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Фазовий перехiд рiдина-газ в критичнiй точцi i нижче

I.Р.Юхновський

Анотацiя. Дана робота є продовженням циклу робiт [16–23], де ми
описали поведiнку простої системи взаємодiючих частинок в областi
температур вище критичної точки, включаючи критичну темпера-
туру, T ≥ Tc. Описано поведiнку системи в критичнiй точцi (Tc, ηc)
i в областi нижче критичної точки. Розрахунки ведуться з перших
принципiв. Вираз для великої статистичної суми приведений до фун-
кцiонального iнтегралу на множинi колективних змiнних i записаний
у iзiнгоподiбнiй формi. Виведено рiвняння стану. Нижче Tc , коли в
системi вiдбувається фазовий перехiд першого роду типу “рiдина-
газ”, вiдбувається скачок системи з газового стану, який має дуже
велику ймовiрнiсть, в рiдкий стан, теж з дуже високою ймовiрнiстю.
Пiд час такого процесу поглинається або видiляється прихована те-
плота переходу. Також виведено умови фазової рiвноваги.

Liquid-gas phase transition at and below the critical point

I.R.Yukhnovskii

Abstract. This article is a continuation of previous works [16–23], where
we have described the behavior of a simple system of interacting particles
in the region of temperatures at and about the critical point, T ≥ Tc.
A description of the behavior of the system is given at the critical point
(Tc, ηc) and in the region below the critical point. The calculation is car-
ried out from the first principles. The expression for the grand canonical
partition function is brought to the functional integrals defined on the
set of collective variables. The Ising-like form is singled out. The equa-
tion of state is derived. Below Tc, when a gas-liquid system undergoes a
phase transition of the first order, i.e., boiling, a “jump” occurs from the
“extreme” high probability gas state to the “extreme” high probability
liquid state, releasing or absorbing the latent heat of the transition. The
phase equilibria conditions are also derived.
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Introduction

In this work we complete the first stage of the study of a system at the
gas-liquid critical point by means of the collective variables method.

The research in this direction started already in the early 1980s by
work [1]. By that time the collective variables method had already been
developed in the approach proposed by D. M. Zubarev [2,5], as well as in
the Hubbard transformation approach [3,4]. Application of this method
has been successful with respect to a number of physical problems in the
theory of condensed particle systems interacting via long-range as well
as short-range potentials, an effective approximate solution of the three-
dimensional Ising model was achieved and applied to describe phase
transitions of the second order in a variety of systems [7–9]. A whole
bunch of brilliant papers and monographs on the phase transition theory
has emerged [10–13].

The transformation from the real space of Cartesian coordinates to
the set of collective variables defined in the space of wave vectors k gave
an obvious advantage in the description of systems of the interacting par-
ticles that attract one another at large separations. It is this attraction,
which is usually given by a long-range “tail” of a Van der Waals attracti-
on type, that is the source of liquid-gas phase transitions. In the k-space
such attraction is described by the behaviour of the Fourier transform of
the interaction potential at small k’s, and, more importantly, in the close
vicinity of k = 0. This is one gain from passing from the Cartesian space
to the wave vector k space. Another gain comes from the set of collective
variables. This set contains one variable (in the gas-liquid system case,
it is ρk for k = 0) which is directly linked to the order parameter that
characterizes the phase transition.

Therefore, the system of collective variables (CV) ρk or their Fourier-
conjugates ωk can be thought of as the most suitable one for the descrip-
tion of the gas-liquid phase transition.

The results of the CV method application to a variety of Ising-like sys-
tems, obtained with the precision up to quartic and even sextic measure
density, are given with a large bibliography in monograph [14], executed
with accuracy thanks to the great devotion to their work of M. Kozlovski
and I. Pyliuk.

The work on the liquid-gas critical point has been performed in close
collaboration with my colleagues I. M. Idzyk and V. O. Kolomiets. Starti-
ng expressions for the partition function, given here in Eqs. (17) and (18),
and for the quartic measure density, given in Eq. (20), were obtained [15–
21]. Similar expressions were obtained in the works of Hubbard, Hubbard
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and Scofield [24], and in the work of Vouse and Sac [25]. In the latter,
the contribution from the transformation Jacobian was counted as addi-
tion of some entropic term. These starting expressions were so complex
that there seemed to be no chance of solving the problem. Thanks to the
extraordinary persistence of I. Idzyk [16,17], the values of the cumulants
Mn(k1 . . .kn) in the vicinity of ki = 0 were found. It was shown that for
all Mn(k1 . . .kn) at small k near to the points ki = 0, i = 1, . . . , n, there
exist plateaus. Wide enough for the values of the Fourier transform of the
attractive potential for the regions k < B where Φ̃(k) < 0 and Φ̃(B) = 0
to lie entirely within the span of those plateaus of Mn(k1 . . .kn). More-
over, it has turned out that the values Mn(0 . . . 0) can be expressed
through the compressibility of the reference system and its derivatives.
The nature itself granted us a possibility to bring the problem of the
liquid-gas phase transition to a solvable form.

In the works [18–20] expressions for the equation of state for T ≥ Tc
were obtained. A formula for the critical temperature of a liquid-gas
system was found. The calculations were carried out in the critical region
of temperatures close to Tc. The region T ≤ Tc has not received a proper
treatment in [19–22]. With this work, after a twenty-year interruption,
we renew the endeavor to reveal the processes that take place at T ≤
Tc in the critical region. The critical region means a region where a
renormalization-group symmetry characterizes the relations between the
coefficients of the block Hamiltonians.

Before the present work started, a number of authors had produced a
huge amount of immensely interesting works. For example, a systematic
review of these works can be found in [26].

The statistical-field methods still work finely, as they always did.
Their basics are presented in a coherent logical development in the ele-
gant monograph by J. Parisi [27].

An immense scope of work devoted to the investigation of the nature
of gas-liquid phase transitions, with asymmetric exponents of the equi-
librium curves within the “complete scaling” method, is presented in the
works by M. Fisher and his colleagues [28,29].

The significance of “complete scaling” is shown in the works by Wang
and Anisimov team [30].

The elegant equation of Van der Waals and his brilliant Nobel Prize
lecture from the 12th of December 1910 [31] still retain their undoubted
value and is discussed in present work. As one may conclude from the
works by M. Fisher, J. Wang, and M. Anisimov regarding the phase equi-
librium problems, thermodynamics acquires a new embodiment. Mean-
while, the methods and results of statistical physics, which, in particular,
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are being developed by us in the present work, and which to a great ex-
tent depend on the choice of initial potentials, are derived from first
principles and characterize the microscopic processes.

An important intermediary link is provided by the methods and re-
sults of computer modeling of the processes. In particular, the review
paper by J. de Pablo, K. Yan, and F. Escovedo [32] covers the modern
techniques of phase equilibrium simulation in complex fluids. The case
of phase equilibrium between gas and liquid states, studied by the men-
tioned authors, is really quite important in our work. By means of simu-
lations with the simple histogram method, a transition–“jump” between
two maxima: liquid and gas states, is studied. The reference system is
used. A similar situation obtained in the present work is shown in Fig. 7
for the equation of state P = p(τ, η).

The present paper is concluded with a plot of the equation of state
for a simple system of interacting particles at temperatures in the critical
region below Tc, T ≤ Tc. We would like to highlight here the important
stages.

In the introduction, the starting form of the partition function in the
grand canonical distribution is given in terms of collective variables ρk
and their Fourier-conjugates ωk. The long-range attraction of a Van der
Waals type is described by the set ρk, whereas the short-range repulsion
of an elastic spheres type is described by the set ωk. We start with a
quartic measure density, instead of a Gaussian one. The curves for the
cumulants of the transformation Jacobian are presented in [21]. Their
form allows us to reduce the problem to the Ising model in an external
field. The role of the latter is played by the generalized chemical potential
µ∗.

The displacement transformation, applied to the macroscopic vari-
ables ρ0 and ω0 in order to achieve a proper Ising-like term, has a pro-
found meaning.

We suppose here that the main events, connected with the phase
transition in the vicinity of the critical point, occur in the region ki 6 B.
Solutions in the region k > B may be obtained in the virial expansion
form using the Gaussian density measure.

Therefore, we do not explicitly consider the wave-vector region k >
B.

Integration in the partition function at T ≤ Tc is done in three
regimes. In the renormalization group regime for the wave vectors
Bmτ ≤ k ≤ B, the Wilson linear approximation [31–34] in the expansi-
on of the recursive equations around the fixed point and the Kadanoff’s
hypothesis of scale invariance [37] are used. Further, for 0 < k 6 Bmτ ,
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the integration is carried out in the Inverse Gaussian regime (IGR), just
like it is done in the Ising model at T ≤ Tc [9]. Let us note that without
the integration in the IGR, one would not be able to obtain the correct
behaviour of the system entropy [9], even in the limit T → Tc, T = Tc.

And finally, we come to the integration over the variable ρ0. The cor-
responding “Hamiltonian” would be somewhat an analogue of the Landau
problem [38]. However, herein everything is done in a coherent manner
and the “Hamiltonian” coefficients, which are, in fact, the characteris-
tics of a thermodynamic quantity P, V, are known. Their non-analytic
dependence on the temperature is known as well.

The most significant part of the work concerns the part of the par-
tition function, presented in Eqs. (40) and (55), which is connected to
the generalized chemical potential µ∗ and the integral over ρ0. It also
much differs from the Landau type form due to the presence of a factor
exp[µ∗N(1 − ∆)] before the integral. The integration over ρ0 is done by
the steepest descend method. In a way, we are “traveling” along the ridge
of the integrand’s maxima.

The study of the maxima reveals the behaviour of the generalized
chemical potential µ∗. Fig.5 shows the curves for µ∗ that evidence the
existence of a region µ∗ = 0 within which the system experiences a dis-
continuity of the density. The generalized chemical potential µ∗ and the
equation of state P = p(µ, τ, η) as well as P = p(τ, η) are scrupulously
studied. It is here that the order parameter value ∆ appears when going
from P = p(µ, τ, η) to P = p(τ, η). The quantity ∆ is a function of the
cumulants M2(0), M3(0), and M4(0), which characterize the reference
system. Hereafter, the variable ρ0 is replaced with ∆. This way, the ref-
erence system characterized by the potential ψ(rij) of an elastic spheres
system (see (4)) “intrudes” into the function E(ρ0) obtained from the
integration corresponding to the long-range attractive potential φ(rij).

Considering different theories of particle systems in equilibrium, in
our pursuit we followed the idea offered to us by M. M.Bogolyubov
[37], that a correct description of long-range and short-range interacti-
ons should rather be done in different phase spaces. And their combined
consideration should be performed by means of functional differentiati-
on. In the present work, this idea has been proved right. The short-range
interactions were included in the picture of the phase transition by using
the relation ∂ ln Ξ

∂µ∗ = N (see Eqs. (56) and (59)).

The main result of the work is the plot of the isotherm (P − P0)V
given in Fig. 7. Here, the “jump” of the density at the transition from
the gas state to the liquid state is presented and a formula for the latent
heat of the transition is given.
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It was shown that the events describing the instability region on the
Van der Vaals isoterm are of vanishing small probability.

In an attempt to highlight the main results connected with the gen-
eralized chemical potential µ∗ and integrals over ρ0, not all the terms
appearing during the transformations of ω0 and ρ0 were properly ana-

lyzed. They all can be expressed through the functions ξ(η) = M3(0)
|M4(0)| .

The comparison of the results obtained herein with the data of other
authors, in particular, with those of the groups of M. Fisher and M.
Anisimov [28–30], will be the subject of a separate study.

1. The grand partition function in collective variables

representation

We consider an equilibrium system of interacting equivalent particles.
All its thermodynamical properties are described by the grand partition
function Ξ:

Ξ =

∞
∑

N=0

1

N !
zNZN , (1)

where N is the number of particles, z is the system activity,

zN =
[

√

2πmkBT
3
~
−3
]N

exp(βµN), (2)

m is the mass of a particle, kB is the Boltzmann constant, T is the tem-
perature, ~ is the Planck constant, β = (kBT )−1, µ is chemical potential
of the system, ZN is the configurational integral of N particles:

ZN =

∫

exp(−βΨN)dΓN , (3)

dΓN is the volume element in a phase space of coordinates of particles,
ΨN is the potential interaction energy. It is equal to a sum of interactions
of two kinds:

ΨN =
1

2

∑

i≤j,j≤N
i6=j

ψ(rij) + Φ(rij), (4)

where

ψ(rij) =

{

∞ rij ≤ σ
0 rij > σ

(5)

is the potential interaction energy of two equivalent hard spheres with a
diameter σ,
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Figure 1. Curves of Φ̃(k) for different values R/ξ: 1. R/ξ = ln 16 = 2.77;
2. R/ξ = 2; 3. R/ξ = 1.33.

