as by s and j (the total spin and angular momentum).

4. Spectrum is ℓs-degenerated, i.e., masses are distinguished by ℓ (not
by j or s) and nr.

5. States of different ℓ and nr possess an accidental degeneracy which
causes a tower structure of the spectrum.

Items 1–4 imply that in the (M2, ℓ)–plane meson states form into strait
lines too: the principal (nr = 0) Regge trajectory built up of the set of
degenerated singlet (s = 0) and triplet (s = 1) states, and the family of
daughter trajectories (nr = 1, 2, . . . ). Hence energy levels of q-q̄ system
can be described by a formula:

M2 ≈ σ(ℓ + κnr + ζ), (1.1)

where the intercept constant ζ depends on a flavor content of mesons
(ζ ≈ 1/2 for (π-ρ)–family of mesons; it grows together with quark mass-
es). Finally, the accident degeneracy (the item 5) constraints the con-
stant coefficient κ determining the spacing of daughter trajectories to
an integer or a rational number [12].
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Light mesons are essentially relativistic two-quark systems, and con-
siderable amount of various relativistic models has been invented for
their description. The most elegant and historically important among
them are the simple relativistic oscillator (and its variations) [13–15]
and string models [5–7]. They lead exactly or asymptotically (at large
ℓ) to the formula (1.1) with κ = 2. Besides, the string models tie the
slope and the string tension together, σ = ka, with the slope coefficient
k = 2π ≈ 6.3, so that, the value a = 0.18 GeV2 is preferable.

Farther relativistic potential models are based on various relativi-
stic generalizations of Schrödinger equations with a confining (Cornell
or more complicated) potential such as one- [16–18] and two-particle
[10,11,19–23] Dirac equations etc [24,25]. These models incorporate the
description of heavy and light hadrons and, in most, reveal asymptoti-
cally linear Regge trajectories (1.1) of the slope σ = ka with the slope
coefficient k = 4 ÷ 8 and with the daughter spacing coefficient κ = 2.
With this kind of degeneracy, i.e., of (ℓ+2nr)-type, however, a certain
number of states falls out the description [7, 10]. The value κ = 1 is
more adequate to experimental data. In particular, it follows (in the li-
mit ℓ ≫ 1) from the mass formulae derived by means of the Dirac-type
equation model [25] and selection rules superinduced by hands, and used
for a description of π-, ρ- [26] and K-trajectories [27].

In the present paper we consider the relativistic potential model
of mesons which reveals asymptotically linear Regge trajectories with
native (ℓ+nr)-degeneracy. A classical prototype of the model was for-
mulated independently by Rivacoba [28] and Weiss [29] by means of
the Fokker-type action integral [30, 31] related, in turns, to a higher-
derivative gauge field theory [32, 33]. Namely, the interaction between
particles is described in terms of a time-symmetric Green function of a
fourth-order field equation.

Hamiltonization and quantization of Fokker-type systems is rather
challenging problem in view of a time-nonlocal character of the interac-
tion [34–37]. The Hamiltonian description in this case can be built by
means of approximated methods [34, 36] which, in most, are not appro-
priate for strongly coupled systems.

For particular time-symmetric Fokker-type systems one can invent
naturally time-asymmetric counterparts in which a time-nonlocality is
removed [38]. The Rivacoba-Weiss model is the case. For this but time-
asymmetric model an exact Hamiltonian formulation (see [38] for general
formalism) and the corresponding quantum description was elaborated
[32,39]. In despite of an admired degeneracy (i.e., with κ = 1), the slope
of asymptotic Regge trajectories turned out to be overestimated, with
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the coefficient k = 3
√

6 ≈ 10.4. The reason perhaps resides in the fact
that the vector character of interaction brought into the model from
the underlying gauge theory is not quite suited to an actual nature of a
confining interaction in hadrons. Unfortunately, the Fokker-type model
of scalar confinement without time-nonlocality is unknown.

Recently, a quantization method of two-particle Fokker-type systems
in an almost-circular-orbit (ACO) approximation has been proposed by
the author [40]. The method is appropriate for strongly coupled systems.
Here it is applied to a quantization of the time-symmetric Rivacoba-
Weiss model. Moreover, the analogue of the Rivacoba-Weiss model with
scalar confining interaction is built, and the scalar-vector superposition
model is considered. It is studied an asymptotic behavior of the Regge
trajectories, from which the slope and daughter spacing coefficients are
found and compared with data from experiment and other potential
models.

