
Препринти Iнституту фiзики конденсованих систем НАН України
розповсюджуються серед наукових та iнформацiйних установ. Вони
також доступнi по електроннiй комп’ютернiй мережi на WWW-сер-
верi iнституту за адресою http://www.icmp.lviv.ua/

The preprints of the Institute for Condensed Matter Physics of the Na-
tional Academy of Sciences of Ukraine are distributed to scientific and
informational institutions. They also are available by computer network
from Institute’s WWW server (http://www.icmp.lviv.ua/)

Микола Володимирович Максименко
Андреас Гонекер
Рьодрiх Мьоснер
Йоганнес Рiхтер
Олег Володимирович Держко

Феромагнiтний перехiд у плоскозоннiй моделi Габбарда як

перколяцiйний перехiд за наявностi кореляцiй через

принцип Паулi

Роботу отримано 26 грудня 2011 р.

Затверджено до друку Вченою радою IФКС НАН України

Рекомендовано до друку вiддiлом теорiї модельних спiнових систем

Виготовлено при IФКС НАН України
c© Усi права застереженi

Нацiональна академiя наук України

���������	
� IНСТИТУТ

ФIЗИКИ

КОНДЕНСОВАНИХ

СИСТЕМ

'

&

$

%

M.Maksymenko, A.Honecker∗, R.Moessner†, J.Richter‡, O.Derzhko

THE FLAT-BAND FERROMAGNETIC TRANSITION
AS A PAULI-CORRELATED PERCOLATION TRANSITION

∗Institut für Theoretische Physik, Georg-August-Universität Göttingen,

Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
†Max-Planck-Institut für Physik Komplexer Systeme, Nöthnitzer Straße 38,
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It is known that flat bands yield a route to ferromagnetism in the
Hubbard model, but the actual location and nature of the para-ferro
transition remain unknown. We study the N -site Hubbard model on the
2D Tasaki lattice. For electron densities n ≤ N = N/3, many-electron
ground states can be constructed from one-particle states localized in
trapping cells. If electrons in neighboring traps are in a symmetric spin
state, due to the Pauli principle on-site repulsion is not active, i.e., elec-
trons can form a ferromagnetic cluster. Ground-state ferromagnetism
can be analyzed as a new Pauli-correlated site-percolation problem on
the square lattice, where due to the degeneracy of independent ferro-
magnetic clusters different cluster coverings of electrons obtain differ-
ent weights. We provide an exact solution for the corresponding 1D
case and a numerical algorithm for the 2D case of the new percolati-
on problem. In 2D the para-ferro transition takes place at concentration
p = n/N = pf = 0.66 ± 0.01 that is well above the threshold for the
standard site percolation on the square lattice pc ≈ 0.59. Moreover, there
exists a region above pf where ferromagnetism appears unsaturated.

1. Introduction

The interplay of the Coulomb interaction with the Pauli principle was
already recognized by Heisenberg [1] to give rise to a ferromagnetic ex-
change interaction, also encoded in Hund’s rule about aligned spins in
a partially filled shell. For a many-body system of correlated electrons
with a flat band, when the interaction energy completely dominates over
the kinetic energy, the ferromagnetic instability is one of the few prob-
lems for which exact results are available, albeit for a restricted range of
fillings.