Φ(rij) is the potential interaction energy of van der Waals type. The
necessary condition for the choice of the function Φ(r) is the existence
of its Fourier-image. As the simplest form of Φ(rij) we use the Morse
potential:

Φ(r) = ε

[

exp

(

−2
r −R

ξ

)

− 2 exp

(

−r −R

ξ

)]

, (6)

where ε characterizes the potential well depth, R is the abscissa of the
potential well, ξ is the interaction radius.

The Fourier-image for Φ(r) follows:

Φ̃(k) = 16πεξ3f
[

f × (k2ξ2 + 4)−2 − (k2ξ2 + 1)−2
]

, (7)

where f = exp(R/ξ). For k = 0, with

Φ̃(0) = −επξ3f(16 − f) < 0 (8)

we have R/ξ < ln 16 ∼= 2.77.
Figure 1 shows curves of Φ̃(k) for different values of R/ξ.
Other functions might also be used as Φ(r). The necessary feature

for Φ̃(k) is the condition

min Φ̃(k) = Φ̃(0) < 0. (9)

Phase transition occurs due to an attraction of the particles at large dis-
tances. This is the main requirement for the very existence of condensed
matter.
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The phenomena occurring on long scales are of long-wave character.
They are described in k-space by a region of low values of wave vectors
k. Thus, we split the space {k̄} into two subspaces. Let B correspond to
the value Φ̃(B) = 0, and Φ̃(k) < 0 for all k < B.

We consider that the main phenomena related to a phase transition
occur in the region k < B.

We pass on to an extended phase space which consists of space of
Cartesian coordinates of particles {r} and of space of density oscillations,
collective variables {ρk}. Overfilling of the phase space is eliminated by
introducing the “identity condition” in the form of a Jacobian.

2. Reference expressions for the partition function.
a) Collective variables.
We introduce a system of notations:

∑

i≤j,j≤N
i6=j

φ(rij) =
N

V

∑

k

φ̃(k)
(

ρ̂N (k)ρ̂N (−k)
)

, (10)

where

ρ̂N (k) =
1√
N

N
∑

i=1

exp−ikri,

ρ̂N (k) = ρcN (k) − iρsN (k),

ρcN (k) =
1√
N

N
∑

i=1

cos(kri),

ρsN (k) =
1√
N

N
∑

i=1

sin(kri),

ρ̂N (0) =
√
N,

we also consider that

1

V

∑

k

φ̃(k)eikr|r→0 = φ(0) = 0.

We define the collective variables system ρc
k
, ρs

k
, ρk = ρc

k
− iρs

k
; ρ0 by

the following relations

ρ̂cN (k)

∫

ρc
k
JN
(

ρ− ρ̂N (k)
)

(dρ),

ρ̂sN (k)

∫

ρs
k
JN
(

ρ− ρ̂N (k)
)

(dρ), (11)

√
N =

∫

ρ0JN (ρ− ρN )(dρ).



8 Препринт

Here,

ρc
k

= ρc−k
, ρs

k
= −ρs−k

,

JN (ρ− ρ̂N ) = δ(ρ0 −
√
N)

′
∑

k

δ
(

ρc
k
− ρ̂cN (k)

)

δ
(

ρs
k
− ρ̂sN (k)

)

,

(dρ) = dρ0

′
∏

k

dρc
k
dρs

k
.

Prime means restriction of k only to the values from the upper subspace.
b) Our reference system is a system of hard spheres with diameter σ,

and interaction potential, defined by equation (5), with chemical poten-
tial µ0 and partition function Ξ0,

Ξ0 =

∞
∑

N=0

1

N !
zN0

∫

exp(−βψN (r))dΓN , (12)

where ψN (r) = 1
2

∑

ij

ψ(rij), z
N
0 =

√
2mπkBT

3N
/~3N = expβµ0N,

dΓN = dr1dr2...drN .
c) Expression for the partition function in an extended phase space.
According to the definitions (1), (11) and (12):

Ξ = Ξ0

α
∑

N=0

zN0
N !

∫ ∫

exp(−βψN )

Ξ0
JN (ρ− ρ̂N ) ×

× exp
[

h
√
Nρ0 −

1

2

∑

k

α(k)ρkρ−k

]

(dρ)dΓN , (13)

where

h = β(µ− µ0); α(k) =
N

V
βφ̃(k); φ(r) =

1

V

∑

k

φ̃(k)e−ikr.

We introduce the Jacobian function

J(ρ) =

α
∑

N=0

zN0
N !

∫

1

Ξ0
exp(−βψN )JN (ρ− ρ̂N )dΓN . (14)

After its substitution into (13) we obtain:

Ξ = Ξ0

∫

exp

[

√
Nhρ0 −

1

2

∑

k

(

α(k)ρkρ−k

)

]

J(ρ)(dρ). (15)
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3. Jacobian

Instead of Dirac delta-functions of expression JN (ρ − ρ̂N) given by
(11) we use in equation (14) their integral representation

δ
(

ρc
k
− ρ̂cN (k)

)

=

∞
∫

−∞

exp
[

i2π
(

ρc
k
− ρ̂cN (k)

)

ωc
k

]

dωc
k
.

Then,

J(ρ) =

∫

exp
(

i2π
∑

k

ωkρk

)

J̃(ω)(dω), (16)

where ρk = ρc
k
− iρs

k
, ωk = 1

2 (ωc
k

+ iωs
k
), (dω) = dω0

′
∏

k

dωc
k
dωs

k
, J̃(ω) is

the Fourier transform of J(ρ),

J̃(ω) =

∞
∑

N=0

zN0
N !

Ξ−1
0

∫

exp(−βψN ) exp
(

−i2π
∑

k

ωkρ̂N (k)
)

dΓN .

After integration and summation we get J̃(ω) in an exponential form:

J̃(ω) = exp

{

−i2πM1ω0 −
(2π)2

2

∑

k

M2(k)ωkω−k

}

×

× exp







∑

m≥3

(−i2π)m

m!

∑

k1,...,km

Mm(k1, . . . ,km)ωk1 . . . ωkm







.(17)

Here M1,M2, . . . ,Mm are cumulants of the reference system.
We substitute the expression for J(ω) into (16). Then we substitute

the obtained result into (15) and get

Ξ = Ξ0

∫

exp

[

√
Nhρ0 −

1

2

∑

k

α(k)ρkρ−k

]

× exp(i2π
∑

k

ωkρk)J̃(ω)(dρ)(dω). (18)

All expressions entering (18), h, α(k) and cumulants Mn are the func-
tions of density and temperature. This is the starting formula for the
study of the grand partition function. Due to its complexity, it seemed
that there was no chance of solving the problem. Still...
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Figure 2. Curves of cumulant M2(k) for different densities: 1: η = 0, 1, 2:
η = 0, 2, 3: η = 0, 3. The dashed line indicates the value of B for which
φ̃(B) = 0, η = N

V
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2. Integration of the grand partition function

2.1. Separation of an integration region in k space

Let us compare the form of the curves of Φ̃(k) with that of M2(k). As
it follows from Fig. 1 and as it was agreed upon, Φ̃(k) at k = 0 is a
negative and finite quantity, Φ̃(k) is going to zero with an increasing k
and at k → ∞.
Curves of M2(k) are given in Fig. 2.

We suppose that the main attraction effects created by potential
Φ(r) are concentrated in the expression for Φ̃(k) in the narrow region
of k between the values 0 and B. For these values of k, the curves for
cumulant M2(k) and for all cumulants Mn(k) have wide plateaus that
begin for k1, . . . ,kn = 0 [21]. Thus, for all cumulants Mn(k1 . . .kn) in
the region ki < B we are able to choose their values for ki = 0. This
means that

Mn(k1, . . . ,kn) = Mn(0, . . . , 0) for ki < B.

These quantities are macroscopic. Their values are equal to the corre-
sponding fluctuations in the number of particles of the reference system.

We have an equation

Mn(0 . . . 0) =
∂n ln Ξ0

∂(βµ0)n
=

∂n−1〈N〉0
∂(βµ0)n−1

.

ICMP–11–15E 11

Therefore,

M1(0) =
√

〈N〉0; M2(0) =
1

N
〈
(

N − 〈N〉
)2

〉0;

M3(0) = 〈
(

N − 〈N〉
)3

〉0
1

√
N

3 ;

M4(0) =
〈
(

N − 〈N〉
)4

〉0 − 3〈
(

N − 〈N〉
)2

〉20
N2

,

etc.
The cumulants Mn(0 . . . 0) are functions of the chemical potential µ0

and of the density in general. One can perform the elimination of the
dependence on µ0 either in the standard way extracting the value of µ0

from the equation ∂ ln Ξ0

∂µ0
= N , or using for fluctuation 〈(N − 〈N〉)n〉

their values for canonical ensemble.
(

∂〈N〉
∂µ0

)

TV

=
N

V
κ, where κ =

1

V

(

∂V

∂P

)

TN

is the compressibility in the reference system.
Then,

M2(0) = NkBT
1

v
κ,

M3(0) = N(kBT )2

[

2

(

1

v
κ

)2

− κ

v

∂κ

∂v

)

,

M4(0) = N(kBT )3
κ

v

[

6
(κ

v

)2

− 6

(

κ

v

∂κ

∂v

)

+

(

∂κ

∂v

)2

+ κ
∂2κ

∂v2

]

,

where v = V
N , κ = − 1

V

(

∂V
∂P

)

TN
is compressibility in the reference system.

Here we should refer to an equivalency of the results for compressibility
and its derivatives obtained for canonic and grand canonical ensembles.

Concerning the dependence of the cumulants Mn(k1, . . . , kn), as it
was shown in [13,20] the following expansion is valid

Mn(k1, . . . , kn) = Mn(0, . . . , 0) + C2
nMn−2(0 . . . 0)µ2(k)k2 + . . . ,

where µ2(k) is the pair correlation function of the reference system.
The above described situation for the cumulant values for ki < B

and for k = 0 has become a real key to the solution of a problem of the
liquid-gas critical point as well as to the description of the phenomena
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related to a liquid-gas phase transition, that is to the boiling processes
occurring at temperatures below T = Tc. We owe this to an insistent
work by I. Idzyk, who was the first to construct the graphs for the
cumulants Mn(k1 . . . kn) 1 [16,17].

Concerning an integration of the mixed terms with factors of the type
∑

k1,...,ki<B
ki+1,...,km>B

ωk1 . . . ωkiωki+1 . . . ωkm ,

the integration over ωk with k > B leads to the renormalizati-
on of cumulants Mi(k1 . . .ki) with k1, . . . ,ki < B. However, as it
was shown in [21], their effect on the change of cumulants values
Mi is very weak. In particular, at the integration of the expressi-

on exp (2πi)4

2

∑

k1>B
k<B

M4(k1,−k1,k,−k)ωk1ω−k1ωkω−k the correction to

∑

k<B

M2(0, 0)ωkω−k is less than one percent of value M2(0, 0).

As a result, we have the following reference expression for Ξ:

Ξ = Ξ0ΞGΞL, (19)

where Ξ0 is the partition function of the reference system,
ΞG is the result of integration over ρk and over ωk for the values k > B. It
has a form of group expansions. In particular, the second virial coefficient
has the following form:

N(N − 1)

2V

∫
(

exp−
(

β(ψ(r) + g(r)
)

− 1 − g(r) − g(r2)

2!

)

dr,

where g(r) is the screened potential, g(r) = 1
V

∑

k>B

α(k)
1+M2(k)α(k)

eikr (or

possibly another more compact form). In expression (19) integration
over ρk and ωk in the region B ≤ k < ∞ might be performed with the
Gaussian basic measure density. In this way, we obtain the free energy
and the equation of state in a form of the virial expansion with convergent
integrals. This part of calculations was performed in the papers [6,16].
However, we should return to it again in order to relate the virial series
with the description of the phenomena below the critical point.