2. Various formulations of Fokker-type action integral

with a vector linear confinement

We start with the manifestly covariant two-particle action

I = Ifree + Iint where Ifree= −
2

∑

a=1

ma

∫

dτa

√

ẋ2a, (2.1)

and Iint is the Fokker action integral [30, 31] describing an interaction.
For the arbitrary interaction of a vector type we have:

I
(v)
int = −

∫∫

dτ1 dτ2 ẋ1 ·ẋ2G(x212). (2.2)

In eqs. (2.1) and (2.2) ma is a rest mass of ath particle (a=1, 2); xµa(τa)
(µ=0, 3) are covariant coordinates of a world line of ath particle pa-
rameterized by an arbitrary evolution parameter τa; ẋ

µ
a(τa) ≡ dxµa/dτa;

xµ12 ≡ xµ1 (τ1) − xµ2 (τ2); x212 ≡ ηµνx
µ
12x

ν
12; the function G(x212) is usual-

ly proportional to a symmetric Green function of an appropriate field
equation, or it may be chosen phenomenologically. We use the time-like
Minkowski metrics, i.e., ‖ ηµν ‖ = diag(+,−,−,−), and put the light
speed to be unit, c = 1.

If one chooses G(x212) ∝ δ(x212) where δ(x2) is the symmetric Green
function of the d’Alembert equation �δ(x2) = 4πδ(x), one arrives at the
Wheeler-Feynman electrodynamics [41].



4 Препринт

Let us consider the Fokker-type action proposed by Weiss [29]. It
corresponds to the choice G(x2) ∝ Θ(x2) in (2.2) (where Θ(x) is the
Heaviside step function) with some coefficient of proportionality which
we specify here as follows:

G(x2) = − 1

2
aΘ(x2), a > 0. (2.3)

In the non-relativistic limit the Weiss action leads [42] to the interaction
potential:

U(r) =

∫ ∞

−∞

dϑG(ϑ2 − r2) = −a
∫ ∞

r

dϑ = a(r −∞) (2.4)

which corresponds to a linear confinement up to unessential infinite con-
stant.

As it is shown in [32, 33] the Weiss action principle is related to the
higher-derivative theory of the vector field proposed by Kiskis [43] and
to its later non-Abelian version [44,45]. In particular, the function Θ(x2)
is a symmetric fundamental solution of the equation:

�2Θ(x2) = 16πδ(x). (2.5)

The Fourier transform of this solution ∝ 1/k4 coincides with the infrared
asymptotics of gluon propagator [44].

An infinite constant in r.-h.s. of (2.4) indicates that the Fokker action
integral (2.2) with the Green function (2.3) is not well posed from the
mathematical viewpoint. A formal causal structure of the interaction is
that as if each point (say, xa) of a world line of one particle is related to
infinite segments of another word line lying inside the light cone with the
center xa, and the contribution of these segments in the action is infinite;
see Fig.1a. Physically it is not crucial since a variation of the action
(2.1)-(2.3) turns Θ(x2) into its derivative Θ′(x2) = δ(x2), and Euler-
Lagrange equations relate points of particle world lines along generatrices
of light cones only; see Fig.1b. Nevertheless, integrals of motion such as
the energy and the angular momentum turns out divergent. In order to
avoid this difficulty one can reformulate the Fokker action (2.2), (2.3)
via the integration by parts [46]:

I
(v)
int =

a

2

∫ ∞

−∞

∫ ∞

−∞

dτ1 dτ2 ẋ1 ·ẋ2 Θ(x212)

= − a

∫ ∞

−∞

∫ ∞

−∞

dτ1 dτ2 (x12 ·ẋ1)(x12 ·ẋ2) δ(x212) (2.6)

− a

4
Θ(x212)x212

∣

∣

∣

τ1=∞

τ1=−∞

∣

∣

∣

τ2=∞

τ2=−∞
.
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The last divergent term does not contribute in the equations of motion,
and we arrive at the equivalent formulation of the problem proposed
earlier by Rivacoba [28]. The Fokker-type integral (2.6) itself describes
an interaction with the causal structure of Fig.1b, as in the Wheeler-
Feynman electrodynamics, and leads to finite integrals of motions.

x

x1
x2

1 2

x
0

x

x1
x2

1 2
x

x1 x2

1 2

b a c

x
0

x
0

Figure 1. Interaction causal structure of various Fokker-type action inte-
grals (specified in the text). Solid curves depict world lines of particles 1
and 2. Arrows and thin lines depict generatrices and inwards (a) or out-
wards (c) of light cones where points of particle world lines are related.

One can propose third equivalent formulation of the problem which is
most convenient for our purpose. Using the equality Θ(x2) = 1−Θ(−x2)
one obtains:

I
(v)
int =

a

2

∫ ∞

−∞

∫ ∞

−∞

dτ1 dτ2 ẋ1 ·ẋ2
[

1 − Θ(−x212)
]

= −a
2

∫ ∞

−∞

∫ ∞

−∞

dτ1 dτ2 ẋ1 ·ẋ2 Θ(−x212) (2.7)

+
a

2
x1 ·x2

∣

∣

∣

τ1=∞

τ1=−∞

∣

∣

∣

τ2=∞

τ2=−∞
.

The interaction causal structure of the integral (2.7) is shown in Fig.2c.
The integrals of motion are the same as in the Rivacoba version of the
model. This version (i.e., (2.7)) of the Weiss action (2.2), (2.3) is equally
substantiated by the Kiskis field theory since the function −Θ(−x2)
satisfies the equation (2.5) as well.