Given the renewed interest in correlation effects in flat-band sys-
tems [2], here we provide a detailed analysis of a flat-band ferromagnet
with an on-site Hubbard interaction of strength U ≥ 0. For lattices with
a flat band, for U = 0, any state involving electrons occupying the flat
band only is trivially a ground state. Crucially, this degeneracy is only
partially lifted when a repulsive U > 0 is switched on. The basic reason is
that the Pauli principle, by demanding an antisymmetric pair wavefunc-
tion, makes the overlap between two electrons on the same site vanish
provided they are in a symmetric spin state. As the density of electrons
increases, ferromagnetic clusters of increasing size appear. The degenera-
cy, n+1, of a ferromagnetic cluster containing n electrons, gives differing
weights to different clustering of electrons. The ferromagnetic transition
corresponds to the emergence of a cluster containing a nonzero fraction
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Figure 1. (Color online) Two-dimensional Tasaki lattice [hopping inte-
grals t (thick lines) and t′ (thins lines)] and snapshots of configurations
for standard and Pauli-correlated percolation for deviations 3% from crit-
ical concentration. A trapping cell contains five sites (dashed red lines).
The green circles and lines show the 1D variant of the lattice (sawtooth
chain). Panels a) and b) show snapshots (lattice extension L = 120)
of configurations for standard percolation for concentrations p1 = 0.574
and p2 = 0.609 (pc = 0.592746), while panels c) and d) show snapshots
for Pauli-correlated percolation for p∗1 = 0.64 and p∗2 = 0.68 (here we
assume pf = 0.66). Here open boundary conditions along the vertical
axis are implemented to illustrate the effect of the weights.

of the electrons.
An early remark by Mielke [3] likened this problem to one of perco-

lation. Mielke and Tasaki [4] later remarked that, for a class of flat-band
ferromagnets on particularly decorated lattices, the percolation problem
in question is not a standard one but rather one including non-trivial
weights.

Here, we develop this analogy in detail. First of all, we point out
that the interaction between the clusters, on account of its ‘statistical
origin’ in the Pauli principle, is unusual in that it is range-free and purely
geometric – two particles interact only if they form part of the same
cluster. The interaction is not pairwise either but only depends on the
size of the cluster, even being irrespective of the shape of the cluster.
Despite its long range, the statistical interaction does saturate.

This motivates the study of an unusual percolation problem, which
we call Pauli-correlated percolation, which we find has a number of in-
teresting features in its own right. It provides an instance of a problem
in the quantum physics of strongly correlated electrons which can be ‘re-
duced’ to a highly non-trivial problem in classical statistical mechanics,
on which an entirely different set of tools can be brought to bear. We
first demonstrate some special features of this problem by providing a
complete exact solution to a one-dimensional (1D) version of this mod-
el, which exhibits a tendency to breaking up large clusters as well as a
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development of spatial correlations.
For the two-dimensional (2D) Tasaki lattice (see Fig. 1), a deco-

rated square lattice, we provide an analysis of its phase diagram and
critical properties. Using a numerical algorithm custom-tailored to the
problem at hand by extending the Hoshen-Kopelman and Newman-Ziff
algorithms [5, 6] for standard percolation, we establish that the ferro-
magnetic transition does indeed take place in the form of a percolation
transition at a filling pf = 0.66± 0.01 comfortably in excess of the cor-
responding well-known percolation transition on the square lattice at
pc = 0.5927460 . . . [7].

We show that the transition is either continuous or at most weak-
ly first order. In particular, the probability of encountering a spanning
cluster does not jump discontinuously from 0 to 1 at pf , in distinction to
standard percolation. This observation is of a piece with the appearance
of an extended regime of unsaturated ferromagnetism as a function of
density.

The remainder of the paper is organized as follows. First, we intro-
duce and define the problem at hand. Following the exact solution of
the 1D problem, we briefly describe our algorithm and summarize the
central numerical findings, both from a quantum magnetic and classical
percolation perspective. We back up these claims by providing an exact
diagonalization study of a finite-size system. Finally, we close by pointing
out open questions and directions for future research.

2. Percolation representation

We consider the Hubbard model

H =
∑

σ=↑,↓

∑

〈i,j〉

ti,j

(

c†i,σcj,σ + h.c.
)

+ U
∑

i

ni,↑ni,↓ (2.1)

with standard notations. As a representative for a 2D flat-band system
we consider the Tasaki lattice [4] shown in Fig. 1, although our approach,
in principle, can be adapted to other flat-band lattices. Note that Tasaki’s
lattice decoration [4] can be used also for other lattices. Moreover, it can
be performed in arbitrary dimension by a corresponding decoration of
each bond of a D-dimensional lattice. This allows a direct comparison of
the 1D and the 2D problem. We assume that the two relevant hopping in-
tegrals obey the relation t′ =