Integrals over ρk and ωk in the region k < B are taken with quartic
basic measure density. 2

1“Nature always gives a chance to people” as I have said concerning this point
during my first reports on this topic in the 80-ies of the last century.

2To be correct, with quartic measure density for integration over ωk, if
M4(0 . . . 0) < 0 and with sextic measure density, if M4(0) > 0 and (i)6M6 < 0.
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ΞL is the partition function in the region k < B.

ΞL =

∫

w4(ρω)(dρ)NB (dω)NB , (20)

w4(ωρ) = exp

{

hρ0 −
1

2

∑

k<B

α(k)ρkρ−k + i2π
∑

k<B

ωkρk+

+
4
∑

n=1

(−i2π)n

n!
N1−n/2

Mn

∑

k1...kn
ki<B

ωk1 . . . ωknδk1+···+kn











. (21)

We want to exclude the cubic term from the expression in the expo-
nent function (21) keeping the form i2π

∑

k<B

ωkρk for the inverse Fourier-

transform from ω-space to ρ-space in the integral (20). This can be per-
formed by two substitutions

ω0 = ω′
0 +

√
NM3

(2πi)M4
and ρ0 = ρ′0 + M̃1, (22)

where

M̃1 =
√
N
(

1 + M2ξ +
1

3
M3ξ

2
)

,

ξ =
M3

|M4|
.

From now on, we omit the argument (0) in the notations of cumulants
and write down M2(0) ≡ M2, M3(0) ≡ M3, M4(0) ≡ M4 etc. After
some tedious transformations we get ΞL in the following form

ΞL = Υ

∫

exp

{

√
Nµ∗(ρ0 + M̃1) − 1

2

∑

k<B

α(k)ρkρ−k+

+ i2π
∑

k<B

ωkρk − 1

2
(2π)2

∑

k<B

M̃2ωkω−k −

− (2π)4

4!

1

NB

∑

k<B

|M̃4|ωk1 . . . ωk4δk1+···+k4

}

(dω)NB (dρ)NB , (23)

where

Υ = exp

{

N(ξ +
1

2
M2ξ

2 +
1

3!
M3ξ

3 +
1

4!
M4ξ

4) +
1

2
|α(0)|M̃2

1

}

,
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µ∗ = h− ξ + |α(0)| M̃1√
N
,

M̃2 = M2 +
1

2

M2
3

|M4|
, M̃4 =

NB

N
M4,

M̃1 =
√
N [1 − ∆], ξ =

M3

|M4|
, ∆ = −

(

M2ξ +
1

3
M3ξ

2
)

.

We have obtained the first fundamental result. We bring the expression
for ΞL into the form which is analogous to the form of the partition func-
tion of three-dimensional Ising model in a field of generalized chemical
potential µ∗. This means that we have built a mathematical framework
for the study of a phase transition.

We treat the quantity B as a border of the Brillouin zone for a simple
cubic lattice with the spacing c = π

B . The number of lattice sites in a

volume V is equal to NB = V
c3 = V

(

B
π

)3
, V = π

6σ
3 N

η . It means that for
each physical system undergoing phase transition one can correspondi-
ngly put the crystal lattice on which this transition is described.

In particular, in the case of interaction φ(r), described by Morse
potential:

φ̃(B) = 0, B = ξ−1

[

(

4 − f1/2
)(

f1/2 − 1
)−1

]1/2

,

NB =
V

(ξπ)3

[

4 − f1/2

f1/2 − 1

]3/2

, f = exp(R/ξ) > 1. (24)

Two essential points should be emphasized in our formulations:
1) The existence of plateaus for cumulant values Mn(k1 . . . kn) in the
region of negative values of Fourier-image of attraction potential;
2) The possibility to introduce the crystal lattice in order to study the
problem of a liquid-gas critical point and to reduce this problem to the
Ising model in an external field.

Integration in expression (23) is taken over ωk. Since the coefficients
Mn do not depend on k, passing from ωk to ω̃l

ω̃k =

NB
∑

l=1

ω̃le
−ikl

and replacing

δk1+···+k4 =
1

NB

∑

l

ei(k1+···+k4)l
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we factorize the integrals over ω̃l in (23) and get a reference expression
for integration over ρk [9]

ΞL = Z(M̃2M̃4)ΥΞ
(1)
L , (25)

where

Ξ
(1)
L =

∫

exp

{

√
Nµ∗(ρ0 + M̃1) − 1

2

∑

k<B

d2(k)ρkρ−k−

− a4
4!NB

∑

ρk1 . . . ρk4δk1+···+k4

}

(dρ)NB ,

d2(k) = a2 + α(k), a2(k) =
√

12|M̃4|−1/2K(ζ), a4 = 6|M̃4|−1L(ζ),

K(ζ) = ζ1/2
[

K3
3/4/K1/4(ζ) − 1

]

> 0,

L(ζ) = 6K2(ζ) + 4ζ1/2K(ζ) − 1 > 0,

Z(M̃2, M̃4) =
1

2π

(

144ζ

|M̃4|

)

eζK(ζ), ζ =
3

4

M̃2
2

|M̃4|
≫ 1. (26)

K1/4 and K3/4 are Bessel functions of an imaginary argument. It is
important to have d2(B) > 0 and d2(0) < 0. We are working in the
narrow temperature region containing the critical point T = T0, see
fig. 3.

Table 1. Numerical values of the coefficients a2 and a4 at different values
of the density η. [19]

η a2 a4
0.08 0.9257 0.2756
0.10 0.9532 0.1570
0.12 0.9704 0.0796
0.14 0.9807 0.0384
0.16 0.9824 0.0183
0.18 0.9723 0.0087
0.20 0.9446 0.0038

The integral (25) describes the phenomena in the critical point T =
Tc, as well as in the critical region T > Tc and T < Tc.

After an integration over ρk, apart from integration over ρ0, the
form of the integral (26) completely coincides with the corresponding
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expression for the Ising model. For the purpose of its integration, we
use Kadanoff’s idea concerning the scale invariance of the phenomena
on block lattices as well as Wisons’s idea concerning the use of a linear
approximation for the expansions around the fixed point in recurrent
relations [33-37].

Integration is performed in the real three-dimensional space without
any a priori statements about the temperature dependence of appearing
coefficients.

The integration region 0 < k ≤ B is divided into layers (BB1),
that is B1 < k ≤ B, (B1B2), . . . , (Bn−1Bn), where Bn = B

sn , s is a
division constant. The first integration over ρk is performed in the layer
(BB1), and then integration in the layer (B1B2) is performed, etc. The
originality of the integration procedure consists in the following.

Let us denote by ηk the variables ρk with index k in the interval
B1 < k ≤ B (over these variables the integration is performed). That is,
the integration in (26) is written as follows:

∫

. . . (dρ)NB =

∫

. . . (dρ)NB1 (dη)NB−NB1 .

Further, in order to factorize the integrands for integration over
(NB − NB1) variables ηk (we keep unchanged NB1 variables ρk), we
need to use the integral form for the Kronecker delta δk1+···+k4 . This
can be achieved by the following trick [9]

∫

. . . (dη)N−NB1 =

∫

· · ·
∏

0<k≤B1

δ(ηk − ρk)(dη)NB .

This is the main point. After integration over ρk that belongs to the
first layer B1 < k ≤ B it was found that the new expression for the
partition function with NB1 variables ρk is characterized by a measure

density which is similar to the original one, with new coefficients d
(1)
2 (k)

and a
(1)
4 instead of the initial d2(k) and a4 and a new number NB1 of

variables ρk, NB1 = NB/s
3. Applying the same integration procedure, in

the next layer ρk with B2 < k ≤ B1, where B2 = B1

s3 = B
(s3)2 , we receive

a new measure density with the coefficients d(2) and a
(2)
4 and so on. As

a result of each integration, there appear new partial partition functions
that characterize the partial thermodynamic potentials connected with
the energy of density fluctuation in the corresponding intervals of wave
vectors k: B1 < k ≤ B, B2 < k ≤ B1 and so on.

The sequence of coefficients d2, a4; d
(1)
2 , a

(1)
4 ; . . . d

(n)
2 , a

(n)
4 reveals
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amazing symmetry properties:

d(n)(BnBn+1) =
rn + q

s2n
; a

(n)
4 =

un
s4n

,

with: lim
n→∞

rn = r∗, lim
n→∞

un = u∗ – fixed points coordinates; q – coeffi-

cient of averaging of the potential, q ≃ 3
5α(0). Thus, the expressions

d(n)

rn + q
= s−2n;

an
un

= s−4n

are the elements of a cyclic semi-group. This theorem quantitatively ex-
presses the brilliant statement by Kadanoff, that the system of block
lattices, each embedded in the volume V , is characterized by scale in-
variance.

We have named such a behavior of coefficients d(n) in a
(n)
4 as a criti-

cal regime [9]. At temperatures above and below Tc, the critical regime
occurs at some finite number of steps in the intervals 0 < k ≤ B on the
layer (BB1), (B1B2), . . . , (Bn−1Bn). The curve built on the values of
the coefficients d(n) at T > Tc and at T < Tc is presented in Fig. 3.

At T > Tc, after a number of integration steps nτ the coefficients
d(nτ )(k) become positive at all values k, 0 < k ≤ Bnτ . The integral
∫

. . . (dρ)Nnτ , where Nnτ = N
s3nτ can be calculated with the Gaussian

density measure:

exp



µ∗√N(ρ0 + M̃1) − 1

2

∑

k<Bnτ

d(nτ )(k)ρkρ−k



 .

Coefficient d(nτ )(k) can be renormalized by terms a
(nτ )
4 , but this is a

question of precision of the results. Formally, at T > Tc and at k < Bnτ

the Gaussian density measure is a basic one.
At T < Tc, as can be seen from Fig. 3, after the stepmτ in integration

over the shells of phase space, the curve d(mτ )(k) becomes negative at
every k, 0 ≤ k ≤ Bmτ . The region of critical regime terminates at the
point Bmτ . As a result, an interval of indexes k at the integration over

ρk in the partition function Ξ
(1)
L in (26) is divided into three parts:

B ≥ k ≥ Bmτ , Bmτ ≥ k > 0 and k = 0 correspondingly.

Ξ
(1)
L = Ξ

(1)
cr Ξ

(1)

igr, (27)

here Ξ
(1)
cr is a result of integration in critical regime, Bmτ ≤ k ≤ B,

Ξ
(1)

igr is a result of integration in the inverse Gauss regime (IGR) and

includes the integration over the variable ρ0, 0 6 k < Bmτ .
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Figure 3. Coefficients d(n)(k) at temperatures: (a) T > Tc, (b) T < Tc,
(c) T = Tc.

We have two quite important numbers nτ , mτ and the points Bnτ =
B/Snτ for T > Tc and Bmτ = B/Smτ for T < Tc, these points are
shown in fig. 3.

They separate two regions of wave vectors k, namely the critical one,
where the renormalization group symmetry exists (Bmτ 6 k 6 B for
T < Tc, and Bnτ 6 k 6 B for T > Tc) and the limit-Gaussian (T > Tc)
or inverse-limit-Gaussian (T < Tc) regions.

In the interval (Bmτ ≤ k ≤ B), the integration is performed on the
basis of the quartic density measure, applying the method developed
for the Ising model. For the partition function in the critical regime we
receive:

Ξ
(1)
cr = exp

(

− 1

kT
Fcr

)

, (28)

where

Fcr = −NkT
{

−mτa
3ν |τ |3ν ln s+

+
(

1 − a
3ν |τ |3ν

)

ϕ1 + |τ |
(

1 − a
3ν−1|τ |3ν−1

)

ϕ2

}

.

Here s is the parameter of separation of the phase space into layers,
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Bmτ = B/smτ

a = c̃1

(

r∗ + βΦ̃(0)
)−1

,

ϕ1 = 1, 043 − 0, 828
r∗ + q√
u∗

− 0, 250 lnu∗,

ϕ2 = 0, 828
c̃1√
u∗

(1 − s−3E1)−1, q = 3/5βΦ̃(0);

at s = s∗ = 3, 5862, c̃1 = 0, 818βΦ̃(0) + 0, 011[βcΦ̃(0)]−1, E1 = 8, 235.
The inverse Gaussian regime is observed after integration over ρk in the

critical region. The initial integral Ξ
(1)

igr reads:

Ξ
(1)

igr =

∫

exp
[√
Nµ∗

(

ρ0 + M̃1

)

− 1

2

∑

06k6Bmτ

d(mτ )(k)ρkρ−k −

− 1

4!