3. ACO approximation in the Fokker-type dynamics

The construction of the Hamiltonian description of Fokker-type systems,
as a step towards quantization, is a rather difficult task which can be
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realized within a certain perturbation scheme. A commonly used quasi-
relativistic approximation scheme (see, for example, [34]) works well if
relativistic effects are weak. But light mesons, as two-quark systems, are
essentially relativistic, and they need another approach.

Here it is used the almost-circular-orbit (ACO) approximation
scheme developed in the previous work of the author [40]. The scheme is
based on the fact that all known in literature two-particle Fokker-type
systems with attractive (in some meaning) interaction posses exact so-
lution of the shape of concentric planar circular particle orbits of radii
Ra(Ω) dependent on an angular velocity Ω; see [47–49]. In [40] this is
proven for a general two-particle Fokker-type system:

I =

2
∑

a=1

∫

dta La (ta,xa(ta), ẋa(ta))

+

∫∫

dt1 dt2 Φ (t1, t2,x1(t1),x2(t2), ẋ1(t1), ẋ2(t2)) (3.1)

which is invariant under the Aristotle group (including time and space
translations and inversions, and space rotations), at least. Manifestly
covariant Fokker-type systems [28–31, 33, 41] which by construction are
Poincaré-invariant (and the more Aristotle-invariant) as well as possess-
ing reparametrization invariance can be reduced to the form (3.1) by
means of the choice of the evolution parameter τa = ta ≡ x0a; then the
particle positions are xa(ta) = {xia(ta)} (i = 1, 2, 3). The manifestly
covariant Rivacoba-Weiss system (2.1), (2.6) (or (2.7)) does possesses
exact circular orbit solutions even in a strongly relativistic domain [28].
Thus a set of these solutions can serve as a zero-order approximation in
a perturbative treatment of the Fokker-type dynamics.

The invariance of the action (3.1) with respect to time translations
and space rotations leads to an existence of the energy an the angular
momentum integrals of motion [50]:

E =

2
∑

a=1

{

ẋa ·
∂

∂ẋa
− 1

}

(La + Λa) +

∫∫

� dt1 dt2

{

∂

∂t1
− ∂

∂t2

}

Φ, (3.2)

J =

2
∑

a=1

xa×
∂

∂ẋa
(La + Λa)

− 1

2

∫∫

� dt1 dt2

{

(x1 + x2)× ∂

∂x
+ ẋ1×

∂

∂ẋ1
− ẋ2×

∂

∂ẋ2

}

Φ, (3.3)
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where

Λ1 =

∫ ∞

−∞

dt2 Φ, Λ2 =

∫ ∞

−∞

dt1 Φ,

∫∫

� ≡
∫ t1

−∞

∫ ∞

t2

−
∫ ∞

t1

∫ t2

−∞

.

On the circular orbits these integrals are functions of the angular ve-
locity: E(0)(Ω) and J(0)(Ω), J (0)‖Ω so that we can get J(0)(Ω) where
J(0) = |J (0)| and Ω = |Ω|.

Let us transit to a non-inertial reference frame which is uniformly
rotating with the angular velocity Ω. This can be done via the change of
variables xa(ta) → za(ta): xa(ta) = S(ta)za(ta) where S(t) = exp tΩ ∈
SO(3) and the skew-symmetric matrics Ω is dual to the vector Ω. Within
this reference frame a circular motion of particles is described by static
vectors Ra such that R2 ↑↓ R1. Then small perturbations of circular
orbits are characterized by deviation vectors ρa(ta) = za(ta) −Ra.

Expanding the action (3.1) in powers of ρa yields in the lowest non-
trivial order the quadratic form:

I(0) = 1

2

∑

kl

∫∫

dt dt′ ρk(t)Dkl(t− t′)ρl(t′), (3.4)

where the kernel matrics D(t− t′) = ‖Dkl(t− t′)‖ is invariant under time
translations and reversion: DT(t′ − t) = D(t− t′) (here the multi-indeces
k, l = (a, i), (b, j) has been used). Corresponding equations of motion
form a time-nonlocal linear homogeneous system:

∑

l

∫

dt′Dkl(t− t′)ρl(t′) = 0, (3.5)

which possesses a certain fundamental set of solutions. Among them the
exponential solutions ρk(t) = ek(ω)e−iωt are of interest. Substituting
them into the system (3.5) yields the set of algebraic equations:

∑

l

Dkl(ω)el(ω) = 0, (3.6)

which amounts the eigenvalue-eigenvector problem for the polarization
vector ek(ω) and the frequency ω. The latter is determined by means
the secular equation detD(ω) = 0 in terms of the dynamical matrix
D(ω) =

∫

dtD(t)eiωt. In view of time-nonlocality of the problem (3.5)
the matrix entries Dkl(ω) are, in general, non-polynomial functions of
ω, and the set of solutions of the secular equations may be infinite.
Due to symmetric properties of the dynamical matrix this set consists of
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duplets if ωα ∈ R or quadruplets {±ωα,±ω∗
α, α = 1, 2, . . . } if Im ωα 6= 0.