√
zt > 0, where z is the coordination num-

ber z of underlying lattice. Then the lowest-energy one-electron band of
the Tasaki lattice is completely dispersionless (flat) and the correspondi-
ng set of one-electron states can be taken as localized on trapping cells.
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In D = 2 each trapping cell consists of one site of the underlying square
lattice and four neighboring decorating sites (cf. Fig. 1) therefore z=4.
A localized eigenstate of energy ε1 = −zt = −4t of an electron with spin
σ is given by l†

r,σ|0〉, where r = x, y runs over the sites of the underlying

square lattice, l†
r,σ = c†

x− 1

2
,y,σ

+ c†
x+ 1

2
,y,σ

+ c†
x,y−1

2
,σ
+ c†

x,y+ 1

2
,σ
− 2c†x,y,σ,

and |0〉 denotes the vacuum state. Localized many-particle ground states
for n > 1 electrons with energy nε1 are constructed by filling the traps
with the electrons avoiding double occupancy of a cell and taking into ac-
count the Pauli principle which is crucial if electrons occupy neighboring
cells: If m electrons occupy m contiguous traps (i.e., build a connected
cluster), the m electrons must be in a symmetric spin state, i.e., in one of
the m+1 spin-m/2 multiplet states. The maximum filling with localized
electrons is nmax = N = N/3, where N is the number of cells (number
of sites of the underlying square lattice). The ground state of n electrons,
n ≤ N , has a huge degeneracy

gN (n) =

Cn

N
∑

q=1

W (q), W (q) =

Mq
∏

i=1

(nq;i + 1). (2.2)

Here q enumerates possible geometrical configurations of n electrons on
N cells. For a particular spatial configuration q, Mq denotes the number

of separated clusters having nq;i electrons, i = 1, . . . ,Mq,
∑Mq

i=1 nq;i = n.
Comparing the prediction obtained by this localized-state picture

with exact diagonalization results for the full energy spectrum of the
Hubbard model for finite Tasaki lattices, we found numerical evidence
for completeness of the set of localized states for the Tasaki-Hubbard
model. Moreover, for finite systems this set is linearly independent and
separated from higher-energy states by a finite gap.

The emergent geometrical visualization of the ground states com-
bined with percolation analysis becomes extremely useful for examining
the transition to a ferromagnetic ground state. If the electron concentra-
tion p = n/N exceeds a critical value, a percolating cluster appears that
contains a finite fraction of electrons, giving rise to a finite value of the
averaged square of the total spin 〈S2〉/N 2 [3, 4]. For 〈S2〉 we can write

〈S2〉 = 1

gN (n)

Cn

N
∑

q=1

W (q)

Mq
∑

i=1

nq;i

2

(nq;i

2
+ 1

)

=

n
∑

l=1

Nn(l)
l

2

(

l

2
+ 1

)

, (2.3)
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where we have introduced the averaged number of clusters of size l (nor-
malized by the lattice size N ) [7],

n(l) =
1

gN (n)

Cn

N
∑

q=1

W (q)nq(l) (2.4)

with nq(l) denoting the number of clusters of size l for a particular
geometric configuration q.

It is in order to emphasize here the important difference between the
Pauli-correlated percolation and the standard one. The number of clus-
ters of size l is given also by Eq. (2.4), however, in the latter case with
gN (n) = Cn

N and W (q) = 1. The weight factor W (q) arising owing to
the degeneracy of ferromagnetic clusters has a tremendous effect on the
percolation, changing the percolation threshold, the spanning probabili-
ty, the normalized cluster number etc. These differences are also obvious
in snapshots of typical configurations for standard and Pauli-correlated
percolation at concentrations slightly below and above the transition
point, see Fig. 1. Before we shall illustrate this for the 2D model in more
detail, we first present the exact solution for the 1D Tasaki-Hubbard
model (i.e., the Hubbard model on the sawtooth chain) [4, 8] as a 1D
percolation problem.