1

Nmτ

∑

k1...k4
06ki6Bmτ

a
(mτ )ρk1

...ρk4
δk1+···+k4

4

]

(dρ)Nmτ . (29)

Coefficients d(mτ )(k) and a
(mτ )
4 appear as a result of integration in the

critical regime (renormalization group regime)

d(mτ )(k) =
(

r∗ + C1E
mτ
1 − C2E

mτ
2 R

)

s−2mτ + q̃k2,

a
(mτ )
4 =

(

u∗ + C1E
mτ
1 R′ + C2E

mτ
2

)

s−4mτ

d(mτ )(Bmτ ) = 0; Bmτ = B
smτ ; Nmτ = N

s3mτ ; q̃ = 2b2α(0); α(0) < 0;
E1 and E2 are eigenvalues of the matrix of the linear approximation
of recurrent equations. R = R12

R11−E2
; R′ = E1−R11

R12
, Rij are the matrix

elements of the matrix of linear approximation, C1 = τ c̃1, where c̃1 ≃
α(0), c2 ∼ 0, 02. The exact values of τ∗, C1, C2, E1 and E2, R in R′

are given in [9,14]. Here d(mτ )(k) < 0 for all k < Bmτ . Nevertheless, the

integral (29) is convergent due to the fact that a
(mτ )
4 is always positive

for all k < Bmτ . Taking this into account, we shift ρk by

ρk = ρ′
k∗ + σ

√
Nδk, (30)

here σ is found from the condition of maximum:

Eigr.(σ) =
1

2
|d(mτ )(0)|σ2 − 1

4!
a
(mτ )
4 s3mτσ4 and σ =

√

3!|dmτ (0)|
a
(mτ )
4 s3mτ

.
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As a result of such shifting, the coefficient d(mτ )(k) in (29), which is
negative, is substituted by a positive one:

d̄(k) = 2|dmτ (0)| + q̃k2 > 0.

According to this, at accurate calculations (29) [9] we can use the Gaus-
sian density measure. The integration in (29) is performed over all ρk
with the exception of ρ0.

As it follows from (30), the cubic term appears in the integral over
the variable ρ0 in (29). To get rid of it, one more shift of ρ0 is performed,
which appears to be the inverse shift to (30)

ρ′0 = ρ′′0 − σ
√
N. (31)

As a result, an expression for Ξ
(1)

igr is rewritten as:

Ξ
(1)

igr = exp
(

−βFmτ

)

∫

exp
(√

Nµ∗(ρ0+M̃1)+Bρ20−
1

N
Gρ40

)

dρ0, (32)

here Fmτ is the result of integration in the inverse Gaussian regime that
starts from the expression (29), which in turn is a relult of integration
in the critical regime. Fmτ includes the results of displacement transfor-
mations (30) and (31) and of an integration over ρk with 0 < k ≤ Bmτ .
The integration is performed with the Gaussian density measure. It is
the same as in the Ising model at T ≤ Tc and is described in detail in
[9,14,19].

As a result, for Fmτ we have:

Fmτ = −NkTA3ν|r|3ν(ϕ̃3 +mτ ln s), (33)

where

ϕ̃3 =
3

4
L1(1/

√
2) − 1

32
ū[L1(1/

√
2)]2 + 0, 07ū/2 +

1

3
[1 − L1(1/

√
2)] −

− 1

2
ln 3α(0)/π,

A =
c̃1

r∗ + α(0)
, ū = u∗/(α(0))2 ≈ 0, 9,

L̃1(x) = 3
x− arctg x

x3
, L̃1(x) = 1 + 0(x2),

x =
π

cmτ

√

q̃

2|d(mτ )(0)| , cmτ = csmτ .
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The results of integration in the critical regime and in the inverse Gaus-
sian regime depend on the parameter s, the parameter of dividing the
phase space into layers.3 The optimal value of s after integration is
s = s∗ = 3, 5862, and the parameter

√
z∗ = (3/4)1/2(r∗ + q)/

√
u∗ equals

zero. For s = s∗ the fixed point coordinates are known:

r∗ = r̄α(0), r̄ = 0, 6122; u∗ = ū[α(0)]2; ū = 0, 8894.

The coefficients B and G in an exponent in the integrand in (32) are
important:

B =
1

2
|d(mτ )(0)| − a

(mτ )
4

8|d(mτ )(0)|L1(x) = |τ |2νB0,

B0 =
1

2
|r(mτ )|

(

1 − umτ

4|r(mτ )|2
L̃1(x)

)(

c̃1
|r∗ + α(0)|

)2ν

(34)

and

G =
umτ

4
s−mτ = |τ |νG0,

G0 =

(

c̃1
|r∗ + α(0)|

)ν
umτ

4!
, ν = 0, 605.

Whereas in the Ising model the cumulants M1, M2, M4, M6, . . . and
a2, a4, . . . are constants, in the present problem they are functions of
density η.

In (32) we received a starting expression to study the phenomena
bellow Tc.

Let us emphasize the importance of considering both the critical and
the inverse Gaussian regime. The starting distribution in (29) for inte-
gration in the inverse Gaussian regime appears as a result of integration
in the critical regime. The starting expression (32) for integration on ρ0 is
obtained in the next stage, i.e., after integration in the inverse Gaussian
regime (IGR), taking into account the shift transformation (30). As it fol-
lows from (34), coefficient B is a sum of two terms. The first 1

2 |d(mτ )(0)|
is determined in the critical regime and is connected with the renormali-

zation group transformations, whereas the second term
a
(mτ )
4

8|d(mτ )(0)|L1(x)

is a contribution after integration in the inverse Gaussian regime.
Here we need to make a short retreat. From equations for the critical

regime, one receives an equation for determination of critical temper-
ature. Judging from the behavior of the curves d(n)(k), presented in

3Let us remind that integration is performed in the narrow temperature region
T = Tc, τ < 0, 01.
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Fig. 3(c), the critical temperature is defined as Tcr, at which the critical
regime exists in the whole region k 6 B. By definition, for the critical
temperature:

lim
n→∞

d(n)(Bn)T=Tc ≥ 0, lim
n→∞

d(n)(0)T=Tc ≤ 0 and lim
n→∞

Bn = 0.

(35)
In the linear approximation of renormalization group, this is equivalent
to

τ∗ + C1(Tc)E
n
1 − C2(Tc)R(Tc)E

n
2

s2n
+
α(0)

s2n
≥ 0,

τ∗ + C1(Tc)E
n
1 − C2(Tc)R(Tc)E

n
2

s2n
≤ 0 (36)

as n→ ∞.
This is possible only when C1(Tc) = 0, since the eigenvalue E1 satis-

fies: E1 > 1.
As a result, in [9] we receive an expression for the critical temperature

of three-dimensional Ising model:

Tc(η) =
|ᾱ(0)|
kB

f(η), ᾱ(0) =
N

V
φ̃(0).

The first term in the right hand side determines Tc in the mean field
approximation, f(η) is an additional factor, which appears from (36) as
a result of the solutions of the recurrent relations. The above relation
holds for the Ising model. In the liquid-gas critical point problem, there
is an essential difference: Tc(η) is a function of density. To obtain the
coordinates of the critical point, one needs two more equations. As it
follows from (32), the first one is:

µ∗ = 0, (37)

here µ∗ = h− ξ + |α(0)|M̃1/
√
N . This reduces our problem to the Ising

model. To satisfy this condition, we need to determine the generalized
chemical potential µ∗ from the relation ∂ ln Ξ

∂µ∗ = N . It was studied in

[17,18] under consideration of phenomena at T ≥ Tc and resulted in the
following

µ∗ = 2Aρ̃
(1)
0 , ρ̃

(1)
0 = ∆,

here A = 1
4
a4(nτ )
Nnτ

∑

k<Bnτ

〈ρkρ−k〉, ∆ = −(M2ξ + 1
3M3ξ

2), ξ = M3

|M4| ,

ρ̃
(1)
0 is the extremum point of E(ρ0) at T ≥ Tc; nτ denotes the number

of the last shell in momentum space k, where the renormalization group
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Figure 4. Coordinates of the liquid-gas critical point on the plane µ∗ = 0.

symmetry holds [Fig. 3 (a)]. As it follows from the formula (59) ∆ is
the systems order parameter below T < Tc. It has to be equal zero at
T = Tc.

So for the liquid-gas critical point we have three following conditions:

C1 = 0, from (36)

µ∗ = 0 and

∆ = 0.

In such a way, the coordinates of the critical point are determined by
the crossing point of three surfaces [19]:

Tc(η) =
|ᾱ(0)|
kB

2[1−r̄+R0
12(ū)

1/2/(R11−E2)]

a2+{a2
2+[4a4R

0
12/ū

1/2(R11−E2)][1−r̄+R0
12ū

1/2/(R11−E2)]}
,

µ∗ = β(µ− µ0) − ξ + |α(0)|M̃1/
√
N = 0, (38)

∆ = −
(

M2
M3

M4
− 1

3
M3

(

M3

M4

)2
)

= 0.

In Fig. 4, the crossing point of the curves gives the coordinate of a
critical point. This plot was obtained by V. Kolomiyets and I. Idzyk in
[15,16,19]. For the case of argon, an equation (38) produces the coordi-
nates:

kBTc
ε

= 1, 31, ηc = 0, 130443,
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which perfectly coincides with the experiment
(

η
(exp.)
c = 0, 13044

)

. Let

us note, that relation ∆ = 0 is equivalent to M3 = 0.
At the critical point, all the terms with odd powers of ω and ρ are

canceled in (26) and under the condition µ∗ = 0 the expression is reduced
to the Ising model. Thus the phase transition or the critical point Tc is
of the second order.

In the red region of density oscillation modes 0 < k ≤ B, we have
the following situation. In the critical regime Bmτ ≤ k ≤ B, the system
is not thermodynamically stable, the signs of compressibility and of the
heat capacity are non-physical

(

∂P
∂V

)

T
> 0 and CV < 0. Only taking

additionally into account the results of integration in the limiting Gaus-
sian regime (at T ≥ Tc) and in the inverse Gaussian regime (at T 6 Tc),
the total value of free energy is obtained, which satisfies all conditions
of physical stability. This means that thermodynamics at critical point
Tc is a limit of sums of contributions from the critical Bmτ ≤ k ≤ B and
from the inverse (limiting) Gaussian regimes 0 < k ≤ Bmτ

4. The studies
at T ≥ Tc can be found in [19–21]. In the present paper, we study the
region T ≤ Tc. Thus, we have finished the above retreat and we continue
our considerations.

We assume that in (32) the complete integration in space ρk is per-
formed in the partition function Ξ, with the exception of integration over
the variable ρ0.

The generalised chemical potential µ∗.
Our task here is to study the integral over ρ0 in expression (32). After

substitution ρ0 =
√
Nρ′0, omitting the terms proportional to lnN , we

have:
∫

expN
{

µ∗ρ0 +Bρ20 −Gρ40
}

dρ0. (39)

This integral is a function of the generalized chemical potential µ∗, den-
sity η and temperature τ . We denote

E(ρ0) = µ∗ρ0 +Bρ20 −Gρ40. (40)

Here
µ∗ = β(µ− µ0) − ξ + |α(0)|M̃1.

B and G are given by (34), and they turn out to be positive. Coefficient
at ρ2 in (39) is positive and the integrand increases at small ρ0, whereas
at ρ0 → ∞ the function exp{NE0(ρ0)} tends to zero due to the term
Gρ40.

