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Bose-Fermi-Hubbard model beyond mean field approximation
T.S.Mysakovych

Abstract. We develop the approach which allows us to investigate the
phase transitions in the Bose-Fermi-Hubbard model beyond the mean-
field approximation. We consider the case of hard-core bosons and weak
boson-fermion interaction. We calculate the thermodynamical potential
of the system taking into account loop-like corrections (in the random
phase approximation) to the mean-field expression for this potential.
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1. Introduction

Mixtures of boson and fermion atoms (e.g., SLi- “Li, *°K- 87Rb, Li-
8TRb atoms) in optical lattices are investigated both theoretically and
experimentally, such lattices were successfully realized in one, two and
three dimensions. Such systems can be described by the the Bose-Fermi-
Hubbard model (BFHM), the Hamiltonian of this model was introduced
in [I] and since this different theoretical approaches have been used to
study this model [2HIT]. A Mott insulator phase is realized in such sys-
tems when a kinetic energy term (which allows for the tunneling of the
particles between neighbour sites) is much smaller than a potential ener-
gy term, otherwise a superfluid phase takes place. Due to the remarkable
control of model parameters the transition between these two phases
was observed experimentally [12]. The bosonic kinetic energy term in
this model is usually considered in the mean-field approximation, while
the fermionic part of the Hamiltonian can be treated at the dynamical
mean field theory level [9]. The case of weak boson-fermion coupling was
considered in [I1I] and the susceptibility of the system was calculated in
the framework of the random phase approximation. In addition to the
superfluid and Mott insulator states [I3l[14] the BFHM possesses of more
complicated phase diagram in comparison with the Bose-Hubbard mod-
el. For example, one of such peculiarities is a supersolid (SS) phase which
appears due to the effective interaction between bosons via fermions, in
supersolid phases both diagonal (crystalline) and off-diagonal (superflu-
id) long-range orders coexist. There are also many generalizations of the
Bose-Hubbard and Bose-Fermi-Hubbard models, for example, extended
models with long-range direct interaction between nearest (next-nearest)
particles [I5] (this interaction may arise, in particular, due the the pres-
ence of excited states or due to dipole-dipole interactions), models on
superlattices [I6HI9], two-state Bose-Hubbard models [20]. A confining
potential is present in experiments with optical lattices and this leads to
inhomogeneous version of the model [4L2T].

Besides optical lattices the Bose-Fermi-Hubbard-type models can al-
so be applied for the description of intercalation of ions in crystals (for
example, lithium intercalation in TiOgy crystals). In such systems ion-
electron interaction can play a significant role because Li is almost fully
ionized once intercalated and reconstruction of electron spectrum at in-
tercalation takes place [22H24].

In our previous work [IT] we calculated the density-density correlator
of the BFHM in the framework of the random phase approximation and
the thermodynamical potential of the system was calculated in the mean-
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field approximation. In this paper we develop an approach which allows
us to calculate the thermodynamical potential of the system beyond
the mean field approximation and compare the obtained phase diagrams
with that calculated in the mean field approximation.

2. Calculation of the thermodynamical potential

Using the pseudospin formalism the Hamiltonian of the BFHM in the

hard core limit is
ZQ”S S +th 1

+ Z gSin; — un;) — Z hS7. (2.1)

The bosonic concentration ng can be written as ng = S*+1/2, c and
c; are fermion creation and annihilation operators, respectively. Q and
t-terms in Eq. (2.I)) are responsible for nearest neighbour boson and
fermion hopping, respectively; g-term accounts for the boson-fermion
interaction energy. The bosonic and fermionic chemical potentials A and
1 are introduced to control the number of bosons and fermions.
In our previous work [II] we obtained the mean-field Hamiltonian

Hy using the following simplification

gniS; = g(ni) S7 4 gni(S7) — g(ni)(S7)

QS;FS; — Q(Sj}S; + QSf(S;} - Q(S:FMS;% (2.2)
the application of such a mean-field approximation to the strongly cor-

related systems allows one to satisfactorily describe their properties at
the weak on-site correlation. The Hamiltonain therefore is written as

H = Hy+ Hy,
Hy — thcz c]+z (S%)ni + 57 (n) — g(S*)(n))

— Z hS; — Z 14T
+2 Z Q557 (S7) Z Q5 (5")? (2.3)
Hint = Zg SZ z <TL>)

+ZQ” ((SF = (S™))(ST — (S™)) + S¢SY). (2.4)
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We consider the case of the weak on-site boson-fermion correlation. To
diagonalize the Hamiltonian Hy we pass to k-representation and perform
the transformations

S = ofcosf+ofsind,
Sy = ofcosb—o;sind,
sinf = 729()\5 >, cosf = —h —)\gn7
A= Vlgn —h)2+(29(5%))%, Q= Q40
Hy = Z(tk—u—g<Sz>)chk—Zx\Ji
k i
—Ng(S%){n) — NQ(S)?, (2.5)

here N is a number of lattice sites.

In the present article we want to go beyond the mean field approxima-
tion and for this purpose we develop the following approach. To calculate
the thermodynamical potential of the system

® = —-ThnZ, Z=Trexp(—pH), (2.6)

we perform an expansion in powers of H,;

exp(—BH) = exp(—FHp)o(B), (2.7)
B
a(B) = TTeXp(—/0 Hipi(7)dr),
Z = Zolo(8), (2.5)
® = —TZ=-TZ —Tlhlo(8)o
Qrrra + AP, (2.9)

where T is the imaginary time ordering operator and S = 1/T is the
inverse temperature, T'r denotes the trace.