3. Exactly solvable Tasaki chain

We use the transfer-matrix method [9] to solve the 1D Pauli-correlated
percolation problem. The population of traps (V-shaped valleys) on the
2N -site sawtooth chain by n electrons in accordance with the Pauli pri-
nciple is encoded in 3 × 3 transfer matrix (see the Appendix). In the
limit N → ∞,

n(l) =
4(1− p)3

(2− p)2
(l + 1)αl , α =

p

2− p
. (3.1)

n(l) has a maximum at l⋆ = −(1 + 1/ lnα), where l⋆ > 1 for p >
2/(

√
e+1) ≈ 0.755. Eq. (3.1) is significantly different from the standard

percolation result n(l) = (1− p)2pl [7], that leads to l⋆ = 1 independent
of p. Only for small p both cases are similar. The combination of Eqs.
(3.1) and (2.3) yields

〈S2〉 = 3p(2− p)

8(1− p)
N . (3.2)

Hence, the magnetic moment 〈S2〉/N 2 tends to zero for p < 1, i.e.,
the percolation threshold is pf = 1. This rigorous conclusion found for
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N → ∞ is in accordance with previous findings [8], however obtained
there not in a rigorous way.

Finally we use the transfer-matrix approach to calculate the (pair)
site-occupation correlation function g(|i − j|) = 〈ninj〉 − 〈ni〉〈nj〉 [10].
Our result reads: g(|i−j|) = −(1−p)2e−|i−j|/ξ < 0 with ξ = −1/(2 lnα).
ξ diverges as (pf − p)−1 when p → pf = 1 and g(|i − j|) becomes long
ranged and weak. This should be contrasted to standard percolation
where g(|i − j|) = p(1 − p)δi,j . Clearly, the Pauli correlated percolation
leads to an effective repulsive force.

Our findings for the 1D case also lead to the conclusion that the
considered system prefers to form as many small clusters as possible
instead of one (or a few) large cluster(s). Such spatial configurations are
favored due to the weight factor W (q). This effect, however, is much less
pronounced for D = 2, to which we turn next.

4. Transition to ferromagnetic ground states in two

dimensions

Although for the 2D case we have no analytical solution, some basic
features of the Pauli-correlated percolation remain. We examine the 2D
Pauli-correlated percolation numerically. In contrast to the standard per-
colation, simple random sampling of geometrical configurations is not
sufficient for averaging in our case, since various geometrical configu-
rations have different weights W (q). Going beyond standard numerical
schemes [5, 6], to take into account efficiently various geometrical confi-
gurations according to their weights, we have implemented importance
sampling choosing samples according to the distribution of W (q). For a
fixed number of electrons, we generate a new configuration q2 from the gi-
ven one q1 by a random permutation of two sites accepting the new confi-
guration with probability min [1,W (q2)/W (q1)] (Metropolis algorithm).
As a result, the numerical investigation of the Pauli correlated percolati-
on becomes more challenging, since it suffers from critical slowing down
(that does not occur in standard-percolation simulations). Labeling of
clusters is done in two different ways: 1) using a modified Newman-Ziff
algorithm [6] which locally updates cluster labeling for fixed number of
occupied sites and 2) using the Hoshen-Kopelman algorithm [5] which
makes a global update. Our main findings concern 〈S2〉, the spanning
probability Pspan, and n(l), see Figs. 2 and 3.

First we discuss the magnetic moment of the largest cluster M2 =
〈S2

maxcluster〉/S2
max, S

2
max = (n/2)(n/2 + 1). M2 > 0 indicates the ap-

pearance of a ferromagnetic cluster proportional to the system size which
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dominates the macroscopic magnetic response of the system [4]. We have
calculated M2 for finite systems up to 250× 250 sites implying both pe-
riodic and open boundary conditions. We use finite-size scaling to get
limN→∞ M2, see Fig. 2. We find that the scaling behavior changes from
M2 = a + bL−2 + · · ·, where L2 = N , for low electron concentrations
p = n/N to M2 = a+ bL−1+ · · · at higher p. In the main panel of Fig. 2
we present M2 for finite systems as well as the extrapolated values for
the most interesting region of electron concentration where ferromag-
netism arises. This plot definitely demonstrates that the ferromagnetic
transition point pf is different from the standard percolation transiti-
on point pc = 0.5927460 . . . [7]. From the extrapolated data for M2 we
find a smooth transition at pMf ≈ 0.65. Interestingly we also find that
above pMf there is an extended region of unsaturated ferromagnetism;
M2 approaches unity very slowly with increase of p indicating that fer-
romagnetism remains unsaturated (e.g., M2 is about 0.95 at p = 0.75).
The reason for that is the distribution of configurations above pMf , which
exhibits, in contrast to the standard percolation, together with a large
cluster a quite large fraction of small clusters this way increasing the
weight of the configuration [see also panel d) in Fig. 1].