4During integration in the inverse Gaussian regime, the limiting point k = 0 is
included.
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As a result, the function can have one or several very high maxima.
Due to this fact, the integral (39) can be found using the method of the
steepest descent. To do this, first we find the maximum of E(ρ0):

∂E

∂ρ0
= 0;

∂2E

∂ρ20
< 0 or

µ∗ + 2Bρ0 − 4Gρ30 = 0, 2B − 2Gρ20|ρ0=ρ0 max < 0, (41)

or in a standard form:

ρ30 + V ρ0 +W = 0, (42)

here V = −B
2G , W = − 1

4
µ∗

G , with the condition 3ρ20 + V > 0, which
corresponds to (41). Equation (42) has three solutions that may be found
by Cardano formula:

ρ0 =
3

√

−W
2

+
√

Q+
3

√

−W
2

−
√

Q, (43)

here Q is a discriminant of the equation:

Q =
W 2

4
+
V 3

27
. (44)

The first term in the discriminant is always positive, the second one is
always negative. Thus, three possibilities may be observed: Q > 0, Q < 0
and Q = 0. Depending on the sign of Q, we have one real (Q > 0) or
three real solutions(Q < 0).5 The case Q = 0 is a limiting case that
separates the solutions.

a) Let us start with Q > 0. Equation (42) has one real and two

complex solutions. Q > 0 means that W 2

4 >
∣

∣

∣

V 3

27

∣

∣

∣
and

∣

∣

W
2

∣

∣ >
√
Q. Thus,

ρ
(1)
0 =

3

√

−W
2

{

[

1 − 2
√
Q

W

]1/3

+

[

1 +
2
√
Q

W

]1/3
}

,

√

Q = ±|W |
2

(

1 +
1

2
γ − 1

8
γ2 + . . .

)

,

γ =

(

V

3

)3
/

(

W

2

)2

.

Expanding in powers of γ, we receive:

ρ
(1)
0 =

(

µ∗

4G

)1/3
[

1 +

( |γ|
4

)1/3

− 1

12
|γ| +

3
√

2

24
|γ|4/3 − 0(γ2)

]

. (45)

5At T > Tc the discriminant Q is always positive, Q > 0.
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Hence

µ∗ = 4G

[

1 +
( |γ|

4

)1/3

− 1

12
|γ| + . . .

]−3

(ρ
(1)
0 )3. (46)

The sign of ρ
(1)
0 is determined by the sign of µ∗.

At γ = 1 Q = 0, from (43) ρ
(1)
0 = 3

√

µ∗/G, as well as because
(

1
4

)1/3
[

1 +
(

1
4

)1/3 − 1
12 +

3√2
24 − . . .

]

= 1 in (75).

The case Q > 0 means that

(

µ∗

8G

)2

>

∣

∣

∣

∣

∣

(

− B

6G

)3
∣

∣

∣

∣

∣

and |µ∗| > G

(

2

3

B

G

)3/2

.

Thus, at Q > 0, both µ∗ and ρ
(1)
0 vary within

|µ∗| ≥ a, where a = G

(

2

3

B

G

)3/2

,

|ρ(1)0 | ≥ b, where b =

(

2

3

B

G

)1/2

. (47)

b) The case Q = 0
This equality describes intermediate surface between two regions

Q > 0 and Q < 0. Equation (42) has three real roots:

ρ1 = u+ v, ρ2 = ρ3 = −1

2
(u+ v),

where u =
[

−W
2 +

√
Q
]1/3

, v =
[

−W
2 −

√
Q
]1/3

. But only for the root
ρ1 we get a maximum for E(ρ)

E′′(ρ1) = −GB < 0; E′′(ρ2 = ρ3) = 0.

Therefore we take

ρ0 = ρ1 = 2
3

√

−W
2

= 3
√

µ∗/G.

Written explicitly the condition Q = 0 takes on the form:

(

W

2

)2

= −
(

V

3

)3

or µ∗ = ±a = ±G
(

2

3

B

G

)3/2

. (48)
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When discriminant Q equals zero, we receive the value of chemical

potential of the system.6 From Eq. (43)

ρ
(1)
0 = 2

3

√

−W
2

=
3

√

−µ
∗

G
= 3

√

−±a
G
. (49)

Substituting µ∗ from (48), we receive

ρ
(0)
0 = ±b, here b =

√

2

3

B

G
. (50)

We have got the transitional points on the plane µ∗, ρ0. The point

(−a,−b) corresponds to the solution ρ
(1)
0 , defined in (45) at ρ

(1)
0 = −b,

the point (b, a) corresponds to solution ρ
(1)
0 at ρ

(1)
0 = b. The slope of the

curve µ∗ = µ∗(ρ0) at point Q = 0

∂µ∗

∂ρ
(1)
0

∣

∣

∣

∣

∣

Q=0

=

(

∂ρ
(1)
0

∂µ∗

)−1
∣

∣

∣

∣

∣

∣

Q=0

= 6B. (51)

To get this derivative we have to take for ρ
(1)
0 its expression from (43).

From the condition Q = 0 we receive also:

µ∗ = ±µ∗
0|τ |5/2ν ; µ∗

0 = G0

(

2

3

B0

G0

)3/2

and

ρ0 = ρ̄0|τ |ν/2; ρ̄0 =

√

2

3

B0

G0
.

We have here two mutually receiprocal parabolic cylinder surfaces. On
the plane τ = −τ0 the intersection figure is an rectangular with the
vertices (−a, b), (−a,−b), (a,−b), (a, b) as it is shown on the fig. 5 and
fig. 10.

c) In the region Q < 0, the equation (41) has three real solutions. It
is more convenient to write them in trigonometrical form:

ρ01 = 2

√

∣

∣

∣

∣

V

3

∣

∣

∣

∣

cosϕ/3, ρ02 = 2

√

∣

∣

∣

∣

V

3

∣

∣

∣

∣

cos
ϕ+ 2π

3
,

ρ03 = 2

√

∣

∣

∣

∣

V

3

∣

∣

∣

∣

cos
ϕ+ 4π

3
, (52)

6Not from the generalized condition ∂ ln Ξ

∂µ∗ = N .
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ϕ = arccos t, t = − W

2
(

−V
3

)3/2
=
µ∗

a
, that is:

µ∗ = a cosϕ, ρ01 = b cosϕ/3, ρ02 = b cos
ϕ+ 2π

3
, ρ03 = b cos

ϕ+ 4π

3
.

(53)
In the vicinity of the point µ∗ = −a we have −1 = cosϕ, ϕ = π.

Substituting the values ϕ = π into the solution, we obtain

ρ01 = 2

√

∣

∣

∣

∣

V

3

∣

∣

∣

∣

cos
π

3
= b · 1

2
,

ρ02 = b cos
3π

3
= −b,

ρ03 = b cos
δπ

3
= b cos

(

2π − π

3

)

= b · 1

2
.

As we see, only the solution ρ02 coincides with the solution ρ
(1)
0 at

the point (−b− a).
For the case µ∗ = a, cosϕ = 1, ϕ = 0 we have

ρ01 = b cos 0 = b,

ρ02 = b cos
2π

3
= −1

2
b,

ρ03 = b cos
4π

3
= b cos

(

π +
π

3

)

= −1

2
b.

Thus, we take the solution ρ01.
The generalized chemical potential µ∗ varies within −a ≤ µ∗ ≤ a. At

the point µ∗ = −0, ϕ = π
2

ρ02 = b cos
π/2 + 2π

3
= −b cos

π

6
= −b

√
3

2
= −

√

1

2

B

G
,

ρ01 = b cos
π

6
= b

√
3

2
=

√

1

2

B

G
.

So, at µ∗ = 0 there is a jump in ρ0 along the ρ0 axis which equals√
3b =

√

2B/G.
Let us find the slope of the isotherms of chemical potentials µ∗ which

can be obtained by studying the behavior of ρ
(1)
0 , ρ02 and ρ01 at the

points:

(−a,−b),
(

0,−
√

3

2
b

)

,

(

0,

√
3

2
b

)

and (a, b).
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From (−a,−b) to the left, and from (a, b) to the right, ∂µ∗

∂ρ
(1)
0

= 6B (see

(51)).

Within the interval −a ≤ µ∗ ≤ 0, −b ≤ ρ02 ≤ −
√
3
2 b, according to (53),

µ∗ = a cosϕ; ϕ = 3 arccos(ρ02/b) − 2π and

∂µ∗

∂ρ02
=
∂µ∗

∂ϕ

∂ϕ

∂ρ02
= a(sinϕ)

3

b

1
√

1 − ρ2
02

b2

= 3
a

b

sinϕ

sin ϕ+2π
3

,

close to µ∗ = −a , ϕ = π

∂µ∗

∂ρ02
= 9

a

b

cosπ

cosπ
= 6B,

close to µ∗ = −0, ϕ = 3
2π

∂µ∗

∂ρ02
= 3

a

b

sin 3
2π

sin
(

π + π
6

) = 4B.

For the root ρ01 we have, analogously, ∂µ∗

∂ρ01
= 3a

b
sinϕ

sinϕ/3 , around µ = a,

according to (53), ϕ = 0

∂µ∗

∂ρ01
= 9

a

b

cosϕ

cosϕ/3

∣

∣

∣

∣

ϕ=0

= 6B

around µ∗ = 0, ϕ = π
2

∂µ∗

∂ρ01

∣

∣

∣

∣

µ∗=0,ϕ=π
2

= 3
a

b

sinπ/2

sin(π/6)
= 4B.

The plot of the generalized chemical potential isotherm as a function of
ρ has the form shown in Fig. 5. Here we have a smooth continuation of

curves ρ
(1)
0 to ρ02 at the point (−b,−µ∗) and ρ

(1)
0 to ρ01 at the point

(b, µ∗).
It is very important to note here, that among solutions (51) only

solution ρ02 in region −b < ρ0 < −d and only solution ρ01 in region
d < ρ0 < b obey conditions (41) for maximum of the function E(ρ0).
For all other values of ρ01, ρ02, ρ03 maximum of E(ρ0) in (39) cannot be
realised.

We have completed investigations of the generalized chemical poten-
tial µ∗.

Having studied the integral (39),
∫

exp(NE(ρ0))dρ0, and the functi-
on E(ρ0), given in (40), we revealed the most essential changes in the
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Figure 5. Chemical potential isotherm as a function of ρ0. Here, d =
√
3
2 b,

a = G
√

2
3
B
G

3

∼ τ (5/2)ν , b =
√

2
3
B
G ∼ τν/2.

behavior of the partition function as well as in the behavior of the ther-
modynamic functions.

In order to describe the scenario of the phase transition at T ≤ Tc,
we have to extract from the entire set of integration results those that
correspond to the integration as well as to the shift transformations of
the variable ρ0 and its Fourier transform ω0. This will automatically
concern the events connected with the generalized chemical potential
µ∗.

Our main goal in this study is to describe what exactly is happening
at T < Tc. Here, as well as in [21], we restrict ourselves to the narrow
region around the critical point. The scenario of the phase transition is
connected with the behavior of the generalized chemical potential µ∗. As
it follows from Eq. (38), the plane µ∗ = 0 contains the coordinates of
the critical point Tc, ηc.

Bringing together the obtained results, and taking the terms con-
taining µ∗, let us write the initial partition function Ξ, according to Eqs.
(19), (23), (25)-(28), and (32), (33), in the form of a product of two
partition functions:

Ξ = Ξ(2)Ξρ0 , (54)

where in Ξ(2) we included the results

Ξ(2) = Ξ0ΞGZ(M̃2, M̃4)Υ exp−β(Fcr + Fmτ ).
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Expression Ξ(2) does not depend on µ∗ (except for µ0, which is considered
to be a fixed function of density). All terms and effects connected with
the behavior of µ∗, are gathered in the part Ξρ0 . These terms enter the

expression (26) in term exp(
√
Nµ∗(ρ0 + M̃1)).

Partition function Ξρ0 is of most interest to us. From (22) and (32)

Ξρ0 = exp
[

µ∗(1 − ∆)N
]

∫

eNE(ρ0)dρ0, (55)

where

∆ = −
(

M2ξ +
1

3
M3ξ

2
)

;

(1 − ∆)N =
√
NM̃1;

E(ρ0) = µ∗ρ0 +Bρ20 −Gρ40.

In expression (55)

ln Ξρ0 =
Pρ0 (µ∗, η, τ)

kT
V

pressure P
(2)
ρ0 is the function of the generalized chemical potential µ∗,

density η and temperature τ . Exclusion of the chemical potential is achi-
eved by fulfilling the condition

∂ ln Ξρ0

∂µ∗ = N. (56)

Depending on the regions where µ∗ and ρ0 are defined, shown in

Fig. 5, the integral
∞
∫

−∞
exp(NE(ρ0))dρ0 can be presented as a sum of

integrals.
First, let us find its value for coexistence region (48)-(50)

µ∗
0 = ±a = ±G

(

2

3
B/G

)3/2

, a = a(ητ),

ρ0 = ±b = ±
√

2

3
B/G, b = b(ητ). (57)

Function exp(NE(ρ0)) has very sharp and large peaks at the points
ρ0 = ±b

exp
[

NE(ρ0 = b)
]

= exp

[

N
2

3

B2

G

]

,

E′′(ρ0 = b) = −6B < 0.
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Thus, for coexistence boundary we will have
∫

exp(NE(ρ0))dρ0 =

= exp(NE(b))

∫

exp

[

−1

2
NE′′(b)(b− ρ0)2

]

dρ0 =

= exp(NE(b))|b=+b,−b

√

2π

NE′′(b)
.