In the latter case the corresponding solution is unbounded and cannot
be described correctly within ACO approximation (where ρk must be
small). Thus among all eigenfrequencies we select real ones only and
arrive at the following solutions of the system (3.5):

ρk(t) =
∑

α

{

Aαe
k
α(ωα) e−iωαt +A∗

α

∗
ekα(ωα) eiω

∗

αt
}

, (3.7)

where complex amplitudes Aα of oscillations (modes) parameterize the
phase space of the system. Only one mode Ar corresponding to mutual
radial particle oscillations with the frequency ωr is physically meaningful.
Other modes are either kinematic ones which can be reduced via redef-
inition of zero-order circular orbits, or non-physical ones which reveal
physically unacceptable behavior of particles and arose as a mathemati-
cal artefact of the theory (as in the Lorentz-Dirac equation, for example).
All such modes should be discarded. After this is done and the polari-
zation vectors ekα(ωα) in (3.7) are appropriately normalized, the angular
momentum and the energy of the system take the form:

J = J(0)(Ω), (3.8)

E = E(0)(Ω) + E(2)(Ω, Ar) (3.9)

where E(2)(Ω, Ar) = ωr(Ω)|Ar |2. (3.10)

Other integrals of motion following from the Poncaré-invariance of the
system vanish; they are the total momentum, P = 0 and the center-of-
mass integral (boost), K = 0. Thus the ACO approximation brings the
system into the center-of-mass reference frame.

In order to construct the center-of-mass canonical description of the
system one should, first of all, to invert the relation (3.8) with respect
to Ω = Ω(J). This permits us to obtain the center-of-mass Hamiltonian
which is nothing but the total mass of the system:

M = M(0)(J) +M(2)(J, |Ar |) ≡
{

E(0)(Ω) + ωr(Ω)|Ar|2
}

Ω=Ω(J)
. (3.11)

It is understood as a function of J = |J | where components Ji (i = 1, 2, 3)
of the intrinsic angular momentum J of the system satisfy the Poisson
bracket relations (PBR):

{Ji, Jj} = εij
kJk, (3.12)

and of the amplitude of interparticle radial oscillations Ar satisfying the
PBR:

{Ar, A
∗
r} = −i , {Ar, Ar} = {A∗

r , A
∗
r} = 0. (3.13)
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In order to transit to an arbitrary reference frame one must introduce
canonical variables characterizing the state of the system as a whole, for
example, the total momentum P and the canonically conjugated CM
position variable Q. Then a complete Hamiltonian description of the sys-
tem, i.e., ten canonical generators of the Poincaré group, are determined
in terms of M , J , P and Q via the Bakamjian-Thomas (BT) model or
equivalent constructions [51, 52]. The quantization of BT model is well
elaborated [53, 54].

In present work we are interested mainly in the spectrum of the mass
operator M̂ . It can be obtained directly from (3.11) by means of the
following substitution:

J → Ĵ ; Ar → Âr, A∗
r → Â†

r;

J →
√

Ĵ2 →
√

ℓ(ℓ+ 1) ≈ ℓ+ 1

2
, ℓ = 0, 1, ...; (3.14)

|Ar|2 → 1

2
(Âr â

†
r + â†rÂr) → nr + 1

2
, nr = 0, 1, ... (3.15)

Here the condition nr ≪ ℓ is implied, due to a perturbation procedure.

4. Rivacoba-Weiss model in ACO approximation

Let us consider a circular-orbit solution of the Rivacoba-Weiss model.
Using the action (2.1), (2.7) for a system of two equal particles of the
massma ≡ m (a = 1, 2) and following the general methodology proposed
in [49] or [40], one states a relation between the angular velocity Ω of
a motion of particles along circular orbits and the radius R of these
orbits. It is convenient, instead of R, to handle with particle velocities
va ≡ v = RΩ. Then the relation between Ω and v can be determined
implicitly, or parametrically, via an auxiliary angle φ. It is related with
the velocity v by means of the equality:

f(φ) ≡ φ2 − 4v2 cos2(φ/2) = 0 (0 ≤ v < 1) =⇒

=⇒ v2 =
φ2

2(1 + cosφ)
or v =

φ/2

cos(φ/2)
. (4.1)

In turns, we have for Ω

m

a
Ω =

φ

Γv2

[

1 − (1 − v2)φ

f ′(φ)

]

≡ f
(v)
Ω (φ), (4.2)

where f ′(φ) ≡ df(φ) /dφ , Γ ≡ (1 − v2)−1/2 and the superscript “(v)”
refers to the vector interaction. Let us note that v ∈ (0, 1), R ∈ (0,∞)
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and Ω ∈ (∞, 0) if φ ∈ (0, φ1) where the angle φ1/2 ≡ χ1 = 0.235 π is a
positive solution of the transcendental equation χ = cosχ.