An important quantity is the spanning probability Pspan [7], i.e., the
probability that a spanning cluster appears. Clearly, the appearance of a
spanning cluster is related to the emergence of the magnetic moment. We
have calculated Pspan for systems up to 100×100 sites employing periodic
boundary conditions, see the main panel in Fig. 3. As expected, Pspan

tends to zero near the percolation transition at pMf ≈ 0.65 obtained from
data for M2. However, the estimate for the transition point pf obtained
from Pspan is psf ≈ 0.657, slightly above pMf . Obviously, Pspan increases
from 0 to 1 as p varies in a finite region from p ≈ 0.657 . . .0.700. That
is in contrast to the standard percolation where Pspan exhibits a jump
between 0 and 1 at pc.

The behavior of the normalized number of clusters around the crit-
ical region (see the inset of Fig. 3) gives another estimate for pf which
is about pnf = 0.650 . . .0.665. Slightly below this concentration the l-
dependence of n(l) indicates an exponential decay, slightly above this
concentration n(l) indicates the appearance of a large component (the
second peak), whereas at the critical concentration we observe for n(l)
indications of a power-law decay (not shown here).

Our findings are consistent with a visual analysis of typical snapshots
of configurations for the standard and weighted percolation [see panels
a) - d) in Fig. 1]. Indeed for electron concentrations p < pf the system
tends to form many small clusters which increase the weight. Slightly
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above critical concentration p > pf the large cluster is still suppressed
by existence of many small clusters which help to increase the weight of
configuration.

5. Conclusions and perspectives

We have consider a new correlated percolation problem which arises in
a strongly correlated flat-band system, where the weights of the geomet-
rical configurations take nontrivial values due to the Pauli principle.

The Pauli correlated problem can be examined exactly in 1D and
simulated efficiently in 2D. To determine the transition point pf of the
Pauli-correlated percolation on the square lattice we use three different
quantities leading to pf = 0.66± 0.01. From the extrapolation of finite
size data we obtained a smooth transition. However, a tendency for the
coexistence of a large component along with a finite fraction of smallest
possible clusters could be a hint for the weak first order transition in the
system.

It is important to stress here the possible experimental realizations
of the flat-band ferromagnets. Recently, exact solutions have been ap-
plied to investigate f -electron ferromagnetism due to a flat band in the
correlated electron material CeRh3B2 which can be mapped onto a 1D
Tasaki chain [11]. Recent progress in chemistry and nanotechnology al-
lows a fabrication of desired lattice geometries by an array of quantum
dots where the number of electrons can be control by a gate voltage or
by synthesizing a new materials with a desired lattice structure and in-
tersite interactions. The systems of interest could be also constructed for
cold atoms in a controlled setup of optical lattices [2]. Emerging interest
in flat-band systems comes from the field of quantum Hall physics where
it was shown that electronic systems with topologically non-trivial flat
bands could lead to fractional quantum Hall states and fractional topo-
logical insulators in real materials (see [12] and references therein). In-
troducing an on-site Coulomb repulsion in the systems with topological
flat bands could lead to flat-band ferromagnetism which corresponds to
a quantum Hall ferromagnet [13].
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A. Pauli-correlated percolation in one dimension