In ln Ξ we neglect the terms dependent on lnN . The phase separation
region will have the form:

Ξρ0 = expN
{

µ∗(1 − ∆) + µ∗ρ0 +Bρ20 −Gρ40
}

µ∗=±a
ρ0=±b

. (58)

We have here the value of Ξρ0 in the general form, which will have the
same external form at all maximum points of function expNE(ρ0).

The application of condition (56) also gives us a general relation for
all subsequent calculations, valid at maximum points of the expression
expNE(ρ0). From (55) we have:

N(1 − ∆ + ρ0)ρ0=ρmax = N, hence ρ0|ρ0=ρmax = ∆. (59)

Let us call ∆ the order parameter. Substitution of ρ0 = ρmax = ∆
in (58) leads to the cancellation of the terms −µ∗∆ + µ∗ρ0 = 0. The
starting expression for determining Ξρ0 (µ∗, η, τ) will be

Ξρ0 = expN
{

µ∗ +Bρ2max −Gρ4max

}

∆=ρmax
. (60)

Returning to (57), we have two turning points:

∆ = −b, µ∗ = −a and ∆ = b, µ∗ = a; a = Gb3, b =

√

2

3

B

G
. (61)

Inserting them into (60), we get two turning points in the equation of
state:

Pρ0(ητ)1 =
NkT

V

{

−Gb3 +Bb2 −Gb4
}

(62)

and

Pρ0(ητ)2 =
NkT

V

{

Gb3 +Bb2 −Gb4
}

, (63)

where

b =

√

2

3

B

G
. (64)
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According to (61) we have two particular values of parameter ∆ and
quantities b, namely,

∆ = −
(

M2ξ +
1

3
M3ξ

2
)

= −b = −
√

2

3

B

G
for (62)

and

∆ = −
(

M2ξ +
1

3
M3ξ

2
)

= b for (63).

Thus, for the range of densities for which ρ0 = ρ
(1)
0 , i.e., according to

(59), function ∆ varies within the ranges ∆ = ρ
(1)
0 < −b and ∆ = ρ

(1)
0 >

b, and µ∗ is defined by Eq. (47). Partition function Ξ
(2)
L , according to

(52), will have the form:

Ξρ0 = expN
{

qG∆3 +B∆2 −G∆4
}

, |∆| <
√

2

3

B

G
.

In expression (47) for

µ∗ = ∆34G

(

1 +
(γ

4

)1/3

− 1

12
|γ| +

√
2

24
|γ|4/3 − . . .

)−3

we have introduced the mean value of the fraction

4

(

1 +
(γ

4

)1/3

− 1

12
|γ| +

√
2

24
|γ|4/3 − . . .

)−3

= q,

at µ∗ = a, γ = 1 and when µ→ ∞, γ → 0 quantity q varies in the range
from one to four, 1 ≤ q ≤ 4. So, we obtain the final expression for the
equation of state in the range of densities

|∆| ≥ b =

√

2

3

B

G
,

Pρ0 (η, τ) =
NkT

V

{

B∆2 + qG∆3 −G∆4
}

. (65)

On the phase separation boundary

∆ = ±b, q = 1.

Let us consider now the next regions (see Fig. 5). In the ranges of
density

−a ≤ µ∗ < 0 and 0 < µ∗ ≤ a (66)
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for the integrated function in (55) we have two values ρ0 that define the
maxima of function exp(NE(ρ0)), namely (see (52)):

ρ0 = ρ02 = b cos
ϕ+ 2π

3
for − a ≤ µ∗ < 0 and − b ≤ ρ02 < −

√
3

2
b,

and

ρ0 = ρ01 = b cos
ϕ

3
for 0 < µ∗ ≤ a and

√
3

2
b ≤ ρ01 ≤ b,

where ϕ = arccos µ∗

a .
From condition (56) or (59) we have:

ρ02 = ∆, ϕ = 3 arccos
∆

b
− 2π and − b ≤ ∆ ≤ −

√
3

2
b, (67)

and

ρ01 = ∆ and ϕ = 3 arccos
∆

b
, for

√
3

2
b ≤ ∆ ≤ b. (68)

We insert the above obtained expressions (67) and (68) into the form
(60), valid for all regions, and get the equation of state for the densities

that define the parameter ∆ in the range −b ≤ ∆ ≤ −
√
3
2 b:

Pρ0(ητ) =
NkT

V

{

a cosϕ∗ +B∆2 −G∆4
}

, (69)

ϕ∗ = 3 arccos
∆

b
− 2π, ∆ = b cos

ϕ+ 2π

3
,

3

2
π ≤ ϕ ≤ π

and for densities
√
3
2 b < ∆ < b

Pρ0(ητ) =
NkT

V

{

a cosϕ∗∗ +B∆2 −G∆4
}

,

ϕ∗∗ = 3 arccos
∆

b
, ∆ = b cos

ϕ

3
; 0 ≤ ϕ ≤ π

2
. (70)

Both regions of the curves of the equation of state meet at points ∆ = −b
and ∆ = b with curves (65) which correspond to the values µ∗ = −a and
µ∗ = a (see (53)). Indeed, in the first case (Eq. (69)) ϕ = π, in the
second case (Eq. (70)) one takes ϕ = 0.

Finally, all we have to do is to compute in (55) the part of the
isotherm that corresponds to the range

−
√

3

2
b ≤ ρ0 ≤

√
3

2
b
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or, based on Eqs. (59), corresponds to the range

−
√

3

2
b ≤ ∆ ≤

√
3

2
b, here µ∗ = 0.

We have the integral

J =

√
3

2 b
∫

−
√

3
2 b

exp(NE(ρ0))dρ0, E(ρ0) = Bρ20 −Gρ40. (71)

The function to be integrated has a deep minimum at ρ0 = 0,
exp [NE(ρ0)] |ρ0=0 = 1, E′′(ρ0 = 0) = 2B > 0 and two very high maxima
at the edges at

ρ0 = ρmax =

√
3

2
b, E(ρmax) =

1

4

B2

G
, E′′(ρmax) = −4B < 0.

In the range
(

−
√
3
2 b ÷

√
3
2 b
)

, the variable ρ0 changes its sign. Parameter

∆ changes its sign as well.
At the boundaries of the interval, exp(NE(ρ0)) sharply goes up and

fuses on the left at ρ0 = ∆ = −
√
3
2 b with exp(NE(ρ02)) and on the right

at ρ0 = ∆ =
√
3
2 b with exp(NE(ρ01)). The following condition is also

satisfied:

expNE

(

−
√

3

2
b

)∣

∣

∣

∣

∣

µ∗=0

= expNE

(√
3

2
p

)

∣

∣

∣

∣

∣

∣

µ∗=0

.

The width of the interval:
√

3b =
√

2B/G ∼ |τ |ν/2. The larger is
|τ |, the wider is the interval. The slope of the curves at the edges of the
interval is defined by the tangent lines, from the left side:

(

dPL

dρ0

)

ρ0=∆→−
√

3
2

b

∆6−
√

3
2

b

= 4B

(this result coincides with the slope of the curve of µ∗ → −0), and from
the right side, µ∗ = 0,

(

∂PL

∂ρ0

)

ρ0=∆→−
√

3
2 b,∆>−

√
3

2 b

= 2B∆ − 4G∆3 = 0,
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and is horizontal.
The system passes from the stable state with the order parameter

∆ = −
√

3

2
b = −

√

1

2

B

G

to another stable state with the order parameter

∆ =

√
3

2
b =

√

1

2

B

G
,

“jumping over” the unstable state around ∆ = 0.
The integral J given in Eq.(71) splits into two integrals as follows:

J =

∫ 0

−
√

3
2 b

exp
(

NE(ρ0)
)

dρ0 +

∫

√
3

2 b

0

exp
(

NE(ρ0)
)

dρ0.

These integrals have the same magnitudes but opposite signs.

3. The equation of state

As it follows from (58) and (59), the starting expressions for the equation
of state were

Pρ0V

kT
= N

{

µ∗ +Bρ2max −Gρ4max

}

(72)

and
ρmax = ∆, (73)

where ρmax are the values of ρ0 that maximize the integrated function
in the integral

∫

exp[NE(ρ0)]dρ0 in (55). The integral is composed of a
sum of integrals

∞
∫

−∞

exp[NE(ρ0)]dρ0 =

−b
∫

−∞

· · ·+
−

√
3

2 b
∫

−b

· · ·+

√
3

2 b
∫

−
√

3
2 b

· · ·+
b
∫

√
3

2 b

· · ·+
∞
∫

b

. . . , (74)

where symbol “ . . . ” denotes the exponential

· · · ≡ exp[NE(ρ0)]dρ0.

All the integrals have already been done and given in Eqs. (61), (62)
– for the curve Q = 0, in Eq. (64) – for |∆| > b and in Eqs. (68), (69)
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Figure 6. The dependence of ∆ (solid line),1 − ∆ (dashed line), and ξ
(dash-dotted line) on the density η. In the present work, the system is
considered within the range 0.05 < η < 0.2. In this interval, the values
of cumulant M4 are finite and negative.

for the regions b ≥ |∆| ≥
√
3
2 b and integral J , given by (70) for the range

[

−
√
3
2 b,

√
3
2 b
]

. Now, we have to bring everything together.

In the starting Eq. (55) all quantities ξ, M̃1, B and G (see Fig. 6)
are continuous functions of density and temperature. The generalized
chemical potential µ∗ has the form of a smooth curve given in Fig. 5
as a function of ρ0, and according to (59) as a function of ∆ with two
breaking points at µ∗ = 0. As a consequence, the equation of state (72)
and (74) will have the form of a broken curve as well.

Herein, one has a step-like change of the order parameter ∆ from

the value −
√
3
2 b to the value

√
3
2 b through the unstable improbable state

∆ = 0.
The work of the transition is a macroscopic quantity. Its value A equals
the area of a rectangle with the height

√
3b/2 and the width equal to√

3b (see Fig. 7).
Now, we can gather the results together. Thus, from Eqs. (65), (69),

(70) and from Fig. 7 we shall get the equation of state, Pρ0 as a function
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Figure 7. The isotherm of the equation of state, d =
√

3b/2.

of η and τ, Pρ0 = Pρ0(η, τ):

Pρ0 = kT
{N

V
(B(∆) − qG∆3)Θ(−b− ∆) +

+
N

V
(B(∆) − a cosϕ∗)Θ(∆ + b)Θ

(

−
√

3

2
b− ∆

)

+

+
N

V
(B(∆) + a cosϕ∗∗)Θ

(

∆

√
3

2
b
)

Θ(b− ∆) + (75)

+
N

V
(B(∆) + pG∆3)Θ(∆ − b)

}

+
A

V
Θ
(

∆ +

√
3

2
b
)

Θ
(

√
3

2
b− ∆

)

;

where B(∆) = B∆2 − G∆4, ∆ = ∆(η) according to (55), and factor
N/V = 6η/(πσ3) ought to be taken for the densities corresponding to
the value of ∆(η) (for example, see Fig. 7).

The isotherm curve of the equation of state will have the form given
in Fig. 7.

The work of transition equals to the latent heat of vaporization. The
latent heat is generated by the system at condensation and is supplied
to the system at the boiling point under the gas-liquid transition or the
liquid-gas

AGL =

L
∫

G

P (η, τ)dV.

The element of work is dA = PdV . Under transition between the points
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Figure 8. Plot of the derivative of ∆ with respect to η.

∆G = −
√
3
2 b and ∆L =

√
3
2 b, the pressure and temperature of the system

remain constant (see Fig. 8).
From equation of state (75) one obtains the pressure at points ∆G =

−
√
3
2 b and ∆L =

√
3
2 b being equal to:

PGL =
NkT

V

1

4

B2

G
.

The element of work equals:

PdV =
NkT

V

1

4

B2

G
dV,

where dV = dV
dη

dη
d∆d∆. We take into account the simple correspondence

between V and η, η = N
V

π
6σ

3, here σ is diameter of elastic particle, hence
dV
dη = −V

η .
The dependence between η and ∆ is shown graphically in Fig. 6.