The integrals of (circular) motion M(0) and J = J(0) are convenient
to write down as follows:

ΩM(0)

a
=

2φ

v2

[

1 + v2 − φ(1 + v4 cosφ)

f ′(φ)

]

≡ f
(v)
M (φ), (4.3)

Ω2J

a
= 1

2
f ′(φ) ≡ f

(v)
J (φ). (4.4)

They grow as M(0) ∈ (2m,∞) and J ∈ (0,∞) if φ ∈ (0, 2χ1).
In order to study the system in ACO approximation we need to con-

struct the reduced 2×2 dynamical matrix D⊥ [40] and then to calcu-
late the frequency ωr of radial oscillations or, equivalently, the fraction
λ = ωr/Ω, as a function of either Ω, J , v or (which is most convenient)
φ. This is done in the Appendix A.

Here we are interested of an asymptotic expression for the total mass
(3.11) squared at J → ∞. Within the perturbation procedure the in-
equality M(2) ≪M(0) is implied. Taking this into account one obtains:

M2 ≈ M2
(0) + 2M(0)M(2) = M2

(0) + 2M(0)ωr|Ar|2

=
M2

(0)

J

{

J + 2
JΩ

M(0)
λ|Ar|2

}

. (4.5)

If the following limits

k = lim
J→∞

M2
(0)

J
= lim

φ→φ1

f2
M (φ)

fJ(φ)
, (4.6)

κ = 2 lim
J→∞

JΩ

M(0)
λ = 2 lim

φ→φ1

fJ(φ)

fM (φ)
λ(φ) (4.7)

exist and are finite, the asymptotic value for the total mass squared (4.5)
takes the form

M2 ∼ ka{J + κ|Ar |2} at J → ∞ (4.8)

and, upon quantization (3.12), recovers the Regge trajectories (1.1) with
σ = ka. In the present case of the vector confinement model

k(v) = 8χ1(1 + sinχ1) ≈ 9.896, κ(v) = 1. (4.9)

An asymptotic value of the daughter spacing coefficient κ(v) = 1
matches well for a description of the tower structure of meson spectra
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(see item 5 in the Section 1). But the slope coefficient k(v) ≈ 9.896
exceeds conventional values k = 4 ÷ 8 which occur in various potential
models. A plausible reason of this disagreement in that the purely vector
nature of interaction in the model does not correspond to the actual
relativistic structure of the confinement interaction which is commonly
opined as of scalar [2, 10, 22] or scalar-vector [4, 16–19] type.

In order to confirm or challenge this assumption we construct in
the next section the scalar analogue of the Rivacoba-Weiss confinement
model.

5. The Fokker-type action integral with scalar linear

confinement

Let the two-particle action to include the free-particle terms (2.1) and
the Fokker-action integral of a scalar type [33]:

I
(s)
int = −

∫∫

dτ1 dτ2

√

ẋ21

√

ẋ22G(x212). (5.1)

If the function G(x2) is chosen in the form (2.3) it is expected that the
action (2.1), (5.1) describes the scalar confinement interaction. Indeed,
the action (5.1) can be derived from the higher-derivative theory of scalar
field [55].

In this case however one encounters even more significant divergences
as in the vector-type model since not only the action itself and integrals
of motion but also the equations of motion are ill-posed. Fortunately, the
remedy to set the scalar model properly is the same: one replaces the
function (2.3) by

G(x2) = 1

2
aΘ(−x2), a > 0, (5.2)

which is analogous to the transition from the action (2.2), (2.3) to (2.7)
in the case of Weiss model. The replacement of the function (2.3) by (5.2)
in the action (5.1) may also be treated as a renormalization of particle
rest masses:

m0 a → ma = m0 a −
a

4

∫ ∞

−∞

dτā

√

ẋ2ā, a = 1, 2, ā = 3 − 1, (5.3)

where m0 a is an infinite bar mass of ath particle and ma is finite.
A subsequent consideration of the scalar model is similar to one in the

vector case. The system of equal rest masses is considered. Dynamical
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characteristics of circular orbit solution are parameterized by the angle
φ. In particular, for the angular velocity Ω one can obtain:

m

a
Ω =

φ

Γ

[

(1 − v2)φ

v2f ′(φ)
− 1

]

≡ f
(s)
Ω (φ), (5.4)

where f ′(φ), v and Γ as functions of φ are defined in section 4. In contrast

to the vector case, here f
(s)
Ω (φ) → 0 if φ → φ0 6= φ1 where φ0/2 ≡ χ0 is

a positive solution of the transcendental equation:

3χ2 cosχ+ 2χ3 sinχ− cos3 χ = 0, χ ∈ [0, π/4]. (5.5)

The latter by means of the substitution χ = π/2− 3ψ can be reduced to
the form:

ψ =
π

6
− sin 3ψ

6 cosψ
, ψ ∈ [π/12, π/6] (5.6)

which is convenient to iterate the numerical solution: χ0 = 0.151π < χ1.
It is surprisingly that particle velocity v → 0.535 < 1 at χ → χ0 while
orbit radus R → ∞. This differs the scalar model from the vector one in
which v → 1 at R → ∞. For the integrals of (circular) motion we have:

ΩM(0)

a
=

2φ2(1 − v2)2

v2f ′(φ)
≡ f

(s)
M (φ), (5.7)