We restrict ourselves to loop-like diagrams in the spirit of a random
phase approximation (RPA) when we perform an expansion in powers
of Himg.

B
(@c(B)o = 1—/ T (Hipe (7)) dr (2.10)

2' / / T znt 7-1 znt (TZ)>dTl dTl
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Typical RPA diagrams are shown in figure [l (it should be noted that in
the case of the Bose-Hubbard model similar scheme was used in [25]).
We use the diagrammatic teqnique based on Wick’s theorem for the spin
operators and the usual procedure for Fermi operators. To calculate the
remaining product of the diagonal o® operators we perform the semi-
invariant expansion. Here we have introduced the unperturbed bosonic
Green’s function (Tro7 (7)o~ ) = —2(c*) K (1),

1
K(wy,) = ——, 2.11
W) = (211)
with imaginary discrete Matsubara frequency iw, = 2n7T (n =
0,+1,...), the fermionic loop
tk —-n tk. q)
Wn) —_ = 2.12
q szwn—l—tk—tkq ( )

semi-invariant (T;0%(7)0%)o = (0%)* + M(7), M(wn) = Bdu,o(f —
(0%)?), and (0*) = %tanh(ﬁ—;).

In our approximation we can write the following expression for the

1 1
(o = T+A+ 4%+ AT+ = exp(A), (2.13)
11
_ 11 o s
q,wn,,B
+ 22N qzw: Tr[ q,wn)G(w n)J(q,wn)G(wn)}
+ ... (2.14)

Here we have introduced matrices J and é, this matrices are as follows

1
G (wn) = Bo(wa)(7 — (0%)),
_ —2(c”
) = 5
_ 2(c*
G (wn) = z.w< _>/\, (2.15)
J#(q,wn) = —Hq(wn)92 cos® ) — 204 sin? 0,
—Tg(wy,)g?sin? 6 — 2Q4(cos? 0 — 1)

in(qawn) = 4 4 >

ICMP-12-01E )

Figure 1. Typical RPA diagrams for thermodynamical potential. Sol-
id and dashed lines with arrows denote the unperturbed bosonic and
fermionic Green’s functions, respectively. Wavy lines indicate the boson
energy dispersion, circles and ovals denote the average value of (s*) and
semi-invariants, respectively.
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T (qwn) = —T4(wy,)g? sin? 94— 2Q4(cos? 0 — 1) 7
_ 2
J(qwn) = g (wn)29 2 cosfsin 6,
J+Z(qu n) = J_Z((Lwn) = JZ+(Q7wn) = Jz_(Qawn)
(quwn) = J_+(Quwn)u
T qwn) = J 7 (q.wn), (2.16)

here we take into account unperturbed bosonic Green’s functions G*?
and semi-invariants (in general, we could consider the bosonic Green’s
functions in the random phase approximation [II], but in this work we
limit ourselves to unperturbed functions).

The expression for A can be written in the following compact form

A=—— Z Trln {1 — (q7wn)é( n)

= Z Indet[1 — J (g, wn)G(wn)]- (2.17)

As a result the thermodynamical potential (Z.6)) of the system is

® = Opypa+ AD,
AD = S Indet[l — J(g,wn)Clwn)] (2.18)
- N 2 B '

Here A® is a correction to the mean-field expression for the thermody-
namical potential. Using the conditions

0P 0P 0P

- - __—) (2.19)

on  0(S#)  9(S%)
(the partial differentiation is taken at the fixed values of h, u, T') we can
write the equations for the average value of the bosonic concentration
ny = (S*)+1/2, fermionic concentration np and average value (S®) (the
nonzero value of (S*) indicates the presence of bose-condensate and is a
signature of a superfluid or supersolid phase):

s o 1 BA. 1 OA®D
(5%) = §cost9tanh( Y+ — R (2.20)
1 1 0AD
"= N ; eﬂ(g<sz>—tk,—u) + 1 + N_g 8<Sz>7 (221)
oy o 1 BA 1 0A%
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After some tedious algebra we can obtain the expression for the de-
terminant det[1 — J(q,w,)G(wy)]:

A (iwn)? — agbq(wn)
det[1 — n = 2.2
et[1 — J(a, wn) G e (223)
where
ag = A+2Q4(c%) (2.24)
be(wn) = A+ (07) (2 cos? 0 + ¢° sin”® 0114 (w,,))
+  MX(2Qgsin® 0 + ¢°I4(wy,) cos® 0)
+  2(0)QeMg* Ty (wn). (2.25)

Unfortunately, we can not perform analytical summation over Matsub-
ara frequencies to simplify the expression for this determinant because
bq(wy) nontrivially depends on wy,. The terms in (Z25]) which arise due
to the semi-invariant M (w,,) are nonergodic ones. As it was noted in [IT]
the equation of motion method for Green’s functions does not allow us
to calculate such terms and we should use the presented above diagram-
matic teqnique.

Numerical calculations of this corrections are not simple, we should
perform summation over Matsubara frequencies and take into account
nonergodic terms > _ f(w,) = f(0) + 237> Re (f(wy)). This is
the task for future investigations.
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