Therein we also present the plot of the function ξ(η) = M3(η)/|M4(η)|.
The system is considered in the density interval η = 0, 05 ÷ 0, 2. In this
interval, the cumulant M4 is finite and negative. (All the plots were built
by V.O. Kolomiyets for argon Ar.) The critical density here corresponds
to the values of ηc ≈ 0,13. In the narrow region close to ηc, a simple
correspondence between η and ∆ takes place. Thus, 7:

dV = −V
η

dη

d∆
d∆ = −V

η

1
d∆
dη

d∆.

7The plot of function d∆
dη

presented in Fig. 8, was kindly offered to us by V.O.

Kolomiyets and R.Romanik



40 Препринт

Now we can substitute the values of dV and rewrite the element of
work in the integrable form:

dAGL = P(G)dV =
NkT

V

1

4

B2

G

(

−V
η

1
d∆
dη

)

d∆.

As can be seen in Fig. 9, η d∆
dη is a monotonous positive value, which at

critical point has the exact value 8

ηc

(

d∆

dη

)

c

= 1.

As a result, we receive for AGL

AG,L = −NkBT
1

4

B2

G

(

η
d∆

dη

)−1 √
3b

= −NkBT
√

2

4

(

B5

G3

)1/2(

η
d∆

dη

)−1

. (76)

Very narrow to Tc one can write

AG,L ≃ −NkBT
√

2

4

(

B5/2

G3/2

)

. (77)

This is the value of latent heat which is generated at the boiling point
under the gas-liquid phase transition, as shown in Fig. 7.

Enclosing curves. Now, let us find the equations for the enclosing
curves. They follow from the relations (48), (50) for the curve Q = 0,
and from the relations (52-53) for the curve that encloses the area µ∗ = 0.
The curve Q = 0 in expressions (72) and (75) means the points:

ρ0(max) = |∆| = ±b. (78)

The curve that encloses the area µ∗ = 0 is given by the equation

ρ′0(max) = |∆| =

√
3

2
b, (79)

that would correspond to the binodal equation as a function of τ and η.
In the explicit form, according to (55) and (65), for the curve (78):

∣

∣

∣
M2

M3

|M4|
+

1

3
M3

(

M3

M4

)2
∣

∣

∣
=

√

2

3

B

G
(80)

8The author is thankful to O.V. Patsahan for this information.
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Figure 9. Curve 1 is the binodal curve as a function of the parameter ∆,
Curve 2 denotes the states where Q = 0; here d =

√
3b/2.

and for the curve (79):

∣

∣

∣
M2

M3

|M4|
− 1

3
M3

(

M3

M4

)2
∣

∣

∣
=

√

1

2

B

G
. (81)

In order to get the curves corresponding to the condition Q = 0 in
the plain (p, η), let us use the relation (59) between ρ0 and ∆. In the

case ∆ = ρ
(1)
0 = b it is given by relations (61-64), or by Eq. (75). We

have two such points for Q = 0 9

PQ=0 =
NkT

V

(

B(∆) −G∆3
)

∆=b
, (82)

PQ=0 =
NkT

V

(

B(∆) +G∆3
)

∆=b
,

that are situated on different sides from the line ∆ = 0, and are on the
cubic parabola G∆3. Thus, this curve is asymmetrical with respect to
the line ∆ = 0. At τ → 0, the locus of points corresponding to Q = 0
tend to the critical point as τ5/2ν .

The binodal points correspond to the case µ∗ = 0 and ∆ = ±
√
3
2 b. On

the curve of the equation of state (75), the following values of pressure
correspond to them

Pbinodal =
NkT

V
{B(∆) − a cosϕ}

∆=−
√

3b
2 ,ϕ=π

2

, (83)

9Here the factor N/V is a function of ∆ like it is in expression (75)
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Pbinodal =
NkT

V
{B(∆) + a cosϕ}

∆=
√

3
2 b,ϕ=π

2

.

The binodal points are situated symmetrically with respect to the line
∆ = 0.

The equality of chemical potentials. Equilibrium conditions. Accor-
ding to (23), the generalized chemical potential µ∗ is equal to

µ∗ = h− ξ + |α(0)| M̃1√
N
,

where

h = β(µ− µ0), ξ =
M3

|M4|
, M̃1 =

√
N(1 − ∆), α(0) =

N

V

Φ̃(0)

kBT
.

Near the points of the phase transition of the first order, ∆G,L =

∓
√

1
2B/G, the function µ∗ tends to zero, and

βµ = βµ0 + ξ − |α(0)|(1 − ∆)|
∆G=−

√
1
2B/G, ∆L=

√
1
2B/G

. (84)

Here all the functions on the right hand side are monotonous functions
of density η, of the order parameter ∆, and of temperature τ . In the
“jump”-points, according to (72), when µ∗ = 0, and according to (75),
whenϕ∗ = ϕ∗∗ = π

2 :

Pρ0 =
NkT

V
B =

NkT

V
(B∆2 −G∆4). (85)

The pressure Pρ0 has the same value on both points. When we were
calculating the pressure Pρ0 , we got a situation of two quite identical
maximum-points on the curves expN(B∆2 − G∆4) (see fig. 6). Thus,
the probabilities of both states are identical.

Owing to a monotonous and continuous dependence between
Pρ0 and η, ξ, |α(0)|, ∆ in (85), we arrive at a conclusion
that the chemical potential µ in (84) is a simple function Pρ0 . So, when

in the points ∆ = ±
√

1
2B/G we have the same vales of pressure and tem-

perature, then in both points along (85) the values of chemical potential
are also the same

µ(Pρ0 (∆G, τ), τ) = µ(Pρ0(∆L, τ), τ) . (86)

The points ∆ = ±
√

1
2B/G are those points on the binodal between

which there occurs a gas-liquid phase transition of the first order.
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We have got all the three equilibrium conditions for the phase tran-
sition of the first order located on the binodal curve in the points

∆G = −
√

1
2B/G ; ∆L =

√

1
2B/G:

τG = τL, PG = PL, µG = µL. (87)

Overheated liquid and overcooled gas. Making calculations in (39)–
(41), we used the method of the steepest descent. Therefore we were
looking for such values of ρ0 for which the function exp(NE(ρ0)) in (39)
possessed an absolute maximum.

We had three solutions in formula (51). From those we were obliged
to take only one part of the solution ρ02, i.e., its values in the area
π
2 ≤ ϕ ≤ π, and only one part of the solution ρ01, i.e., its values in the
area 0 ≤ ϕ ≤ π

2 . We altogether rejected the solution ρ03, as well as parts
for solutions ρ02 for 0 ≤ ϕ ≤ π

2 and ρ01 for π
2 ≤ ϕ ≤ π.

Now we shall analyse the shapes of ρ01, ρ02, ρ03 in the whole area
0 ≤ ϕ ≤ π. We have

ρ01 = b cos
ϕ

3
; ρ02 = b cos

ϕ+ 2π

3
; ρ03 = b cos

ϕ+ 4π

3
;

b =

√

3

2

B

G
; µ∗ = a cosϕ; 0 ≤ ϕ ≤ π,

−a ≤ µ∗ ≤ a; a = G(b)3/2.

Instead of Figs. 5 and 7, where we have only two parts of solutions

ρ02

(

π
2 ≤ ϕ ≤ π

)

and ρ01

(

0 ≤ ϕ ≤ π
2

)

, we present in Fig. 10 a complete

picture of all isoterms (87) within the area Q = 0, for Q < 0.
We shall translate these curves into the equation of state Pρ0(ητ), see

Fig. 8, for whole intervals −b ≤ ∆ ≤ b, 0 ≤ ϕ ≤ π. Therefore, we have
to extend the curve a cosϕ in formula (69) to the interval 0 ≤ ϕ ≤ π

2 ,
and extend the curve a cosϕ in formula (70) to interval π

2 ≤ ϕ ≤ π and
add the curve ρ03. As a result, we obtain Fig. 11, an a la Van der Waals
curve for equation of state.

Now we shall show that these additional parts cannot be really re-
alised.

An initial form used for equation of state (75) was the formula (55)
for the partition function Ξρ0

∫

exp
(

NE(ρ0)
)

dρ0,
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Figure 10. Function µ∗ in the whole region Q < 0.
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Figure 11. A complete set of the curve of equation of state given in fig. 7
with some new parts (which cannot be realised).
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where E(ρ0) = µ∗ρ0 +Bρ20−Gρ40. Owing to the fact that in exponent we
have the factor N, for calculation we used the steepest descent method.

We were going along the lines of maxima of the function exp
(

NE(ρ0)
)

.

The result is shown in Fig. 7 where the isotherm of the equation of state
P (τ, η) is shown. Starting with the small values of ∆, we come from

the left to the point ∆ = −
√
3
2 b where a jump to the point ∆ =

√
3
2 b

occurs with a further smooth continuation along the lines of maxima

of exp
(

NE(ρ0)
)

. In all these cases, the integrand was a measure of

probability. We were going along the most probable states.
Now we shall estimate the measures of probabilities of the states

marked in fig. 11 by numbers 1, 2, 3, 4, 5, 6, 7.

According to (57a) in points 1 and 7, for the function exp
(

NE(ρ0)
)

,

we have very high maxima equal to:

max exp
(

NE(ρ0)
)∣

∣

∣

ρ0=b,−b
= exp

(

N
2

3

B2

G

)

.

In points 2 and 6, according to the formula (71), the function

exp
(

NE(ρ0)
)

has also got two very high maxima equal to

max exp
(

NE(ρ0)
)∣

∣

∣

ρ0=±
√

3
2 b

= expN
1

4

B2

G
.

However, in points ρ0 = ± 1
2b, the probability density is vanishing

small:

exp
(

NE(ρ0)
)

ρ0=± 1
2 b

= exp
(

−N 1

12
B2/G

)

.

Thus, points ρ0 = ∆ = ± 1
2b are unattainable for the system. In the point

ρ0 = ∆ = 0 we have exp
(

NE(ρ0)
)

= 1.

Therefore, the curve ρ03 can be never realised. And the path marked
in Fig. 11 by a thin line should not be regarded.

Nevertheless, if we have very high maxima in the points 2 and 6,
there may exist some probable states in a very close vicinity to those
points along the curves ρ0(1, 2) and ρ0(7, 6). They are superheated and
supercooled states.
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Concluding remarks

We solved the problem of the critical point of liquid-gas transition.
An equation of state is obtained, which demonstrates an interdepen-

dence between the pressure p, temperature τ and density η in the critical
region in the vicinity of Tc and ηc.

The shape of isotherm curve in vicinity of Tc, T < Tc is presented on
Fig. 7.

Between the points ∆G and ∆L on the “binodal” there occurs the
first-order phase transition from the gas state SG into the liquid state
∆L. The corresponding value of the latent heat (76) is proportional to
the area of a rectangular with apexes ∆G, ∆L (Fig. 7).

The equilibrium conditions at the phase transition of the first order
as well as overheated and overcooled states are presented. In Fig. 11 we
described the real situation of the process of the phase transition of the
first order. We have got two boundary curves, Fig.9. The first one is the
curve corresponding to the condition Q = 0. The second one is the curve
where the generalized chemical potential is equal to zero, µ∗ = 0. The
locus of its points describes is related to the beginning and to the end of
the first order phase transition. This is the binodal curve.

It is also shown that the points belonging to the spinodal curve are
not realistic at all.

The points which correspond ∆ = 0 (rectilinear diameter) are of a
very small probability. Therefore, those may be regarded as some tran-
sition points when the system undergoes a phase transition from vapour
to liquid or vice versa, supported be the latent heat.

In the way the problem is stated, we are restricted to the region of
minimum of the Fourier-image of attraction potential (the wave vectors
k 6 B). We assume that the main events concerning the phase transition
concentrate in this region. We supposed that the problem at k > B had
a known solution, which can be presented, e.g., in the form of the virial
series with convergent integrals. More accurate results could have been
produced by renormalization of the quantities B in G in the region of
k < B. However, as shown in [20], the correction is inessential.