Ω2J

a
= (1 − v2)φ ≡ f

(s)
J (φ). (5.8)

It is easy to verify that M(0) ∈ (2m,∞) and J ∈ (0,∞) if φ ∈ (0, 2χ0).
Using the functions (5.7), (5.8) in eqs. (4.6), (4.7) and taking limits

at φ → φ0 (instead of φ → φ1) yields the slope and daughter spacing
coefficients:

k(s) = 2.716, κ(s) = 1.902. (5.9)

The latter is close to 2, as in the oscillator-like and some string relativistic
models of mesons [7, 13–15]. The accidental degeneracy and thus the
tower structure of the mass spectrum is recovered approximately. Again,
the slope coefficient is not appropriate (similarly to the vector model),
but it is considerably less than the conventional values 4÷8.

The difference between the vector and scalar models suggests that
general features of the light meson spectroscopy may be recovered (at
least, asymptotically) within the Fokker-type model with a scalar-vector
confining interaction.
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6. The Fokker-type action integral with scalar-vector

confining superposition

The Fokker-type system of two particles bound via superposition of
scalar and vector confining interactions is naturally defined by means
of the action (2.1) with

I
(ξ)
int = (1 − ξ)I

(s)
int + ξI

(v)
int , (6.1)

where I
(s)
int and I

(v)
int are defined in eqs. (5.1), (5.2) and (2.7), respectively,

while ξ ∈ [0, 1] is a mixing parameter.

All the functions f
(ξ)
Ω (φ), f

(ξ)
M (φ) and f

(ξ)
J (φ) determining the dy-

namics and integrals of circular motion of this model are superpositions
of the functions (4.2)-(4.4) and (5.4), (5.7), (5.8):

f (ξ)(φ) = (1 − ξ)f (s)(φ) + ξf (v)(φ). (6.2)

Then the function [M
(ξ)
(0) (J)]2 which is a classical analogue of the princi-

pal Regge trajectory, can be presented in the parametric form:

[

M
(ξ)
(0)

]2

m2
=

[

f
(ξ)
M (φ)

f
(ξ)
Ω (φ)

]2

, (6.3)

aJ

m2
=

f
(ξ)
J (φ)

[

f
(ξ)
Ω (φ)

]2 ,
φ ∈ [0, φξ],

ξ ∈ [0, 1];
(6.4)

it is shown in figure 2. The maximal angle φξ/2 ≡ χξ is the smallest

positive root of the equation f
(ξ)
Ω (2χ) = 0. It grows monotonically over

the segment χξ ∈ [χ0, χ1] if ξ ∈ [0, 1/2], and χξ = χ1 if ξ ∈ [1/2, 0].
Similarly, the maximal speed of particles (at R → ∞ when M(0) → ∞
and J → ∞) grows monotonically, v ∈ [0.535, 1] if ξ ∈ [0, 1/2], and v = 1
if ξ ∈ [1/2, 1].

The slope and daughter spacing coefficients can be calculated similar-
ly to the previous cases, i.e., using eqs. (4.6) and (4.7) with the limiting
angle φξ (instead of φ1). One can proof that the following equality holds:

lim
φ→φξ

f
(ξ)
J (φ)

f
(ξ)
M (φ)

=
1

2
, ξ ∈ [0, 1]. (6.5)

Thus the formula (4.7) for the daughter spacing coefficient simplifies:

κ(ξ) = lim
φ→φξ

λ(ξ)(φ), ξ ∈ [0, 1]. (6.6)
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Figure 2. Classical Regge trajectories for different values of the mixing
parameter ξ.

The function λ(ξ)(φ) is determined numerically from the secular equation
det D̄(ξ)(λ) = 0 for the matrix (A.17); see Appendix where the graph of
λ(ξ)(φ) is presented in fig. 5.

Both the slope and daughter spacing coefficients are functions of the
mixing parameter. In particular,

k(ξ) = ξk(v), κ(ξ) = 1, ξ ∈ [1/2, 1]. (6.7)

A behavior of these functions on the whole segment ξ ∈ [0, 1] is presented
in fig. 3. Grid lines on the graphs take values of ξ, k and κ into a mutual
accordance for particular cases ξ = 1/2, 1 and k = 4, 2π, 8.

It is seen from these graphs that the slope coefficient k(ξ) is a
monotonically increasing function of the mixing parameter ξ: k(ξ) ∈
[2.716, 9.896] if ξ ∈ [0, 1]. This segment includes conventional values of
k = 4÷8 which occur in non-relativistic and relativistic potential models.

Degeneracy properties of the system with scalar-dominating confine-
ment interaction (i.e., at ξ < 1/2) differ crucially from those of ξ > 1/2
case. In particular, the vector-dominating model possesses the asymp-
totic accidental degeneracy of (ℓ+nr)-type. Since one can provide in this
case an arbitrary value for k from the segment k(ξ) ∈ [4.948, 9.896], the
vector-dominating model may be compared to variety of non-relativistic
potential models and string model.