One-dimensional percolation can be analyzed using a transfer-matrix
method. Introducing the partition function Z(p,N ) of a percolating sys-
tem as the sum of probabilities of all possible random realizations, we can
write it in terms of the transfer matrix T as: Z(p,N ) = TrTN , where
p is the occupation probability of a site. The transfer matrix for the
Pauli-correlated percolation in one dimension, which counts the contri-
bution of the site configurations (empty site, occupied with up-electron,
occupied with down-electron) to the partition function depending on the
configuration of the neighboring site, reads

T =





T (0, 0) T (0, ↑) T (0, ↓)
T (↑, 0) T (↑, ↑) T (↑, ↓)
T (↓, 0) T (↓, ↑) T (↓, ↓)



 =





1 1 1
z z z
z 0 z



 . (A.1)

The matrix elements T (ni, ni+1) correspond to the pair of neighboring
sites i and i+1 and acquire the value 1 (z) if the site i is empty (occupied).
Note that the spin configuration T (↓, ↑) is formally forbidden (whereas
the spin configuration T (↑, ↓) is allowed) in order to count correctly the
degeneracy of a cluster. To determine the unknown contribution z of an
occupied site, we calculate the average occupation number of the site
〈ni〉 which should be equal to p. Thus we have [9]

〈ni〉 =
TrTN

N

TrTN
= p, N =





0 0 0
0 1 0
0 0 1



 . (A.2)

In what follows we consider the thermodynamic limit N → ∞. Simple
algebra leads to z = p(2 − p)/[4(1 − p)2]. It appears that the transfer
matrix for the Pauli-correlated percolation (A.1) is formally identical
with that one already introduced in our previous paper [8] for counting
localized hard-dimer electron states, see Eq. (A1) in Ref. [8]. However,
the meaning of T and hence also the parameter z are different.

We turn to the calculation of the average number of clusters of size l
(normalized by the lattice size N ) n(l) [7]. To fix the cluster of length l
we start with an empty site, then we have a string (cluster) of l occupied
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sites, and the last site of this string is followed by an empty one. To
calculate n(l) we have to replace the product of a sequence of l + 1
T-matrices by the product SC

l−1
F, where

S =





0 1 1
0 0 0
0 0 0



 , C =





0 0 0
0 z z
0 0 z



 , F =





0 0 0
z 0 0
z 0 0



 . (A.3)

That yields

n(l) =
TrTN−l−1

SC
l−1

F

TrTN
. (A.4)

After straightforward calculations we arrive at

n(l) =
4(1− p)3

(2− p)2
(l + 1)αl , α =

p

2− p
, (A.5)

see Eq. (3.1). In these calculations we have used the relation

C
m = zm





0 0 0
0 1 m
0 0 1



 . (A.6)

Next, we use the transfer-matrix approach to calculate the (pair)
site-occupation correlation function g(l) = 〈nini+l〉 − 〈ni〉〈ni+l〉 =
〈nini+l〉 − p2 [10]. Using the matrix N defined in Eq. (A.2) and cal-
culating TrTN−l

NT
l
N [9] we get

g(l) = −(1− p)2α2|l|. (A.7)

Finally, we calculate the pair connectivity Γ(n, n+ l) (the probability
that two sites n and n + l are both occupied and belong to the same
cluster). For this purpose we have to consider the quantity

Γ(n, n+ l) =
Tr(TN−l

NC
l)

TrTN
, (A.8)

which after similar calculations transforms into

Γ(n, n+ l) = p ·
(

1 +
1− p

2− p
l

)

αl. (A.9)

The elaborated approach can be applied to the standard percolation,
too. In this case

T =

(

1 1
z z

)

, N =

(

0 0
0 1

)

,

S =

(

0 1
0 0

)

, C =

(

0 0
0 z

)

, F =

(

0 0
z 0

)

(A.10)
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Figure 4. (Color online) n(l) (red) and g(l) (blue) at p = 0.99 for the
Pauli-correlated (solid) and standard (dotted) percolations.

and formulas (A.2), (A.4), and (A.8) yield z = p/(1−p), n(l) = (1−p)2pl,
g(l) = p(1− p)δl,0, and Γ(n, n+ l) = p · pl, respectively, see Ref. [7].

In Fig. 4 we illustrate n(l) and g(l) for both types of percolation at
p = 0.99.
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