To describe the interaction between the particles at short-range di-
stances, the reference system of elastic particles is introduced with the
corresponding cumulant values M1, M2, M3, M4. A principal question
in solving the problem in general is the discovery of wide plateaus in
cumulants Mn at small values of k in the vicinity to the point k = 0.
Corresponding calculations, permitting us to reduce the problem of gas-
liquid point to the Ising model in external field, have been carried out
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by my collaborators I. Idzyk and V.O. Kolomiyets.
The effect of short-range interactions concentrated in a reference sys-

tem is essential in solving our problem. The values M2(0), M3(0) and

M4(0) produce an expression for the order parameter ∆ = −
(

M2(0)ξ+

1
3M3(0)ξ2

)

, ξ = M3(0)
|M4(0)| , which is the main variable of the equation of

state. The natural “crossing” of the short-range and long-range interac-
tions takes place in the equation ∂ lnΞL

∂µ∗ = N (see (59) and (60)) under
substitution of the generalized chemical potential µ∗ by its values as
functions of τ and η.

As it was already mentioned, our analysis is correct in the region of
densities η, where the cumulant M4 is finite and negative, namely at
0,02 6 η 60,2. The widening of density region is possible at a different
choice of short-range interactions ψ(rij) in the starting equations (4),
(5). Let us note that integration is carried out in the region of collective
variables ρk, ρ0. That is why the values of initial coefficients a2 and a4,
presented in Table 2, are essential.

In our problem, the equation of state of the reference system as a part
of general equation of state is not separated. It is probable, however, that
adding −p0V = −µ0N + dF0 after separating the contribution of free
energy, F0 of the reference system may be canceled.

The equation of state Pρ0 = P (τ, η) below T = Tc is obtained by
separately studying the short-range and long-range interaction forces in
different phase spaces. The short-range interaction was considered in
Descartes space of particle coordinates, whereas the long-range attracti-
on was studied on the basis of collective variables ρk defined on the space
of wave vectors k. This was the idea proposed by N. N. Bogolyubov in
his work [37] and in his suggestions given to us in mid 50-ies of the last
century. They have led then to virial expansions for electrolyte solutions.

In general, after a twenty-year long break, connected with my polit-
ical activities, I would like to express the heartfelt gratitude to my dear
friends, collaborators at the Institute for Condensed Matter Physics of
the NAS of Ukraine, in particular to I.M. Mryglod and O.L. Ivankiv, for
permanent assistance in my returning to the “liquid-gas critical point”
problem and for the first discussion of this work at the Institute seminar.
I am sincerely grateful to L.A. Bulavin for discussion of this work at the
seminar of the physics faculty at T. Shevchenko Kiev National university
and to A.G. Zagorodni for the discussion of the work at the seminar of
the Bogolubov Institute for Theoretical Physics NAS of Ukraine.

I am sincerely grateful to M.P. Kozlovsky and especially to R. Ro-
manik for fruitful discussions and for assistance in proof-reading of the



48 Препринт

paper and for the preparation of illustrations.
I heartily thank Yu. Holovatch for useful discussions of the results

and for assistance in preparing an English version of the paper.
I heartily thank O.V. Patsahan for proof-reading the paper and for

useful pieces of advice concerning calculations of latent heat of transition.
And my special thanks to V.O. Kolomiyets and I.M. Idzyk for suc-

cessful formulation of the results of Refs. [13–17] in temperature region
T > Tc and T = Tc, presented in [19], for analysis of the functions ∆
and ξ, performed also by R. Romanik and presented graphically in Fi-
gs. 5 and 7, and for the willingness to come back to phase transitions
problems.

References

1. Yukhnovskii I.R., Idzyk I.M., Physics of Many Particle Systems, Ki-
ev, Naukova Dumka, 1983, 3, 18 (in Russian).

2. Zubarev D.M., Dokl. Acad. Nauk SSSR, 1954, 47, N 8, 2856-2861.
3. Hubbard J., Phys. Rev. Lett., 1954, 3.
4. Hubbard J., Proc. R. Soc. A, 1957, A240, 539.
5. Yukhnovskii I.R., Zhurn. Eksp. Theor. Phys., 1958, 34, 379 (in Rus-

sian).
6. Yukhnovskii I.R., Golovko M.F., Statistical Theory of Classical Equi-

librium Systems, Kiev, Naukova Dumka, 1980, 372 p. (in Russian).
7. Yukhnovskii I.R. Partition Function for the Three-dimensional Ising

Model, Dokl. Akad. Nauk USSR, 1977, 232, N 2, 312-315.
8. Yukhnovskii I.R. Three-dimensional Ising Model. Integration of the

Partition Function in the Collective Variable Method. Part 1. Ukr.
Phys. Journ., 1977, 22, N 2, 325-335; Part 2. Ukr. Phys. Journ.,
1977, 22, N 3, 483-492.

9. Yukhnovskii I.R., Phase Transitions of the Second Order. Collective
Variables Method, Kiev, Naukova Dumka, 1985, 252 p. (in Russian).
See also World Scientific. Singapore, 1987, 327p.; La Rivista del Nuo-
vo Cimento, 1989, 12, N 1, 119.

10. Ginzburg V.L., Landau L.D., Zhurn. Eksp. Theor. Phys., 1960, 72,
1064.

11. Braut R., Phase Transitions, Benjamin New York, 1963; Moscow,
Mir, 1967.

12. Patashinskii G.V. and Pokrovskii V.L., Fluctuation Theory of Phase
Transitions, Moscow, Nauka, 1975 (in Russian).

13. Ma S.K., Modern Theory of Critical Phenomena, Benjamin New
York, 1976.

ICMP–11–15E 49

14. Yukhnovskii I.R., Kozlovskii M.P., Pylyuk I.V., Microscopic Theory
of Phase Transitions in Three-Dimensional Systems, Lviv, Eurosvit,
2001, 592 p. (in Ukrainian).

15. Yukhnovskii I.R., On the statistical theory for condensed systems
with long-range and short-range interparticle interactions, Prepr. In-
st. Theor. Phys., ITP-79-133P, Kiev, 1979, 34 p. (in Russian).

16. Yukhnovskii I.R., Idzyk I.M., Thermodynamical limit near the
critical-point liquid-vapour, Prepr. Inst. Theor. Phys., ITP-85-97P,
Kiev, 1985 (in Russian).

17. Yukhnovskii I.R., Idzyk I.M., Kolomiets V.O., The Formulation of
the Problem of a Liquid-Gas Critical Point in Collective Variables
Method, Prepr. Inst. Theor. Phys., ITP-87-15P, Kiev, 1987, 29 p.
(in Russian).

18. Idzyk I.M., Kolomiets V.O., Yukhnovskii I.R., Critical point on the
liquid-vapour system in collective variables method, Theor. Math.
Phys., 1987, 73, N 2, 264-280.

19. Yukhnovskii I.R. The grand partition functional in collective vari-
ables method and its application for investigations on the liquid-gas
phase transition, Proc. of the Steklov Inst. of Mathematics, 1992,
Iss.2, 223p.

20. Yukhnovskii I.R. The Chemical Potential Isotherm in the Region of
the Liquid-Gas Phase Transition, Prepr. Inst. Theor. Phys., ITP-88-
43P, Kiev, 1988, 35 p. (in Russian).

21. Yukhnovskii I.R., Idzyk I.M., Kolomiets V.O., Investigation of a Ho-
mogeneus Many-Particle System in the Vicinity of the Critical Point,
Journ. Stat. Phys., 1995, 80, Nos 1/2, 405.

22. Yukhnovskii I.R., Patsahan O.V., Grand Canonical Distribution for
Multicomponent Systems in the Collective Variables Method with a
Distinquished Reference System, Prepr. Inst. Theor. Phys., ITP-87-
163P, Kiev, 1987, 28 p.

23. Yukhnovskii I.R., Idzyk I.M., Kolomiets V.O., Liquid-gas critical
point. Proc. of the First Confer. on Renorm. Group. Edited by
D.Y.Shirkov, Singapore, World Sci. Pub., 1988, 430-446.

24. Hubbard I. and Scofield P., Phys. Lett. A., 1972, 40, 245.
25. Vause C. and Sac J., Phys. Rev. A, 1980, 21, 2099.
26. Pelissetto, Vicari E., Critical Phenomena and Renormalization-

Group Theory, Physics Reports, 2002, 368, 549-727.
27. Parisi G., Statistical Field Theory, Persens Books, 1998, 352.
28. Fisher M.E., Orkoulas G., The Yang-Yang Anomaly in Fluid Criti-

cality. Eksperiment and Scaling Theory, Phys. Rev. Lett., 2000, 85,
696-699.



50 Препринт

29. Kim Y.C., Fisher M.E., Orkoulas G., Asymmetric fluid criticality. I.
Scaling with pressure mixing, Phys. Rev. E., 2003, 67, 061506.

30. Wang I., Anisimov M.A., Nature of vapour-liquid asymmetry in fluid
criticality, Phys. Rev. E., 2007, 75, 051107.

31. Johannes D. van der Waals, The equation of state for gases and
liquids, Nobel Lecture, December 12, 1910.

32. Juan J. de Pablo, Qiliang Yan, Fernando A. Escovedo, Ann. Rev.
Phys. Chem., 1999, 50, 377-411.

33. Wilson K.G. Renormalisation Group and Critical Phenomena. 1.
Renormalisation group and Kadanoff scaling picture, Phys. Rev. B,
1971, 4, N 9, 3174-3183. 2. Phase-space cell analisis of critical be-
haviour, Ibid, 3184-3205.

34. Wilson K.G., Quantum field-theory models in less than 4 dimensions,
Phys. Rev. D, 1973, 7, N 10, 2911-2926.

35. Wilson K. and Kogut J., Phys. Rev., 1974, 75, 12.
36. Wilson K. and Kogut J. Renormalisation Group and ε-expansion,

Moscow, Mir, 1975, 254 (in Russian).
37. Kadanoff L.P., Scaling Laws for Ising Models near Tc, Physics, 1966,

2, N 6, 263.
38. Landau L.D., Livshits E.M., Statistical Physics. Part 1, Moscow,

Nauka, 1976, 584 (in Russian).
39. Bogolubov N.N., Selected works, Kiev, Naukova Dumka, 1970, 2,

129, 194 (in Russian).
40. Carnahan N.F. and Starling K.E., J. Chem. Phys., 1969, 51, 635.



CONDENSED MATTER PHYSICS

The journal Condensed Matter Physics is founded in 1993 and
published by Institute for Condensed Matter Physics of the National
Academy of Sciences of Ukraine.

AIMS AND SCOPE: The journal Condensed Matter Physics con-
tains research and review articles in the field of statistical mechanics
and condensed matter theory. The main attention is paid to physics of
solid, liquid and amorphous systems, phase equilibria and phase tran-
sitions, thermal, structural, electric, magnetic and optical properties of
condensed matter. Condensed Matter Physics is published quarterly.

ABSTRACTED/INDEXED IN: Chemical Abstract Service, Cur-
rent Contents/Physical, Chemical&Earth Sciences; ISI Science Citation
Index-Expanded, ISI Alerting Services; INSPEC; “Referatyvnyj Zhur-
nal”; “Dzherelo”.

EDITOR IN CHIEF: Ihor Yukhnovskii.

EDITORIAL BOARD: T. Arimitsu, Tsukuba; J.-P. Badiali, Paris;
B. Berche, Nancy; T. Bryk (Associate Editor), Lviv; J.-M. Caillol, Or-

say; C. von Ferber, Coventry; R. Folk, Linz; L.E. Gonzalez, Valladol-

id; D. Henderson, Provo; F. Hirata, Okazaki; Yu. Holovatch (Associate
Editor), Lviv; M. Holovko (Associate Editor), Lviv; O. Ivankiv (Man-
aging Editor), Lviv; Ja. Ilnytskyi (Assistant Editor), Lviv; N. Jakse,
Grenoble; W. Janke, Leipzig; J. Jedrzejewski, Wroc law; Yu. Kalyuzh-
nyi, Lviv; R. Kenna, Coventry; M. Korynevskii, Lviv; Yu. Kozitsky,
Lublin; M. Kozlovskii, Lviv; O. Lavrentovich, Kent; M. Lebovka, Kyiv;
R. Lemanski, Wroc law; R. Levitskii, Lviv; V. Loktev, Kyiv; E. Lomba,
Madrid; O. Makhanets, Chernivtsi; V. Morozov, Moscow; I. Mryglod
(Associate Editor), Lviv; O. Patsahan (Assistant Editor), Lviv; O. Pizio,
Mexico; N. Plakida, Dubna; G. Ruocco, Rome; A. Seitsonen, Zürich;
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