For the scalar-dominating model the lower conventional bound k = 4
for the slope is achieved at the mixing ξ ≈ 0.37 which, in turns, leads to
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Figure 3. Slope (left graph) and daughter spacing (right graph) coeffici-
ents vs mixing parameter in the scalar-vector model. Grid lines connect
values ξ with k and κ at ξ = 1/2, 1 and k = 4, 2π, 8.

the daughter spacing κ ≈ 3/2. The accidental degeneracy is present but
somewhat hidden in this case.

Upon quantization of the model the mass squared spectrum is cal-
culated by means of the quantization rules (3.14)–(3.15) used in the
classical expression (4.5). Practically, one substitutes J = ℓ+ 1

2
in l.-h.s.

of (6.4) and solves this equation for angles φℓ (ℓ = 0, 1...) which, in turns,
are used as arguments of the functions (6.3), fΩ(φ) and λ(φ) in r.-h.s. of
(4.5).
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Figure 4. Quantum Regge trajectories for a = 0.18 GeV2, m = 0.15 GeV
and ξ = 0.63. The asymptotic slope σ = 2πa = 1.15 GeV2, the daughter
spacing κ = 1.
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Let us note that classical Regge trajectories (6.3), (6.4) (and fig. 2)
start from J = 0 corresponding to φ = 0. In the quantum case the bot-
tom value for the dimensionless quantity j ≡ Ja/m2 (in l.-h.s. of (6.4))
corresponding to s-states (i.e., ℓ = 0) is j0 ≡ 1

2
a/m2 > 0, hence φ0 > 0.

For example, taking a = 0.18 GeV2 and m = 0.15 GeV (the constituent
mass of light quarks) yields j0 ≈ 4. In this case a notably curved bottom
segment of classical Regge trajectories which is present in classical case
(see fig. 2) disappears from the quantum principal trajectory which thus
is closed to a straight line (1.1). Instead, daughter trajectories acquire
an erroneous curvature in their bottom, due to an inapplicability of the
quantization method at nr & ℓ. This is illustrated in fig. 4. It is seen
an approximated tower structure of spectrum, due to the asymptotic
degeneracy of (ℓ+nr)-type.

7. Discussion

In the present paper the ACO-quantization method [40] has been applied
to the Rivacoba-Weiss model [28, 29]. This model represents a Fokker-
type system of two particles which interaction can be interpreted in
terms of the classical higher-derivative theory of a vector gauge field
[33,43–45]. The Green function ∝ 1/k4 of this field behaves as an infrared
asymptotics of gluon propagator [44] and leads in a nonrelativistic limit
to the linear interaction potential U = ar. In the ultrarelativistic limit
the model reproduces asymptotically linear Regge trajectories whith the
slope σ ≈ 9.9a related rigidly to the string tension parameter a. The
energy spectrum reveals the accidental degeneracy of (ℓ+nr)-type which
provides a tower structure of spectrum. Thus the quantized Rivacoba-
Weiss model may serve as a good base for a description of light meson
spectra.

In a variety of non-, quasi- and relativistic potential models of heavy
and light mesons the linear potential U = ar appears as a scalar (or
scalar-vector) long-range part of inter-quark interaction. If one believes
that the string tension a is a universal (i.e., flavor-free) parameter with
conventional values in the range a = 0.15÷ 0.3 GeV2 then the Rivacoba-
Weiss model overestimates the slope parameter σ. Since this model is
purely vector, its counterpart based on the higher-derivative scalar field
theory [55] has been constructed. The scalar model, however, underesti-
mates the slope of Regge trajectories. Finally, the family of scalar-vector
superposition models is studied. It turned out that the slope parameter
σ = 1.15÷1.2 GeV2 and the string tension parameter a = 0.15÷0.3 GeV2

can be mutually accorded if the rate of the vector interaction ranges
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ξ = 0.37 ÷ 0.8. Besides, a value of the mixing parameter ξ determines
the daughter spacing parameter κ. In particular, κ = 3/2 at ξ = 0.37
and κ = 1 if ξ ≥ 1/2, so the tower structure is also provided.

It is worth to note that within non- and quasi-relativistic potential
models the linear interaction is meant mostly as a scalar one. But in many
relativistic models, especially those based on the Dirac equation, the
scalar-vector structure of a long-range interaction is preferable [4,16–19].
In particular, the mixture ξ = 1/2, as in [19], or closed values ξ = 0.48÷
0.65, as in [16], enables to reduce a spin-orbital splitting in accordance
to observable values. The present relativistic model assures the scalar-
vector structure of confining interaction from another viewpoint.

In order to be appropriate for the description of both light and heavy
mesons the model should be modified. First of all, the vector short-range
interaction due to one-gluon exchange must be introduced. It can be
done naturally via complementing the action (2.1), (6.1) by the Wheeler-
Feynman term, i.e., by (2.2) with G(x2) = −αδ(x2) where α is a strong
coupling constant. Then the model reproduces, in the non-relativistic
limit, the Cornell potential. This modification is expected to affect some
characteristics of the model in a relativistic regime. In particular, this
may change bottom segments of Regge trajectories and decrease their
intercept ζ (see (1.1)) by some portion ∝ αa, similarly to what happens
in the time-asymmetric model [32, 39]. In turns, a small intercept is
appropriate for a description of lightest mesons [14]. A study of the model
complemented with the Wheeler-Feynman term is beyond the scope of
this work.

Another extension of the model for a sterling meson spectroscopy
is the insertion of particle spins. One can exploit, as a guideline, a de-
scription of spinning particles in terms of anti-commuting variables used
in the Wheeler-Feynman electrodynamics [56]. A quantization method
should be modified appropriately.
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Appendix. Calculation of D⊥ and λ = ω
r
/Ω

It is convenient to define a dimensionless 2×2 reduced dynamical matrix

D̄ ≡ 1

aΩ
D⊥ =

m

a
ΩC + K − Ξ = fΩ(φ)C + K− Ξ, (A.1)
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where:

C =

[

Γ3 + λΓ −iλΓ3v2

iλΓ3v2 Γ + λΓ3

]

, (A.2)

K =

φ
∫

0

dϕK0 −
1

f ′(ϕ)
K1

∣

∣

∣

∣

ϕ=φ

+
1

f ′(ϕ)

d

dϕ

1

f ′(ϕ)
K2

∣

∣

∣

∣

ϕ=φ

, (A.3)

Ξ =

φ
∫

0

dϕΞ0 −
1

f ′(ϕ)
Ξ1

∣

∣

∣

∣

ϕ=φ

+
1

f ′(ϕ)

d

dϕ

1

f ′(ϕ)
Ξ2

∣

∣

∣

∣

ϕ=φ

. (A.4)

The matrix C comes from the free-particle term of the action (2.1). The
function fΩ(φ) and components of other matrices K and Ξ depend on
the interaction model.

For the vector (Rivacoba-Weiss) model the function f
(v)
Ω (φ) in defined

in (4.2), and matrices in r.h.s. of (A.3) and (A.4) have the form:

K(v)
0 = 0, (A.5)

K(v)
1 = 2

[

1+v2c(3+2c) 0
0 2v2s2

]

− 2iλv2(1 + c)

[

0 1
−1 0

]

, (A.6)

K(v)
2 = −4v2(1 + v2c)

[

(1+c)2 0
0 s2

]

, (A.7)

Ξ
(v)
0 = (1 + λ2)

[

cC sS
−sS cC

]

− 2iλ

[

sS −cC
cC sS

]

, (A.8)

Ξ
(v)
1 = −2

[

c(1+v2(2+3c))C s(1+v2(1+3c))S
−s(1+v2(1+3c))S (1+v2(c2−2s2))C

]

− 2iλv2
[

2s(1+c)S (s2−c(1+c))C
(c(1+c)−s2)C 2scS

]

, (A.9)

Ξ
(v)
2 = 4v2(1 + v2c)

[

(1+c)2C s(1+c)S
−s(1+c)S −s2C

]

, (A.10)

where s ≡ sinϕ, c ≡ cosϕ, S ≡ sin(λϕ), C ≡ cos(λϕ).

For the scalar confining interaction the function f
(s)
Ω (φ) is defined in

(5.4), and matrices in r.h.s. of (A.3) and (A.4) have the form:

K(s)
0 =

[

Γ2 0
0 1

]

+ −iλ(Γ2 + 1)

[

0 1
−1 0

]

+ λ2
[

1 0
0 1

]

, (A.11)

K(s)
1 = 2

[

1−v2(3+2c) 0
0 1 − v2

]

− 2iλv2(1 + c)

[

0 1
−1 0

]

, (A.12)
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K(s)
2 = −4v2(1 − v2)

[

(1+c)2 0
0 s2

]

, (A.13)

Ξ
(s)
0 = Γ2v2C

[

1 −iλ
iλ λ2

]

(A.14)

Ξ
(s)
1 = −2

[

(c(1−3v2)−2v2)C i (1−2v2)sS
−i (1−2v2)sS (1−v2)cC

]

− 2iλv2
[

0 (1+c)C
−(1+c)C −2sS

]

, (A.15)

Ξ
(s)
2 = 4v2(1 − v2)

[

(1+c)2C s(1+c)S
−s(1+c)S −s2C

]

. (A.16)

For the scalar-vector superposition the dimensionless dynamical ma-
trix is constructed as follows:

D̄(ξ) = (1 − ξ)D̄(s) + ξD̄(v), (A.17)

where ξ is the mixing parameter. The relative frequency λ is then calcu-
lated as a real positive root of the reduced secular equation det D̄(λ) = 0.
In general, this can be done numerically.

In fig. 5 the relative frequency λ = ωr/Ω as a function of the velocity
v of particle circular motion is shown for various values of the mixing
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Figure 5. The relative frequency λ = ωr/Ω as a function of the angle φ
and the velocity v of particle circular motion for different values of the
mixing parameter ξ.
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parameter ξ. Let us note that

lim
v→0

ωr

Ω
=

√
3

as it must be for the nonrelativistic problem with the linear potential
U = ar [40].
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